高中数学新课程创新教学设计案例 函数的表示方法

合集下载

人教版高中数学必修一《函数的表示法》教案设计

人教版高中数学必修一《函数的表示法》教案设计

1.2.2函数的表示法一、教材分析教材从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.教材将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.二、三维目标1.知识与技能(1)理解函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,掌握简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.三、教学重点:函数的三种表示方法,映射的概念.四﹑教学难点:分段函数的概念,分段函数的表示及其图象.五﹑教学策略:通过实例分析比较三种函数表示法的特点,分析比较映射与函数的区别与联系.六﹑教学准备教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率七﹑教学环节1、课堂导入⑴.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是Сднемрождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.⑵.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).2、课堂讲授⑴提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:①解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.②图象法:以自变量x 的取值为横坐标,对应的函数值y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.③列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.⑵明确三种方法各自的特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况. 总结为下表:⑶例题讲解:例3.1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素. 解:这个函数的定义域是数集{1,2,3,4,5}, 用解析法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1例4.2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势. 解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大; 赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高. 例5.1.画出函数y=|x|的图象. 分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例6.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦; (ⅲ)求平方; (ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例7.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f : A →B 是从集合A 到集合B 的一个映射,⑷中的对应f : A →B 不是从集合A 到集合B 的一个映射.课堂练习:1.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1); 第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)2.已知函数f (x )=2000x x x ⎧>⎨≤⎩,,,,求f (2),f (-3)的值.解:∵2>0,∴f (2)=22=4.∵-3≤0,∴f (-3)=0. 3.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ).(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. 【探究提升】求下列函数解析式.(1)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x );(2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,将原式中的x 与1x互换,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .3﹑课堂活动:1.教师引导学生完成三种函数表示法的比较,并且归纳它们的优缺点. 2.教师引导学生完成教材例3﹑例4﹑例5﹑例6. 4﹑课堂小结:①分段函数的表示,求值等问题. ②表示函数的三种方法,映射的概念.5﹑作业布置:课本P 28 习题1.2(A 组) 第7题 (B 组)第3题 四、板书设计函数及其表示1.2.2函数的表示法一﹑教材分析二﹑三维目标三﹑教学重点四﹑教学难点五﹑教学策略六﹑教学准备七﹑教学环节九﹑教学反思:1.通过5个例题让学生体会三种表示函数的方法,掌握分段函数及其的概念.2.通过例5例6逐步培养学生分类讨论的数学思想,通过例4培养学生分析问题的能力.。

高中数学《函数的表示法》教案1北师版必修

高中数学《函数的表示法》教案1北师版必修

函数的表示方法教学目标:1.掌握函数的三种表示方法(列表法、解析法、图象法),会根据不同的需要选择恰当的方法表示函数。

2.根据实际问题中的条件列出函数解析式,然后解决实际问题.3.了解简单的分段函数,并能简单的应用。

一 课题引入与教材认知:1.以引入函数概念的三个问题为背景,引入函数的表示方法。

2.教材认知。

函数的三种表示方法:(1)列表法:用列表来表示两个变量之间函数关系的方法。

(2)解析法:用等式来表示两个变量之间函数关系的方法.(3)图象法:用图象表示两个变量之间函数关系的方法。

列表法优点:不必通过计算就知道当自变量取某些值时函数的对应值。

缺点:只用于自变量为有限个的函数。

解析法优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质。

缺点:一些实际问题很难找到它的解析式。

图象法优点:能直观形象地表示出函数的变化情况。

缺点:只能近似地反映函数的变化情况。

二 典型例题例1、购买某种饮料x 听,所需钱数为y 元。

若每听2元,试分别用解析法、列表法、图象法将y 表示x ({}4,3,2,1∈x )的函数,并指出该函数的值域。

小结:同一个函数可以用不同的方法表示,在实际情境中,能根据不同的要求选择恰当的方法表示函数。

中学阶段研究的函数主要是用解析式表示的函数。

例2、某市出租汽车收费标准如下:在3km 以内(含3km )路程按起步价7元收费,超过3km以外的路程按2.4元/km 收费,试写出收费关于路程的函数解析式.例2中的函数具有如下特点:在定义域内不同部分上,有不同的解析式。

像这样的函数通常叫做分段函数 (注:分段函数是一个函数,而不是几个函数。

)小结:(1)在解决实际问题时,求出函数解析式后,一定要写出定义域。

(2) 回顾初中所学内容,如正比例,一次,二次,反比例函数等若已知函数类型,求函数解析式时常用待定系数法其基本步骤是设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

【创新设计】高中数学(人教版必修一)配套练习:1.2.2函数的表示法第1课时(含答案解析)

【创新设计】高中数学(人教版必修一)配套练习:1.2.2函数的表示法第1课时(含答案解析)

1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.会根据不同的需要选择恰当方法表示函数.函数的三种表示法函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系;表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系;表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.来表示两个变量之间的对应关系.一、选择题一、选择题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x(x>0)B .y =100x(x>0)C .y =50x (x>0)D .y =100x(x>0) 2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .33.如果f(1x )=x1-x ,则当x≠0时,f(x)等于( ) A.1x B.1x -1 C.11-xD.1x -1 4.已知f(x)=2x +3,g(x +2)=f(x),则g(x)等于( ) A .2x +1 B .2x -1 C .2x -3D .2x +7 5.若g(x)=1-2x ,f[g(x)]=1-x 2x 2,则f(12)的值为( ) A .1 B .15 C .4D .306.在函数y =|x|(x ∈[-1,1])的图象上有一点P(t ,|t|),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题 号 1 2 3 4 5 6 答 案二、填空题二、填空题7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式为_________________________________________________________ _______________.8.已知函数y =f(x)满足f(x)=2f(1x )+x ,则f(x)的解析式为____________.9.已知f(x)是一次函数,若f(f(x))=4x +8,则f(x)的解析式为__________________. 三、解答题三、解答题10.已知二次函数f(x)满足f(0)=f(4),且f(x)=0的两根平方和为10,图象过(0,3)点,求f(x)的解析式.的解析式.11.画出函数f(x)=-x 2+2x +3的图象,并根据图象回答下列问题:的图象,并根据图象回答下列问题: (1)比较f(0)、f(1)、f(3)的大小;的大小; (2)若x 1<x 2<1,比较f(x 1)与f(x 2)的大小;的大小; (3)求函数f(x)的值域.的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为( ) A .y =[x10] B .y =[x +310]C.y=[x+410]10] D.y=[x+513.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.的解析式.1.如何作函数的图象.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等.2.如何求函数的解析式.如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理知识梳理(1)数学表达式数学表达式 (2)图象图象 (3)表格表格 作业设计作业设计1.C [由x +3x 2·y =100,得2xy =100.∴y =50x(x>0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.] 3.B [令1x =t ,则x =1t ,代入f(1x )=x1-x, 则有f(t)=1t1-1t=1t -1,故选B.]4.B [由已知得:g(x +2)=2x +3,令t =x +2,则x =t -2,代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1,故选B.] 5.B [令1-2x =12,则x =14,∴f(12)=1-(14)2(14)2=15.]6.B [当t<0时,S =12-t 22,所以图象是开口向下的抛物线,所以图象是开口向下的抛物线,顶点坐标是顶点坐标是(0,12);当t>0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x (x≠0) 解析解析 ∵f(x)=2f(1x )+x ,①,① ∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析解析 设f(x)=ax +b(a≠0), 则f(f(x))=f(ax +b)=a 2x +ab +b.∴îïíïìa 2=4ab +b =8,解得îïíïìa =2b =83或îïíïìa =-2b =-8. 10.解.解 设f(x)=ax 2+bx +c(a≠0).由f(0)=f(4)知îïíïìf(0)=c ,f(4)=16a +4b +c ,f(0)=f(4),得4a +b =0.① 又图象过(0,3)点,点, 所以c =3.②设f(x)=0的两实根为x 1,x 2, 则x 1+x 2=-b a ,x 1·x 2=ca .所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:,列表:x … -2 -1 0 1 2 3 4 … y… -5343-5…连线,描点,得函数图象如图:连线,描点,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0, 所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x 1<x 2<1时,有f(x 1)<f(x 2).(3)根据图象,根据图象,可以看出函数的图象是以可以看出函数的图象是以(1,4)为顶点,为顶点,开口向下的抛物线,开口向下的抛物线,开口向下的抛物线,因此,因此,因此,函数的函数的值域为(-∞,4].12.B [方法一方法一 特殊取值法,特殊取值法,若若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二方法二 设x =10m +α(0≤α≤9),0≤α≤6时,时, [x +310]=[m +α+310]=m =[x 10], 当6<α≤9时,[x +310]=[m +α+310]=m +1=[x 10]+1,所以选B.]13.解.解 因为对任意实数x ,y ,有,有 f(x -y)=f(x)-y(2x -y +1), 所以令y =x ,有f(0)=f(x)-x(2x -x +1), 即f(0)=f(x)-x(x +1).又f(0)=1, ∴f(x)=x(x +1)+1=x 2+x +1.。

函数的表示方法教案

函数的表示方法教案

函数的表示方法教案《函数的表示方法教案》一、教学目标1.了解函数的定义和表示方法。

2.掌握常见函数的表示方法。

3.能够运用函数的表示方法解决实际问题。

二、教学重点和难点1.函数的定义和表示方法。

2.函数表示方法的运用。

三、教学准备1.教师准备:课件、黑板、白板、笔等。

2.学生准备:教材、课堂笔记。

四、教学过程Step 1 引入新知识 (5分钟)教师通过举例子引入函数并进行讲解,如:小明每天跑步的时间与他所跑的距离之间的关系可以用一个函数表示。

Step 2 定义函数 (10分钟)教师解释函数的定义及其特点,即每个自变量对应唯一的一个因变量。

Step 3 函数的表示方法 (20分钟)1.函数的文字表示方法教师通过例题让学生掌握如何用文字表示函数。

示例1:设 y 是 x 的一个函数。

a) y = 3x + 2,表示 y 是 x 的一个函数,且函数关系为 y = 3x + 2。

b) f(x) = 3x + 2,表示 y 是 x 的一个函数,且函数名为 f,函数关系为 f(x) = 3x + 2。

2.函数的图像表示方法教师通过绘制函数的图像让学生了解函数的图像表示方法。

示例2:绘制函数 y = 2x + 1 的图像。

教师先画出坐标系,然后给出几个 x 的值,计算出对应的 y 值,并将这些点连成一条直线。

最后将坐标系内的点进行标注。

3.函数的表格表示方法教师通过给出函数的表格让学生了解函数的表格表示方法。

示例3:给出函数 y = 2x + 1 的表格。

x | y--------0 | 11 | 32 | 53 | 7Step 4 常见函数的表示方法 (15分钟)教师通过讲解常见函数的表示方法来巩固学生对函数表示方法的理解。

示例4:常见的函数表示方法有:a) 幂函数:y = ax^n,其中 a、n 是常数,x 是自变量。

b) 指数函数:f(x) = a^x,其中 a 是常数,x 是自变量。

c) 对数函数:y = loga(x),其中 a 是常数,x 是自变量。

《函数的表示方法》教学设计与反思

《函数的表示方法》教学设计与反思
过程 。
和设 计 。


教 材 分析
教 材 从 引 进 函 数 概 念 开 始 ,就 比 较 注 重 函 数 的 不 同 表 示 方 法 。在 本 节 中 , 材 仍 以 引 进 函数 概 念 时 所 用 教 的 三个 问题 为 背景 , 入 函数 的 表示 方 法 , 现 知识 情 引 体 境 呈 现 的 一 致 性 。解 析 法 表 示 函数 关 系 时 , 数 关 系 简 函
明 、 楚 , 于用 解 析 式 来 研 究 函数 性 质 , 现 了透 过 清 便 体
本 节 重 点 内 容 是 函 数 的 三 种 表 示 方 法 ,难 点 是 根 据 不 同的需 要 选择 恰 当 的方 法来 表 示 函数 ,分段 函数 的 表 示 及 其 图 像 的 作 法 。另 外 , 像 从 “ 图 图形 ” 面 刻 画 方 函 数 的 变 化 规 律 , 研 究 函 数 性 质 的 重 要 依 据 , 及 到 是 涉 数 形 结 合 这 一 重 要 思 想 方 法 ,学 生 理 解 它 需 要 一 个 较
更 多地 给学 生 自主支 配 的机会 。从 “ 是 为 了 不 教 ” 教 、 “ 人 以 鱼 不 如 授 人 以渔 ” 教 学 理 念 出 发 , 教 学 方 授 等 在
法 上 主 要 采 用 启 发 发 现 、 发 讲 解 法 , 免 知 识 从 天 而 启 避
降 和 咀 嚼 填 鸭 式 , 学 生 自然 而 然 地 接 受 新 的 知 识 。由 让
于 多媒 体 可 以显著 增 大教 学容 量 、 观性 和形 象化 , 直 实 现 教 学 方 式 多 样 化 ,所 以 有 条 件 的 可 以 借 助 现 代 教 学 手段 多媒 体进 行教 学 。

高中数学函数表述方式教案

高中数学函数表述方式教案

高中数学函数表述方式教案课时:1 小时教学目标:1. 认识函数及其表述方式;2. 了解函数的符号表示法和图像表示法;3. 能够准确描述函数的图像和性质。

教学重点:1. 函数的表述方式;2. 函数的符号表示法和图像表示法。

教学难点:1. 理解函数的图像表示法;2. 描述函数的性质。

教具准备:1. 教材《高中数学教程》;2. 实物范例(如图形、函数图像等);3. 课堂练习题。

教学过程:一、导入(5分钟)教师引导学生回顾前几堂课的内容,让学生快速复习函数的定义和性质。

二、讲解函数的表述方式(15分钟)1. 介绍函数的符号表示法,例如:y = f(x);2. 解释函数的语言表述方式,如:“y是x的函数”,“y随x的增大而增大”等;3. 引入函数的图像表示法,让学生了解函数图像的基本特点和变化规律。

三、示范演练(20分钟)1. 教师展示几个函数的图像,让学生观察并描述函数的性质;2. 学生在小组合作中练习描述函数的图像和性质;3. 教师对学生的练习进行点评和引导,纠正错误理解和表述。

四、课堂练习(15分钟)1. 分发练习题,让学生独立完成;2. 教师巡视辅导学生解题过程,解答疑惑。

五、总结(5分钟)教师对本节课的内容进行总结,强调函数的表述方式和方法。

教学反思:本节课主要围绕高中数学中关于函数表述方式展开,通过符号表示法和图像表示法的介绍,让学生初步了解了函数的概念和基本特点。

在课堂练习环节,学生积极参与,在小组合作中能够有效描述函数的图像和性质,但在个别学生对函数的符号表示法理解还有困难,需要进一步练习。

在下节课中,可以通过更多的练习加深学生对函数表述方式的理解和掌握。

高一数学教案:函数的表示法

高一数学教案:函数的表示法

高一数学教案:函数的表示法教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.教学目的:(1)明确函数的三种表示方法;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正认为“y=f(_)”就是函数的解析式的片面错误认识.教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学过程:引入课题复习:函数的概念;常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.新课教学(一)典型例题例1.某种笔记本的单价是5元,买_ (_∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(_) .分析:注意本例的设问,此处“y=f(_)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注意:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:是否连线;列表法:选取的自变量要有代表性,应能反映定义域的特征.巩固练习:课本P27练习第1题例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:第一次第二次第三次第四次第五次第六次王伟 98 87 91 92 88 95 张城 90 76 88 75 86 80 赵磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;本例能否用解析法?为什么?巩固练习:课本P27练习第2题例3.画出函数y = | _ | .解:(略)巩固练习:课本P27练习第3题拓展练习:任意画一个函数y=f(_)的图象,然后作出y=|f(_)| 和 y=f (|_|) 的图象,并尝试简要说明三者(图象)之间的关系.课本P27练习第3题例4.某市郊空调公共汽车的票价按下列规则制定:(1) 乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设_个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y元,里程为_公里,同根据题意,如果某空调汽车运行路线中设_个汽车站(包括起点站和终点站),那么汽车行驶的里程约为_公里,所以自变量_的取值范围是{_∈N_| _≤_}.由空调汽车票价制定的规定,可得到以下函数解析式:()根据这个函数解析式,可画出函数图象,如下图所示:注意:本例具有实际背景,所以解题时应考虑其实际意义;本题可否用列表法表示函数,如果可以,应怎样列表?实践与拓展:请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)说明:象上面两例中的函数,称为分段函数.高一数学教案:函数的表示法.到电脑,方便收藏和打印:。

高中数学新人教版B版精品教案《2.1.2 函数的表示方法》

高中数学新人教版B版精品教案《2.1.2 函数的表示方法》

2021年度“一师一优课、一课一名师”活动
人教B版高一年级第二章《函数的表示方法—求函数解析式的方法》教学设计一、基本信息
二、教学分析
三、教学设计
四、教学反思
函数的三种表示方法中列表法就是列出表格表示两个变量的函数关系,这种方法学生是熟悉的,图想法应用也是比较广泛的,重点是研究解析式法。

数形结合的数学思想方法,包括“以形助数”和“以数辅形”两个方面,在研究求函数解析式的方法的时候应该结合函数图像进行研究,进而渗透数形结合的数学思想方法。

人教新课标高中数学B版必修一《2.1.2函数的表示方法》教学设计(表格式)

人教新课标高中数学B版必修一《2.1.2函数的表示方法》教学设计(表格式)
②能从实践中体悟函数三种表示法的概念及优缺点;
③掌握函数的一些基本表示法(列表法、图象法、解析法);
④会根据不同实际情境选择合适的方法表示函数,;
⑤树立应用数形结合的思想,了解简单的分段函数,并能简单应用,培养学生应用函数的图象解决问题的能力;
2.过程与方法目标:
①通过学习例一,学生从具体实例中总结三种表示法的优缺点,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。
本节内容蕴含了数形结合的方法,教学时应让学生体会函数三种表示法的优点。
根据本节内容的特点,教学过程中要注重培养观察、分析能力,让学生感受数学在日常生活中作用,养成学以致用的习惯.
二、教学目标
按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:
1.知识与技能目标:
①通过对问题情境的引入,引发学生学习和探索新知识的欲望,感受数学在实际生活中的运用;
6.布置作业
课本:P23练习1、2、3
设计意图:
1巩固所学的内容;
2对所学内容的检测,反馈及补充.
五、教学策略选择与信息技术设置问题情境一:问候语“你好”表达方式有哪些;
2.设置问题情境二:展示2018高考录取控制分数线、战狼收视率;
3.设置问题情境三:学习例1;
学生活动:学生回答问题,思考,总结旧知识
设计意图:为以后牛刀小试中练习题及接受新知识做好准备.
问题引入
师生活动:1.2018年河北省普通高校招生文史理工类录取控制分数线采用列表法给出
2.战狼收视率采用图象法
设计意图:函数表示法和我们息息相关,在日常生活中经常用到;通过战狼适时进行爱国教育.
2.新课讲解
③通过三种函数表示法优缺点的分析,培养学生认真分析、探索的学习态度;

人教版高中数学必修第一册函数的表示方法教案(二)

人教版高中数学必修第一册函数的表示方法教案(二)

函数的表示方法(二)三维目标 一、知识与技能1.了解实际背景的图象与数学情境下的图象是相通的.2.了解图象可以是散点.3.图象是数形结合的基础.4.了解映射的概念及表示方法. 二、过程与方法1.自主学习,了解作图的基本要求.2.探究与活动,明白作图是由点到线,由局部到全体的运动变化过程.3.会判断一个对应是不是映射.4.重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.三、情感态度与价值观1.培养辩证地看待事物的观念和数形结合的思想.2.使学生认识到事物间是有联系的,对应、映射是一种联系方式.3.激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点 函数的作图. 教学难点如何选点作图,映射的概念. 教具准备多媒体课件、投影仪、打印好的材料. 教学过程一、创设情景,引入新课师:日常生活中我们见过许多曲线图象.让我们一起来看一看〔多媒体投影〕: 〔图象1〕股市走势图. 〔图象2〕产生的震动波曲线. 〔图象3〕医用心电图的波线.师:初中我们已研究过直线、反比例及二次函数的图象,请大家作出y =2x -1,y =x1,y =x 2的图象.〔学生在下面自己作图,老师巡视〕我们可以发现这些线的图象都有一个共同的特点,就是由满足一定条件的点构成的,具体地说就是x 作为横坐标,y 作为纵坐标描成的点,所有的点即构成该曲线的图象.二、讲解新课一般而言,如何作出y =f 〔x 〕的图象呢?我们将自变量的一个值x 0作为横坐标就得到坐标平面上的一个点〔x 0,f 〔x 0〕〕,自变量取遍函数定义域A 的每个值时,就得到一系列这样的点,所有这些点组成的集合〔点集〕为{〔x ,y 〕|y =f 〔x 〕,x ∈A },这些点组成的曲线就是函数y =f 〔x 〕的图象.可从以下几个方面加深对函数图象的理解:画函数的图象,不仅要依据函数的解析式,而且还必须考虑它的定义域.两个用不同的解析式表示的函数,只有在对应关系相同、定义域相同的条件下,才能是相同的函数,才能有相同的图象.由函数的图象的定义知道,点的集合{〔x ,y 〕|y =f 〔x 〕,x ∈A }是函数的图象,因此从理论上讲,用列表描点法总能作出函数的图象,但是不了解函数本身的特点,就无法了解函数图象的特点,如二次函数的图象是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图象的特征描绘出来的.函数的图象是函数的重要表示方法,它具有明显的直观性,以后可以看到,通过函数的图象能够掌握函数重要的性质.反之,掌握好函数的性质,将有助于正确地画出函数的图象.我们知道函数的图象是由点集构成的,如何作图即如何选点呢?我们看一看下面的一些例题. [例1] 试画出以下函数的图象:〔1〕f 〔x 〕=x +1〔x ∈{1,2,3,4,5}〕; 〔2〕f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕. 解:〔1〕我们先列表再描点y3 4 56-1-2-3-4〔1〕y-3-4〔2〕f 〔x 〕=x +1的图象?生:仅需把图〔1〕的散点连结起来构成一条直线就是f 〔x 〕=x +1的图象,如图〔2〕.师:对,在初中我们就研究过一次函数的图象,它表示一条直线,所以今后我们作一次函数的图象仅需作出其两点,然后再连成一条直线即可.〔2〕师:这是一个什么曲线? 生:抛物线.师:是一条完整的抛物线吗? 生:好像不是. 师:为什么?生:因为x ∈[1,3〕,所以x 的取值受限制.师:对,这个函数的图象与抛物线f 〔x 〕=〔x -1〕2+1有联系,它是其中一段,为了能够作出其图象,我们先作出抛物线f 〔x 〕=〔x -1〕2+1的图象,大家自己动手作出该函数的图象,用虚线表示.〔一会儿后〕请生甲回答如何作出其图象的.〔同时投影其所得的图象〕生甲:先作出顶点〔1,1〕,再作出两点〔2,2〕、〔3,5〕,然后根据抛物线的对称轴是x =1,作出〔2,2〕、〔3,5〕关于xf 〔x 〕=〔x -1〕2+1的图象.〔如图〔3〕〕y-1-2-3-4〔3〕师:生甲同学通过选关键点顶点,再结合二次函数的对称性取另外两点作出其关于对称轴的对称点,这样得到5点,最后用圆滑的曲线由左向右顺次连结这些点.这个方法是通常作二次函数的方法.这种方法提醒我们对一些熟知的函数要作出其图象仅需要选一些特征点及辅助点,然后就可以得出其图象.这样要作出f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕,仅需要在f 〔x 〕=〔x -1〕2+1的虚线图象上取x ∈[1,3〕的一段用实线描出,但端点〔3,5〕处用空心点表示.〔如图〔4〕〕y-1-2-3-4〔4〕[例2] 作出函数y =|x -2|〔x +1〕的图象. 分析:显然直接用函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对解析式进行等价变形.解:〔1〕当x ≥2,即x -2≥0时,y =〔x -2〕〔x +1〕=x 2-x -2=〔x -21〕2-49. 当x <2,即x -2<0时,y =-〔x -2〕〔x +1〕=-x 2+x +2=-〔x -21〕2+49,所以y =⎪⎪⎩⎪⎪⎨⎧<+--≥--.2,49)21(,2,49)21(22x x x x这是分段函数,每段函数图象可根据二次函数图象作出.〔如图〔5〕〕〔5〕方法引导:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x、y的变化X围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数等基本函数的图象.函数是“两个数集间的一种确定的对应关系〞.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,亚洲的国家构成集合A,亚洲各国的首都构成集合B,对应关系f:国家a对应于它的首都b.这样,对于集合A中的任意一个国家,按照对应关系f,在集合Bf:A→B称为映射.设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.在我们的生活中,有很多映射的例子,例如,设集合A={x|x某场电影票上的},集合B={x|x是某电影院的座位号},对应关系f:电影票的对应于电影院的座位号,那么对应f:A→B是一个映射.[例3] 教科书P26例7.本例中的〔1〕〔2〕是以后经常用到的映射,教学时应引导学生认真理解.对于〔3〕,还可以把“内切圆〞换成“外接圆〞让学生思考.对于〔4〕,可以与本例后的“思考〞进行比较,让学生进一步体会映射是讲顺序的,即f:A→B与f:B→A是不同的,并且,它们中可以一个是映射而另一个不是映射,也可以两个都是映射或两个都不是映射.在此基础上归纳出映射概念值得注意的几点:〔1〕函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;〔2〕对于映射f:A→B,我们通常把集合A中的元素叫原象,而把集合B中与A中的元素相对应的元素叫象.所以,集合A叫原象集,集合B叫象所在的集合〔集合B中可以有些元素不是象〕.〔3〕映射只要求“对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应〞,即对于A中的每一个原象在B中都有象,至于B中的元素在A中是否有原象,以及有原象时原象是否唯一等问题是不需要考虑的.〔4〕用映射刻画函数的定义可以这样表达:设A、B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f〔x〕.其中x∈A,y∈B.原象集合A叫做函数y=f〔x〕的定义域,象集合C叫做函数y=f〔x〕的值域.很明显,C B.[例4] 集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素xa及k的值.方法引导:集合A中元素1,2,3在对应法那么的作用下,分别得到象4,7,10,关键是集合B中谁和10对应.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4,2的象是7,3的象是10.对于集合B而言能与10对应的元素有两种情况:a4=10或a2+3a=10.∵a∈N,∴a2+3a-10=0得a=-5〔舍去〕或a=2.当a=2时,a4=16.由3k+1=16得k=5.∴a=2,k=5为所求.A 集合中只有两个的元素,此时应该考虑四种对应关系.然后用条件和集合的性质加以排除.此题将集合与映射两个概念同时考查,有一定的新意.三、课堂练习1.根据所给定义域,画出函数y =x 2-2x +2的图象. 〔1〕x ∈R ; 〔2〕x ∈〔-1,2]; 〔3〕x ∈〔-1,2〕且x ∈Z . 答案:〔1〕 〔2〕〔3〕A 到集合B 的映射,哪些不是,为什么? 〔1〕A =B =N *,对应关系f :x →y =|x -3|.〔2〕A =R ,B ={0,1},对应关系f :x →y =⎩⎨⎧,0,1.0,0<≥x x〔3〕A =B =R ,对应关系f :x →y =±x .〔4〕A =Z ,B =Q ,对应关系f :x →y =x1. 〔5〕A ={0,1,2,9},B ={0,1,4,9,64},对应关系f :a →b =〔a -1〕2. 答案:〔1〕对于A 中的3,在f 作用下得0,但0∉B ,即3在B 中没有象,所以不是映射. 〔2〕对于A 中任意一个非负数都有唯一象1,对于A 中任意一个负数都有唯一象0,所以是映射. 〔3〕集合A 中的负数在B 中没有元素与之对应,故不是映射. 〔4〕集合A 中的0在B 中没有元素和它对应,故不是映射.〔5〕在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,所以是映射. 四、课堂小结1.本节学习的数学知识:函数的图象、函数图象的作法、作函数图象的要素、映射的概念. 2.本节学习的数学方法:定义法、数形结合与分类讨论的思想方法、归纳与发散的思想、思维的批判性. 五、布置作业1.画出以下函数的图象.〔1〕y =〔-1〕x ,x ∈{0,1,2,3}; 〔2〕y =x -|1-x |;〔3〕y =xx x -+||)21(0.A.y 轴所示的函数表达式为x =0B.y =x 〔x <0〕是定义域为空集的函数f 是从集合A 到集合B 的映射,那么A 中每一元素在B 中都有象 f 是从集合A 到集合B 的映射,那么B 为A 中元素的象的集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},那么以下对应关系中,不能看作从M 到P 的映射的是 A.f :x →y =21x B.f :x →y =31x C.f :x →y =x D.f :x →y =61x 板书设计1.2.2 函数的表示法〔2〕作法 注意点 例1 例2映射的定义 对映射的几点说明 例3 例4 课堂练习 课堂小结。

高中数学函数及其表示教案

高中数学函数及其表示教案

高中数学函数及其表示教案
教学对象:高中学生
教学目标:
1.了解函数的概念和性质;
2.掌握函数的表示方法;
3.能够应用函数解决实际问题。

教学步骤:
一、引入(10分钟)
通过一个生活实例引入函数的概念,让学生了解函数是什么,并探讨函数的性质。

二、讲解(20分钟)
1.函数的定义和符号表示;
2.函数的性质(奇偶性、单调性等);
3.函数的表示方法(映射法则、方程法则、图象法则)。

三、练习(30分钟)
1.完成课本上的相关习题;
2.结合生活实际问题,应用函数解决问题。

四、总结(10分钟)
总结今天所学知识,强化重点,澄清疑惑。

五、作业布置(5分钟)
布置相关作业,巩固所学知识。

教学辅助手段:
1.幻灯片;
2.黑板;
3.教材。

教学反馈:
1.听取学生对函数概念和性质的理解;
2.检查学生完成的习题。

教学延伸:
1.探讨更多函数的相关性质;
2.引导学生分析更复杂的函数问题。

教学检测:
出一个综合性考试,测试学生对函数概念和表示方法的掌握程度。

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

第二章函数第2.2节函数的表示法教学设计函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.一.教学目标:(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;a(3)通过具体实例,了解简单的分段函数及应用.二. 核心素养1.数学抽象:函数的表示方法的理解2.逻辑推理:通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.数学运算:会函数图像,根据图像分析函数的定义域,值域4.直观想象:通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。

5.数学建模:通过本节课的教学,使学生进一步认识到,数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重点函数的三种表示方法,分段函数的概念 教学难点根据题目的已知条件,写出函数的解析式并画出图像PPT1. 函数的表示方法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。

如初中: 学习的一次函数、一元二次函数、反比例函数的关系式,都是解析法.(2)列表法:列表法直接通过表格读数,不必通过计算,就表示出了两个变量之间的对应值,非常直 观.但任何一个表格内标出的数都是有限个,也就只能表示有限个数值之间的函数关系.若 自变量有无限多个数,则只能给出局部的对应关系.(3)图象法:用函数图象表示两个变量之间的关系。

例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。

(见课本P 53页图2—2 我国人口出生变化曲线)比如心电图:但不是所有函数都可以用图像表示:如狄利克雷函数:{1,0()x x f x =为有理数,为无理数2. 函数表示的三种方法对比: 函数表示方法优点缺点 解析法1、简明、全面地概括了变量间的关系; 2、通过解析式求出任意一个自变量的值对应的函数值。

高中数学新课程创新教学设计案例--函数的概念

高中数学新课程创新教学设计案例--函数的概念

6 函数的概念课本阐发与传统课程内容相比,这节内容的最大变革就是函数看法的处理惩罚方法.事实上,“先讲映射后讲函数”比“先讲函数后讲映射”,有利于学生更好地理解函数看法的本质.第一,在初中函数学习底子上继承深入学习函数,衔接自然,利于学生在原有认知底子上提升对函数看法的理解;第二,直接进入函数看法的学习更有利于学生将注意力放在理解函数看法的学习上,而不必花大量精力学习映射,使其认识映射与函数的干系后才华理解函数的看法.函数看法是中学数学中最重要的看法之一.函数看法、思想贯穿于整其中学课本之中.通过实例,引导学生通过自己的视察、阐发、归纳和归纳综合,得到用聚集与对应语言刻画的函数看法.对函数看法本质的理解,首先应通过与初中界说的比力、与其他知识的联系以及不绝地应用等,开端理解用聚集与对应语言刻画的函数看法.其次在后续的学习中通过根本初等函数,引导学生以具体函数为依托、重复地、螺旋式上升地理解函数的本质.讲授重点是函数的看法,难点是对函数看法的本质的理解.讲授目标1. 通过富丰富例,进一步体会函数是描述变量之间的依赖干系的重要数学模型.在此底子上学习用聚集与对应的语言来刻画函数,体会对应干系在刻画函数看法中的作用.2. 了解组成函数的要素,会求一些简单函数的界说域和值域.3. 了解映射的看法.任务阐发学生在初中对函数看法有了开端的认识.这节课的任务是在学生原认知水平的底子上,用聚集与对应的看法认识函数,了解组成函数界说的三要素,认识映射与函数是一般与特殊的干系.讲授设计一、问题情景1. 一枚炮弹发射后,经过60s落到地面击中目标.炮弹的射高为4410m,且炮弹距地面的高度h随时间t的变革规律是h=294t-4.9t2,(0≤t≤60,0≤h≤4410).2. 近几十年来,大气层中的臭氧迅速淘汰,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979年到2001年的变革情况.3. 国际上常用恩格尔系数反应一个国度人民生活质量的崎岖,恩格尔系数越低,生活质量越高.下表中恩格尔系数随时间(年)变革的情况表明,“八五”筹划以来,我国城镇居民的生活质量产生了显著变革.表6-1“八五”筹划以来我国城镇居民恩格尔系数变革情况时间(年)1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 恩格尔系数(%)53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9问题:阐发以上三个实例,对任一个给定的t,射高h、臭氧层空洞面积S、恩格尔系数是否有值与之对应?若有,有几个?二、创建模型1. 在学生充实阐发和讨论的底子上,总结归纳以上三个实例的配合特点在三个实例中,变量之间的干系都可以描述成两个聚集间的一种对应干系:对付数集A中的任一个x,凭据某个对应干系,在数集B中都有唯一确定的值与之对应.2. 西席明晰通过学生的讨论归纳出函数的界说:设A,B是非空的数集,如果凭据某个确定的对应干系f,使对付聚集A中的任一个x,在聚集B中都有唯一确定的数f(x)与它对应,那么就称f:A→B为从聚集A到聚集B的一个函数,记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范畴A叫作函数的界说域,与x的值相对应的y叫作函数值,函数值的聚集:{y|y=f(x),x∈A}叫作函数的值域.注意:(1)从函数的界说可以看出:函数由界说域、对应规矩、值域三部分组成,它们称为函数界说的三要素.其中,y=f(x)的意义是:对任一x∈A,凭据对应规矩f有唯一y与之对应.(2)在函数界说的三个要素中,核心是界说域和对应规矩,因此,只有当函数的对应干系和界说域相同时,我们才认为这两个函数相同.思考:函数f(x)=与g(x)=是同一函数吗?三、解释应用[例题]1. 指出下列函数的界说域、值域、对应规矩各是什么?如何用聚集与对应的看法描述它们?(1)y=1,(x∈R).(2)y=ax+b,(a≠0).(3)y=ax2+bx+c,(a>0).(4)y=kx,(k≠0).解:(3)界说域:{x|x∈R},值域:{y|y≥}对应规矩f:自变量→a (自变量)2+b·(自变量)+c,即:f:x→ax2+bx+c(1),(2),(4)略.2. 已知:函数f(x)=(1)求函数的界说域.(2)求f(-3),f()的值.(3)当a>0时,求f(a),f(a-1)的值.目的:深化对函数看法的理解.3. 求下列函数的值域.(1)f(x)=2x.(2)f(x)=1-x+x2,(x∈R).(3)y=3-x,(x∈N).解:(1){y|y≠0}.(2){y|y≥}.(3){3,2,1,0,-1,-2,…}.4. (1)已知:f(x)=x2,求f(x-1).(2)已知:f(x-1)=x2,求f(x).目的:深化对函数标记的理解.解:(1)f(x-1)=(x-1)2.(2)f(x-1)=x2=[(x-1)+1]2=(x-1)2+2(x-1)+1.∴f(x)=x2+2x+1.[练习]1. 求下列函数的界说域.2. 已知二次函数f(x)=x2+a的值域是[-2,+∞),求a的值.3. 函数f(x)=[x],[x]体现不凌驾x的最大整数,求:(1)f(3.5),(2)f(-3.5).四、拓展延伸在函数界说中,将数集推广到任意集适时,就可以得到映射的看法.聚集A={a1,a2}到聚集B={b1,b2}的映射有哪几个?解:共有4个差别的映射.思考:聚集A={a1,a2,a3}到B={b1,b2,b3}的映射有多少个?点评这篇案例设计完整,条理清楚.案例从三个方面(实际是函数的三种体现要领,为后续内容埋下伏笔)各举一个具体事例,从中归纳综合出函数的本质特征,得出函数看法,体现了由具体到抽象的认知规律,有利于学生理解函数看法,更好地体现了数学从实践中来.例题、练习由浅入深,完整,全面.映射的看法作为函数看法的推广,处理惩罚方法有新意.“拓展延伸”的设计为学生加深对看法的理解,提供了素材.在“问题情景”中的三个事例中,第一个例子中的“对应干系”比力明显,后两个例子则不太明显.如果能在讲授设计中加以细致比拟说明,效果会更好.。

函数的表示方法教学设计

函数的表示方法教学设计

《函数的表示方法》教学设计钱蒙娜一、教材分析本节内容为苏教版《数学必修1》中2.1.2“函数的表示方法”。

在初中学生已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。

函数学习要“多次接触、反复体会、螺旋上升,逐步加深对函数概念的理解。

”在苏教版《数学必修4》中还会继续学习的三角函数,也是非常重要的一类函数模型。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。

同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。

在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。

函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。

特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。

因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

二、教学目标根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识与技能、过程与方法和情感态度与价值观三个维度制订教学目标。

知识与技能:掌握函数常用的三种表示方法(列表法、图象法、解析法),了解函数不同表示方法的优缺点并能根据不同需要选择恰当的方式表示函数;掌握分段函数、复合函数的概念;能根据不同情况求出函数的表达式和定义域。

过程与方法:通过实例,分析比较函数三种不同的表示方法;通过分段函数改变的形成过程,培养学生观察、归纳和抽象的能力,培养数形结合和分类讨论的数学思想。

情感态度与价值观:通过对函数不同表示方法的学习,从中体会数学的简洁统一美;通过探究函数的表达式,激发学生的学习热情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 函数的表示方法
教材分析
函数的表示方法是对函数概念的深化与延伸.解析法、图像法和列表法从三个不同的角度刻画了自变量与函数值的对应关系.这三种表示方法既可以独立的表示函数,又可以相互转化;既各有侧重和优势,又各有劣势和不足;既相互补充,又使函数随自变量的变化而变化的规律直观和具体.这节内容,是初中有关内容的深化、延伸与提高.教材在复习初中三种表示方法定义的基础上,分三个层次对三种表示方法进行了比较.第一个层次:回顾与比较;第二个层次:选择与比较;第三个层次:转化与比较.
教学重点:画简单函数的图像;教学难点:分段函数的解析式求法及其图像的作法.
教学目标
1. 在实际情景中,会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.
2. 通过具体实例,了解简单的分段函数,并解简单应用.
3. 能根据简单的实际问题,建立函数关系式,画出它们的图像,进一步理解、体会函数的意义.
任务分析
学生在初中已经对这节内容有了初步的认识.这节的教学任务是在学生原认知水平的基础上,用对应的观点认识函数,会根据不同需要选择恰当的方法表示函数,明确三种表示方法各有优劣,在一定条件下可以相互转化.为突出根据简单的实际问题建立函数关系式,画出它们的图像这个重点,除学习教材中的实际问题外,又增加了练习.为突破分段函数这个难点增加了高斯函数作为练习.
教学设计
一、问题情景
1. 复习引入
(1)复习初中三种函数的表示方法.
(2)学生回答函数三种表示方法的定义.
2. 方法探究
(1)复习与比较
例:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示方法表示函数y=f(x).
(2)引导学生分析讨论
①三种表示方法的各自的特点是什么?所有的函数都能用解析法表示吗?
②函数图像上的点满足什么条件?满足函数关系式y=f(x)的点(x,y)在什么地方?
二、建立模型
1. 教师明晰
函数图像既可以是连续的曲线,也可以是直线、折线、离散的点等.
采用解析法的条件:变量间的对应法则明确;
采用图像法的条件:函数的变化规律清晰;
采用列表法的条件:函数值的对应清楚.
函数图像上的点满足函数关系式y=f(x),满足函数关系式y=f(x)的点(x,y)在函数图像上,故函数图像即为点集p={(x,y)|y=f(x),x∈A}.
2. 比较与分析
例:下表是某校高一(1)班三名同学在高一学年度几次数学测试的成绩及班级平均分:
表7-1
请你对这三名同学在高一学年度的数学学习情况进行分析.
学生分析讨论:本例是用何种方法表示函数的?要分析“成绩”与“测试次数”之间的变化规律,用何种方法表示函数?
注意:在这里选择何种表示方法,要根据问题的具体情况和三种表示方法的长处来确定.
3. 教师进一步明晰
将“成绩”与“测试次数”之间的函数关系用函数图像表示出来,就能比较直观地看到成绩的变化情况.
4. 转化与比较
例:画出函数y=|x|的图像.
5. 教师归纳、整理
初中作函数图像的基本方法是列表、描点和连线,但这个方法比较烦琐.我们可以把初中学过的一次函数、反比例函数、二次函数的图像作为基本图像,把要作的函数的图像转化为基本函数的图像来解决.
y=|x|,若不含“||”号,则是我们初中学过的y=x,现在含绝对值号,故去绝对值号,得分段函数而分段函数的图像只要分段作出即可.
三、解释应用
[练习一]
1. 作出y=|x-1|的图像,与函数y=|x|的图像比较,并说出你发现了什么.
2. 作出y=x2+2|x|+1的图像.
3. 若x2+2|x|+1=m,当m为何值时,关于x的方程有四个解?三个解?两个解?无解?
[例题]
某市空调公共汽车的票价按下列规则制定:
(1)乘坐汽车不超过5km,票价2元.
(2)超过5km,每增加5km,票价增加1元.(不足5km的按5km计算)
已知两个相邻的公共汽车站间相距约为1km,如果沿途(包括起点站和终点站)有21个汽车站,请根据题意写出票价与路程之间的函数解析式,并画出函数的图像.
学生分析讨论:函数定义域是什么?值域是什么?图像如何作?
教师引导学生写出如下解答过程.
解:设票价为y元,路程为xkm.
如果某空调汽车运行路线中设21个汽车站,那么汽车行驶的路程约为20km,故自变量x的取值范围是x∈(0,20],且x∈N,函数y的取值范围是y∈{2,3,4,5}.
由空调汽车票价的规定,可得到以下函数解析式:
根据这个函数解析式,可画出函数的图像
函数图像共有20个点构成.
像例3、例4这样的函数称为分段函数,分段函数的图像应分段作.
[练习二]
1. 下图都是函数的图像吗?为什么?
(D)
目的:进一步深化对函数概念和函数图像的理解.
2. 某人从甲镇去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示运动的时间,纵轴表示此人与乙村的距离,则较符合该人走法的图像是().
(D)
3. 小明从甲地去乙地,先以每小时5km的速度行进1h,然后休息10min,最后以每小时4km的速度行进了30min到达乙地.
(1)试写出速度v(km/h)关于出发时间t(h)的函数关系式,并画出图像.
(2)试写出小明离开甲地s(km)关于出发时间t(h)的函数关系,并画出图像.
四、拓展延伸
1. 设x是任意的一个函数,y是不超过x的最大整数,记作:y=[x],问:x与y之间是否存在函数关系?如果存在,写出这个函数的解析式,并画出这个函数的图像.
答案:存在函数关系,是着名的高斯函数.现只写出x∈[-1,1]的函数关系:y=
图像略.
2. 某家庭2004年1月份、2月份和3月份煤气用量和支付费用如下表所示:
表7-2
月份用气量煤气费
1月份4m24元
2月份25m214元
该市煤气的收费方法是:煤气费=基本费+超额费+保险费.
若每月量不超过最低限度Am3,则只付基本费3元和每月每户的定额保险C元;若用气量超过Am3,超过部分每立方米付B元,又知保险费C不超过5元.根据上面的表格,求A,B,C.
分析:可设每月用气量xm3,支付费用y元,建立函数解析式解之.
解:设每月用气xm3,支付费用y元,则
由0<C≤5,得3+C≤8.
由第2和3月份的费用都大于8,得
两式相减,得B=0.5,∴A=2C+3.
再分析1月份的用气量是否超过最低限度.
不妨令A<4,将x=4代入3+B(x-A)+C,得3+0.5[4-(3+2C)]+C=4,
由此推出3.5=4,矛盾,
∴A≥4,1月份付款方式为3+C.
∴3+C=4.∴C=1.∴A=5.
∴A=5,B=0.5,C=1.
点评
这篇案例分三个层次对三种表示方法进行了比较:
第一层次:用一个简单的例子对函数的三种表示方法进行了复习和比较;
第二层次:对函数的三种表示方法进行了比较,选择了适当的方法表示函数;
第三层次:三种表示函数的方法的相互转化.
三个层次,层层深入,并对三种表示方法的优、劣进了比较,重点突出.拓展延伸通过高斯函数,加深了学生对抽象函数、分段函数的认识.在注重三种表示方法的同时,加强了学生应用意识的培养.。

相关文档
最新文档