2018七年级数学下册5.2平行线及其判定5.2.2平行线的判定教案(新版)新人教版

合集下载

5.2平行线及其判定(导学案)

5.2平行线及其判定(导学案)

第五章 相交线与平行线第四课时:5.2.1 平行线【学习目标】1使学生知道平行线的概念,掌握平行公理;2了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线. 【学习难点】用几何语言描述画图过程,根据几何语言画出图形. 【学习过程】 一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示.二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线.如图,记作“a ∥b ”或“AB ∥CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个 探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行. 同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 . 练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条. 2.如图2所示,按要求画平行线. (1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN .3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3)4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________. 3.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( ) 4.读下列语句,并画出图形:⑴点P 是直线AB 外一点,直线CD 经过点P ,且与直线AB 平行,直线EF 也经过点P•且与直线AB 垂直.⑵直线AB ,CD 是相交直线,点P 是直线AB ,CD 外一点,直线EF 经过点P•且与直线AB 平行,与直线CD 相交于E .A B C D ab四、学习反思本节课你有哪些收获?第五课时:5.2.2 平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以)判定方法1(判定公理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合对顶角的性质,我们可以得到:判定方法2(判定定理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理)几何语言表述为:∵∠___+∠___=180°∴ AB∥CD练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____.若∠1=∠3,则______∥______,根据是_____ ____.2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理)(1)∵∠1=∠4(已知)∴∥()(2)∵∠ABC +∠ =180°(已知)∴AB∥CD()(3)∵∠ =∠(已知)∴AD∥BC()(4)∵∠5=∠(已知)∴AB∥CD()探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a∥b,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:如图,几何语言表述为:∵a⊥2l,b⊥2l∴练习二:1.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.三、当堂反馈1.如图所示,在下列条件中,不能判断L1∥L2的是().A.∠1=∠3 B.∠2=∠38362514 7F EDC BAC12345DABC .∠4+∠5=180°D .∠2+∠4=180°2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课你有哪些收获?第六课时:5.3.1 平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明. 【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2:⑹平行线的判定推论: 二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合对顶角的性质,我们可以得到:性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理) 几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=练习一:1. 根据右图将下列几何语言补充完整(1)∵AD ∥ (已知) ∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( ) 2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条 ,即平行线间的距离处处相等.练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______.1 2 ab3 c1A B C D 83625147FED CB AC 12 3 4 5BA D ED C B A 1A 2A 1B 2B 3B 4B 5B1C 2C 3C 5C 4C(1题) (2题) (3题) 2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°,则∠A=______.3.如图所示,已知AB∥CD,BC∥DE,∠1=120°,则∠2=______.三、当堂反馈1.如图所示,如果AB∥CD,那么().A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8(1题) (2题) (3题) 2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有().A.3个 B.2个 C.5个 D.4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课你有哪些收获?第七课时:平行线的判定及性质习题课【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、探索思考练习:让我先试试,相信我能行.1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a∥b,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB∥CD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___ .5.如右图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理.6.如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、当堂反馈1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______.2.已知如图2,边OA,OB均为平面反光镜,∠AOB=40°,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是().A.60° B.80° C.100° D.120°(图1)(图2)(图3)3.如图3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.⑴求∠DAB的度数;⑵求∠EAC的度数;⑶求∠BAC的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?四、学习反思本节课你有哪些收获?第八课时:5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论. 【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是 .像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:1.下列语句是命题的个数为()①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗?④若│a│=3,则a=3.A.1个 B.2个 C.3个 D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; •④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.A.1个 B.2个 C.3个 D.4个3.下列说法正确的是()A.互补的两个角是邻补角 B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.AD E B C本节课你有哪些收获?(1)直角都相等.(2)末位数是5的整数能被5整除.(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.三、当堂反馈1.下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.3.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;4.将下列命题改写成“如果……那么……”的形式,并判断正误.(1)对顶角相等;(2)同位角相等;(3)同角的补角相等.四、学习反思。

新人教版七年级下5.2.2平行线的判定学案

新人教版七年级下5.2.2平行线的判定学案

新人教版七年级下5.2.2平行线的判定学案一、课前自主学习: (一)填空题1.如图(1)所示,直线a 、b 被c 所截,若∠1=∠2,则 ∥ ,根据是 ;若∠3=∠4,则 ∥ ,根据是 ;若∠2+∠3=180°,则 ∥ ,根据是 .2.如图(2),(1)∵∠A =_____(已知),∴AC ∥ED ( ) (2)∵∠2=_____(已知), ∴AC ∥ED ( )(3)∵∠A +_____=180°(已知),∴AB ∥FD ( )3.如图(3) (1) 如果∠1=∠4,根据_________________,可得AB ∥CD ;(2) 如果∠1=∠2,根据_________________,可得AB ∥CD ;(3) 如果∠1+∠3=180º,根据______________,可得AB ∥CD .4. 已知:如图(4),∠1=∠2,求证:AB ∥CD∵ ∠1=∠2,(已知) 又∠3=∠2,( ) ∴∠1=______.( )∴ AB ∥CD .(______,______) 5.如图(5)所示,填空,并在括号内填上推理的依据.⑴∵∠1=∠2(已知), ∴ ∥ ( ). ⑵∵∠3=∠DCB (已知),∴ ∥ ( ). ⑶∵∠4=∠EAF (已知), ∴ ∥ ( ). ⑷∵∠EAF +∠ADC =180°(已知), ∴ ∥ ( ). (二)选择题 6.下列结论中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

B .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

C .两条直线被第三条直线所截,那么这两条直线平行。

D .两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

7.如图(6)不能判定a ∥b 的一组条件是( )4c b a 321321F ED C B A 4321FEDC B A 321F ED C BA 4321F ED C B A (1) (2) (3) (4) (5)A .∠1=∠2B .∠1=∠5C .∠3=∠4D .∠2=∠68.如图(7) 能够判定DE ∥BC 的条件是( )A . ∠DCE +∠DEC = 180B . ∠EDC =∠DCB C . ∠BGF =∠DCBD . CD ⊥AB ,GF ⊥AB 9.下列命题正确的是( )A .内错角相等B .相等的角是对顶角C .三条直线相交 ,必产生同位角、内错角、同旁内角D .同位角相等,两直线平行 10如图(8),已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( ) A .AD ∥BC B .∠B =∠C C .∠2+∠B =180° D .AB ∥CD (三)解答题11已知如图(9) MP 、NP 分别平分∠BMF 、∠END ,且∠1与∠2互余,求证:AB ∥CD.12如图(10) AB ∥CD ,∠1=∠A ,可以推出EF ∥CD 吗?写出推理过程。

5.2.2 平行线的判定(第2课时)

5.2.2 平行线的判定(第2课时)

6.如图,下列条件:①AC⊥AD,AC⊥BC; ②∠1=∠2,∠3=∠D;③∠4=①∠②5④;④ ∠BAD+∠ABC=180°.其中,可得到 AD∥BC的是__________.(填序号)
7.如图,—个由4条线段构成的“鱼”形图 案,其中∠1=50°,∠2=50°,∠3= 130°,找出图中的平行线,并说明理由.
(2)求证:BE∥CD.
(1)解:因为∠A=∠ADE,所以AC∥DE, 所以∠EDC+∠C=180°.又因为∠EDC= 3∠C,所以4∠C=180°,即∠C=45°.
(2)证明:由(1)可知AC∥DE,所以∠E= ∠ABE.又因为∠C=∠E,所以∠C=∠ABE,
所以BE∥CD.(同位角相等,两直线平行)
D.第一次右拐50°,第二次右拐50°
10.学习了平行线后,小明同学想出了“过 已知直线m外一点P画这条直线的平行线的新 方法”,他是通过折一张半透明的正方形纸 得到的(如图1~图4).
第一次折叠后(如图2所示),得到的折痕AB与 直线m之间的位置关系是垂直;将正方形纸 展开,再进行第二次折叠(如图3所示),得到 的折痕CD与第一次折痕③④之间的位置关系是垂 直;再将正方形纸展开(如图4所示),可得第 二次折痕CD所在的直线即为过点P的已知直 线m的平行线.下列说法:①两直线平行, 同位角相等;②两直线平行,内错角相等;
D
()
A.60° B.80° C.100° D.120°
2.如图,在四边形ABCD中,若∠1=∠2C, 则AD∥BC,理由是 ( )
A.两直线平行,内错角相等 B.两直线平行,同位角相等 C.内错角相等,两直线平行 D.同位角相等,两直线平行
3.如图,能判定EC∥AB的条件是

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。

2.能用平行线的判定方法1来推理判定方法2和判定方法3。

3.能够根据平行线的判定方法进行简单的推理。

【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。

《5.2.2平行线的判定》教案

《5.2.2平行线的判定》教案

课题《5.2.2平行线的判定》教案【教案背景】1、教学对象:七年级学生2、学科:七年级数学下册(新人教版)3、课时:第1课时4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。

本学期学生初步接触推理证明,逐步养成言之有据的习惯。

【教学课题】数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。

本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。

一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。

2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。

二、教学重难点教学重点:探索并掌握直线平行的判定方法。

教学难点:直线平行的判定方法的应用。

三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。

在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。

四、教学过程(一)复习旧知,引入新课1.如图,已知四条直线AB、AC、DE、FG,(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。

2017-2018学年人教版七年级数学下册教案:5.2平行线及其判定

2017-2018学年人教版七年级数学下册教案:5.2平行线及其判定
2017-2018学年人教版七年级数学下册教案:5.2平行线及其判定
一、教学内容
2017-2018学年人教版七年级数学下册教案:5.2平行线及其判定
1.理解平行线的定义及基本性质。
2.学会使用同位角、内错角、同旁内角等方法判定两直线是否平行。
3.掌握平行线的推论,如:两条平行线间的夹角相等;经过直线外一点有且仅有一条直线与已知直线平行等。
其次,小组讨论环节中,学生们的参与度很高,他们能够积极地提出自己的看法,并从不同角度分析问题。我观察到,通过小组合作,学生们不仅加深了对平行线应用的理解,还提升了沟通和协作能力。
然而,我也注意到在解释平行线的推理过程时,部分学生仍然感到困惑。我意识到,我需要找到更有效的教学方法来简化这些推理过程,比如使用动画或图表来逐步展示逻辑推理的步骤。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用角度关系来判断两条直线是否平行。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
此外,我在课堂上提出的问题可能需要更具挑战性,以促使学生更深入地思考。未来的教学中,我会尝试设计更多开放性问题,鼓励学生们进行探索和创造性思考。
我还注意到,对于那些在课堂上表现较为内向的学生,我需要给予更多的关注和支持。通过个别辅导或小组内的角色扮演,我可以帮助他们更好地参与到课堂活动中来。
最后,今天的总结环节让我意识到,学生们的疑问和不解应及时解答。我计划在下一节课前预留一些时间,专门用来回答学生们的问题,确保他们能够牢固掌握平行线的相关知识。

平行线及其判定的教案

平行线及其判定的教案

平行线及其判定的教案教案标题:平行线及其判定教案目标:1. 了解平行线的定义及其判定方法。

2. 掌握使用直角、同位角和内错角等方法判断线段是否平行。

3. 能够应用所学知识解决相关问题。

教学内容:1. 平行线的定义:两条直线在同一平面内,且不相交,称为平行线。

2. 平行线的判定方法:a. 直角判定法:若两条直线与第三条直线相交时,形成的两组相等的直角相等,则这两条直线是平行线。

b. 同位角判定法:若两条直线与第三条直线相交时,形成的同位角相等,则这两条直线是平行线。

c. 内错角判定法:若两条直线与第三条直线相交时,形成的内错角相等,则这两条直线是平行线。

教学步骤:1. 导入:通过展示两条平行线的图片,引导学生思考平行线的特点和判定方法。

2. 知识讲解:a. 介绍平行线的定义,并与学生一起探讨平行线的特点。

b. 依次介绍直角判定法、同位角判定法和内错角判定法,并通过示例演示每种判定方法的应用。

3. 知识巩固:a. 给学生提供一些练习题,让他们应用所学知识判断给定的线段是否平行。

b. 鼓励学生互相交流,分享解题思路和答案。

4. 拓展应用:a. 提供一些实际问题,让学生应用所学知识解决。

b. 引导学生思考平行线在生活中的应用,并与他们分享一些实际应用场景。

5. 总结归纳:a. 总结平行线的定义和判定方法。

b. 强调学生在解题过程中要注意细节和准确性。

6. 作业布置:a. 布置练习题作为课后作业,巩固所学知识。

b. 鼓励学生自主寻找更多关于平行线的例子和应用场景,并进行记录。

教学辅助工具:1. 平行线的图片或示意图。

2. 教材或课件,包含相关知识点的介绍和示例题。

3. 练习题和解答。

教学评估:1. 在课堂上观察学生的参与度和理解程度。

2. 检查学生完成的练习题和作业,评估他们对平行线及其判定的掌握情况。

3. 针对学生的表现,及时给予反馈和指导。

教案撰写者:教案专家。

部编人教版七年级下册数学5.2.2第1课时《平行线的判定2》教案

部编人教版七年级下册数学5.2.2第1课时《平行线的判定2》教案

第1课时平行线的判定教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。

重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。

难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。

教学过程一、创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行。

直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。

活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。

由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用活动4 学生讨论完成下面题目。

如图,∠A= 55 °,∠B=125 °,AD与BC平行吗?AB与CD平行吗?为什么?学习目标3:平行判定方法在生活中的应用应用1:在如图所示的图中,甲从A处沿东偏南55°方向行走,乙从B处沿东偏南35°方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由.应用2 如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41.5º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西【教师提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。

5.2.2平行线的判定(1) 教用

5.2.2平行线的判定(1) 教用

平行线判定方法2:内错角相等, 两直线平行。 平行线判定方法2:同旁内角互补 ,两直线平行。
6.布置作业
教科书 习题5.2 第1、4、7题
平行线判定方法3: 同旁内角互补,两直 线平行。
如图,四边形ABCD中,已知∠B=60° ,∠C=120°,AB与CD平行吗?AD与BC 平行吗?
A B
解:直线AB与CD平行, 因为∠B=60°,∠C=120°
D C
所以∠B+C=180°,
所以AB//CD(同旁内角互补,两直线平行)
根据题目条件无法判定AD与BC平行。
o
o
同旁内角互补,两直线平行
④ ∵ ∠4 +_____=180 (已知) ∠3
∴ CE∥AB
同旁内角互补,两直线平行
(1)如图1,∠C=57°,
当∠ABE= 57 °时,就能使BE∥CD.
(2)如图2 , ∠1=120°,∠2=60°.
问a与b的关系? a∥b
A B
a b
2
C

E D
1 3
c

平行线判定方法1:同位角相等, 两直线平行。
运用新知,加深理解;
c
b
两条直线垂直于 同一条直线,这两 条直线平行吗?
1 a
2
4.巩固新知,深化理解
例1 如图,你能说出木工用图中的
角尺画平行线的道理吗?
同位角相等,两
直线平行.
巩固新知,深化理解
例2 如图, BE是AB的延长线. (1)由∠CBE=∠A可以判定哪两条直线平行? 根据是什么? 答: AD∥BC .根据同位角相等,两直线平行.
A
l1
l2
B
由此你能发现判定两直线平行的方法吗?

2018年最新人家版七年级数学下册5.2.2《平行线的判定》教案

2018年最新人家版七年级数学下册5.2.2《平行线的判定》教案

《平行线的判定》教案教学目标1、经历探索两直线平行条件的过程,理解两直线平行的条件.2、初步了解推理论证的方法,会正确的书写简单的推理过程.重点探索两直线平行的条件.难点理解“同位角相等,两条直线平行”;会正确的书写简单的推理过程.教学过程一、情景导入.装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P12图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变.简化图5.2-5,得图3.DCBA图3∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2∴AB∥CD.如图(课本P13图5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线.如图,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=1800,能得出a ∥b 吗?(1)∵∠2=∠3(已知)∠3=∠1(对顶角相等)∴∠1=∠2(等量代换)∴a ∥b (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言:∵∠2=∠3,∴a ∥b .(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)∴∠2=∠1(同角的补角相等)∴a ∥b .(同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言:∵∠4+∠2=180°,∴a ∥b .例 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?解:这两条直线平行.∵b ⊥a c ⊥a (已知)∴∠1=∠2=90°(垂直的定义)∴b ∥c (同位角相等,两直线平行)你还能用其它方法说明b ∥c 吗?方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. c ba 21c b a 21(1) (2)注意:本例也是一个有用的结论.3 2 b ac4 1 c b a 21四、课堂练习1、课本P14练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?2、课本P14第2题.五、课堂小结:怎样判断两条直线平行?。

人教版七年级下数学5.2.2平行线判定的综合应用教案

人教版七年级下数学5.2.2平行线判定的综合应用教案

第 5 单元课题名称5.2平行线及其判定5.2.2平行线判定的综合应用(二)总课时数 3 第( 3 )课时教材及学情分析本节课是在上一节课学习平行线的3种判定方法的基础上,通过例题和练习题,帮助学生进一步掌握平行线的判定方法,培养他们的逻辑推理能力.教科书首先通过例题探究、证明“垂直于同一直线的两条直线互相平行”这一重要结论,并首次使用“?”、“?”和几何符号表述推理过程,为后续进一步学习用几何语言表述几何证明过程作铺垫.例题及后面提出的问题“你还能利用其他方法说明?吗,”,均是帮助学生理解和掌握平行线的三个判定方法,引导学生灵活应用平行线的这三个判定方法进行推理证明,逐步培养学生用符号表示推理过程的能力.教学目标1.探索两直线平行的条件,并能应用其解决一些实际问题.2.经历分析题意,说理过程,能灵活地选用直线平行的规定方法进行说理.3.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.教学重点平行线判定方法的应用.教学难点用符号语言表示简单的推理证明过程.教法学法教法:引导——操作法、观察法、讨论法、多媒体电化教学法学法:动手实践、自主探索与合作交流相结合教学资源课前准备PPT、三角板、直尺、量角器教学环节教学过程设计二次备课一、情境导入在铺设铁轨时,两条直轨必须是互相平行的,如何才能保证两条铁轨平行呢?二、合作探究探究点1:平行线的判定的综合运用典例精析例1.如图,E是AB上一点,F是DC上一点,G是BC延长线上一点. (1)如果∠B=∠DCG,可以判断哪两条直线平行?为什么?(2)如果∠D=∠DCG,可以判断哪两条直线平行?为什么?(3)如果∠D+∠DFE=180°,可以判断哪两条直线平行?为什么?方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.例2.如图,已知∠1=75°, ∠2 =105°问:AB与CD平行吗?为什么?例3.如图,∠1=∠2,能判断AB∥DF吗?为什么?若不能判断AB ∥DF,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由.探究点2:在同一平面内,垂直于同一条直线的两条直线平行问题:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?猜想:垂直于同一条直线的两条直线平行.验证猜想:如图,在同一平面内,b⊥a,c⊥a,试说明:b∥c. 解:方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“垂直于同一条直线的两条直线平行”.典例精析例4.如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.课堂练习1.如图,直线AB,CD被直线EF所截 .(1)若∠1=120°,∠2=,则AB//CD.()(2)若∠1=120°,∠3=,即∠1+ ∠3=180°,则AB//CD.()2.用两块相同的三角板按如图所示的方式作平行线,你能解释其中的道理吗?3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次向右拐50º,第二次向左拐130ºB.第一次向左拐30º,第二次向右拐30ºC.第一次向右拐50º,第二次向右拐130ºD.第一次向左拐50º,第二次向左拐130º4.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的条件有( )A.1个B.2个C.3个D.4个5.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.6.【拓展题】有一块木板,身边只有直尺和量角器,我们怎样才能知道它上下边缘是否平行?三、课堂小结作业设计教科书第16页习题5.2第7、11、12题。

5.2.2 《平行线的判定》教学设计

5.2.2 《平行线的判定》教学设计

教学评一体化课时教学设计表(教师个体备课表)为营造轻松愉快的学习氛围,老师准备往墙上挂装饰画,如图所示,老师正在向墙上钉木条,请同学们思考,如果木条b与墙壁的边缘垂直,那么木条a与墙壁的边缘所夹的角为多少度时,才能使木条a与木条b 平行?一、新知建构(板块)问题一:归纳总结平行线的判定方法一活动1:两条不重合的直线的位置关系有哪几种?怎样的两条直线平行?活动2:观察用直尺跟三角尺画平行线的过程,思考:(1)画图过程中,什么角始终保持相等?(2)直线a,b位置关系如何?活动3:归纳平行线的判定方法一问题二:归纳总结平行线的判定方法二、三活动1:内错角相等,证明两直线平行(1分)通过题意抽象出几何图形,写出已知求证并证明(2分)能够运用推理出的结论,结合条件得出新的结论。

(3分)能够得出结论,并说明理由,但书写不够严谨。

(4分)能够准确的得出结论并且理由充分,书写的规范。

(5分)能够准确的运用结论,并帮助没有解决问题的组员理清思路。

活动2:同旁内角互补,证明两直线平行二、迁移运用(板块)在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?成果集成:(这是课堂小结的策略)判定两条直线平行的方法作业设计:1.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠4=180°,则a∥c 2.如图,给出下列条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;⑤∠B=∠D.其中,一定能判定AB∥CD的条件有 (填写所有正确的序号).3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次向右拐150º,第二次向左拐30ºB.第一次向左拐30º,第二次向右拐30ºC.第一次向右拐130º,第二次向右拐50ºD.第一次向左拐150º,第二次向左拐30º4.如图,直线AB,CD被直线EF所截 .若∠1=120°,∠2=__,则AB//CD.()若∠1=120°,∠3=__,则AB//CD.()5.如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?链接中考1.(2021滨州)如图,在平行四边形ABCD中,BE平分∠ABC交DC于点E.若60∠=︒,则∠DEB的大小为()AA.130°B.125° C.120° D.115°2.(2022滨州)如图,在弯形管道ABCD中,若AB CD∥,拐角122∠=︒,则BCDABC∠的大小为()A.58︒ B.68︒ C.78︒ D.122︒。

5.2.2 平行线的判定 第2课时教学设计

5.2.2 平行线的判定 第2课时教学设计

5.2.2 平行线的判定【知识与技能】1.平行线的三个判定定理的理解.2.平行线的三个判定定理的简单运用.【过程与方法】经历实验过程得到判定方法1,再结合前面已学的知识推导出判定方法2和判定方法3.【情感态度】经历推导过程,初步形成严密的逻辑思维习惯.【教学重点】平行线的三个判定定理的理解与简单运用.【教学难点】推理的基本格式及方法.一、情境导入,初步认识问题 1 用实际操作或多媒体课件演示画平行线的过程,想一想,在这个过程中,∠1与∠2的大小关系怎样,∠1与∠2是什么关系的角?问题1 问题2问题2如图,如果,∠2=∠3,能否得到a∥b;如果∠2+∠4=180°,能否得到a∥b?【教学说明】对问题1,可由教师亲自操作,也可事先制好课件进行放映,不难得到判定方法1.对问题2,可由已知条件,结合前面学过的知识,利用“同位角相等,两条直线平行”得到a∥b,从而得到判定方法2和判定方法3.二、思考探究,获取新知思考遇到一个新的问题时,常常怎样去解决呢?【归纳结论】1.平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单的说,就是同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行,简单地说,就是内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简单地说,就是同旁内角互补,两直线平行.2.遇到一个新问题时,常常把它转化为已知的(或已解决的)问题去解决.三、运用新知,深化理解1.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?2.如图,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180°;(3)∠CAD=ACB.3.如图,写出所有能推得直线AB∥CD的条件.【教学说明】问题1、2可以让同学们抢答来完成.问题3可让学生充分讨论,一般来说,要找到几个条件不难,但要找出所有的条件却并非易事,本题旨在考查学生的逆向思维能力.【答案】略.四、师生互动,课堂小结平行线的判定方法:1.平行于同一条直线的两条直线互相平行.2.同位角相等,两直线平行.3.内错角相等,两直线平行.4.同旁内角互补,两直线平行.5.同一平面内,垂直于同一条直线的两条直线互相平行.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学应用数学的自信心.。

5.2 平行线及其判定 人教版数学七年级下册大单元教学设计

5.2 平行线及其判定 人教版数学七年级下册大单元教学设计

5.2 平行线及其判定(单元教学设计)一、【单元目标】通过情景导入,归纳总结出图形出现的规律,从而得到平行线的概念;从平行线的关系可以发现存在同位角、内错角、同旁内角,我们就可以推导出平行线的判定方法;通过这种循序渐进的教育模式,提高学生的参与度,促进对知识点的理解,并且加强学生对数学学习的兴趣;(1)选择特点鲜明的图片,让学生从中归纳出平行线的概念,再由平行线的情况发现“三线八角”,就可以得到平行线的判定方法;学生通过完成相关的例题,加强对概念的理解和应用,同时对复杂的平行线判定方法有一个直观的感受;(2)通过小组合作探究,让学生参与教学过程,加深对基础概念的理解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过观察图片,提高学生的观察事物的能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】平行线及其判定1、平行线的概念2、平行线判定的方法同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行3、平行线判定方法的综合运用三、【学情分析】1.认知基础本节内容是本章的重点内容之一,是考试的常考点;这一节内容让我们学会了对平行线的证明,加强对证明方法的理解;“三线八角”证明平行线关系,也是我们学好几何证明的基础;2.认知障碍学生在理解同位角、内错角、同旁内角证明平行线关系时易产生混乱,导致做题的依据不充分,对于复杂的平行线判定问题,往往会出现束手无策的情况,这里需要加强对角的关联性计算,同时要灵活运用“三线八角”证明是否是平行线;四、【教学设计思路/过程】课时安排:约2课时教学重点:平行线的概念;掌握同位角相等、两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;教学难点:平行线判定方法的综合运用;五、【教学问题诊断分析】5.2.1平行线的概念问题1:(情境导入)数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?【破解方法】学会观察周边的事物,总结图形中出现的规律,再形成基础概念;通过具体图片,帮助学生掌握两条线之间的位置关系,培养学生的洞察能力和总结能力,促进学生思维的发展。

5.2.2平行线的判定(2)教案

5.2.2平行线的判定(2)教案

45.2.2 平行线的判定(2)教学设计数学 人教版 中 七年级主备人 5.2.2 平行线的判定(2) 【教学目标】1.知识与技能:(1)在“同位角相等,两直线平行”的基础上,通过学生动手操作,主动探究 及合作交流发现另两个判定方法。

(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推 理和表述。

2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理 地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能 力。

3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激 发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。

【教学重点与难点】教学重点:探索并掌握直线平行的判定方法 教学难点:直线平行的判定方法的应用 【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

教学 环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生 的一种自主探索的学习活动过程,在探索中形成自己的观点。

一.教学目标(1)使学生进一步理解并掌握判定两条直线平行的方法; (2)了解简单的逻辑推理过程.三.教学过程 复习提问:(设计说明:通过做题复习前两种平行线的判定方法,为探究同旁内 角互补两直线平行,垂直于同一直线的两直线平行做铺垫。

)1.判定两条直线平行的方法有哪些? 2.如图(1)(1)如果∠1=∠4,根据_________________,可得 AB∥CD; (2)如果∠1=∠2,根据_________________,可得 AB∥CD;E23A BA DC1D1F3.如图(2)如图(1)B C如图(2)(1) 如果∠1=∠B,那么______∥________; (2) 如果∠1=∠D,那么______∥________;(3) 如果∠A+∠B=1800,那么______∥________; 如果∠A+∠D=1800,那么______∥________;(先采用探讨问题的方式,启发学生去思考,能通过同旁内角之间的关系来判定两条直线平行呢?(3)探究平行线的判定方法 3如图:如果 ∠1+∠2=180° 能判定 a//b 吗?解:能.∵ ∠1+∠2=180 °(已知)∠1+∠3=180 °(邻补角定义)∴ ∠2=∠3(同角的补角相等)∴ a//b (同位角相等,两直线平行)判定方法 3:两条直线被第三条直线所截,如果同旁内角互 补,那么两直线平行。

广东省陆丰市内湖中学七年级数学下册《5.2 平行线及其

广东省陆丰市内湖中学七年级数学下册《5.2 平行线及其

5.2 平行线及其判定一、教学目标1、理解平行线概念, 理解平行公理,了解其推论, 会用三角尺和直尺过直线外一点画这条直线的平行线。

2、经历动手操作、观察、归纳平行线概念及平行公理的过程,提高观察归纳、动手操作、空间想象及逻辑思维能力。

二、教学重难点:平行公理及其推论。

三、教学过程(一)自主学习1、一般地,在同一个平面内,_______________的两条直线叫做平行线。

2、平行公理:经过直线外一点,有且只有____________条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相_________________。

(二)合作探究问题1:同一平面内,两条直线存在哪些位置关系?问题2:平行线在生活中很常见, 你能举出一些例子吗?平行线画法:问题3 如何画平行线呢?给一条直线a,你能画出直线a的平行线吗?问题4 在转动木条a的过程中有几个位置使得直线a与b平行? 过点B画直线a的平行线,能画出几条?再过点C画直线a的平行线,它和前面过点B画出的直线平行吗?归纳:1、_________________________________________________________________________.2、__________________________________________________________________________.巩固练习:1、读下列语句,并画出图形(1)如图1,过点A画EF ∥ BC;(2)如图2,在∠AOB内取一点P,过点P画PC ∥ OA交OB于C,PD ∥ OB交OA于D.1图 2图2、在平面上画四条直线,使它们分别满足下列条件:(1)没有交点;(2)只有一个交点;(3)有三个交点;(4)有四个交点;(5)有五个交点;(6)有六个交点。

四、课堂小结:1.平面内两条直线有哪些位置关系?2.平行公理及其推论的内容是什么?五、布置作业:课本第12页练习六、教学反馈(下课后填完,并交给科代表)可以另外书写小纸条上交听懂,并会解题听懂,不怎么会解题有点懂听不懂七、教学反思:一、教学目标1、理解平行线的判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定
课题 5.2.2 平行线的判定授课类型新课
课标依据掌握两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

一、教材分析
本课学习由平行线的定义难以判断两条直线平行引入对于平行线判定方法的探究.先由平行线的画法得到判定方法 1
二、学情分析
从学生的年龄特征上看,初一学生年龄小、爱动、注意力集中时间短、注意不够广泛。

从学生的认知特点上看初一学生只局限于一问一答是的简单推理,不善于进行连续推理。

从知识经验来看,学生已经具备了对顶角邻补角角分线的性质互余互补的性质等基础知识但只是用于小题或计算而非符号推理,因此在教学中要引导学生独立思考自主探究合作交流等学习方式,培养学生良好的学习习惯。

三、教学目标知识与
技能
(1)理解平行线的判定方法一:同位角相等,两直线平行。

(2)会用“同位角相等,两直线平行”进行简单的几何推理
过程与
方法
经历平行线判定方法一的发现过程,体验数学语言进行推理的简洁性。

情感态
度与价
值观
让学生体会用数学实验得出几何规律的重要性与合理性。

四、教学重点难点教学
重点
利用“同位角相等,两直线平行”判定两条直线平行。

教学
难点
用数学语言表达几何的推理过程。

五、教法学法
启发引导,问题驱动,合作交流,讲练结合。

六、教
师生活动设计意图
学过程设计
㈠创设情景、引入新课:
1.复习:你会用直尺和三角板推画平行线吗?请画一画。

2.学生画好后,教师出示图1,并提问:
在推画平行线的过程中,有哪些量保持不变?
合作探究、获取结论
1.讨论:
(1)上面的画法可以看作是哪一种图形变换?
(2)在画图过程中,什么角保持不变?
(3)把图中的直线l1 、l2看成被AB所截,则l1 和l2的位置
有什么关系?
(4)你能用数学语言叙述上面的结论吗?
2.在学生讨论归纳的基础上,教师归纳小结平行线的判定公理:
两条直线被第三条直线所截,若同位角相等,则这两条直线
平行.
即同位角相等,两直线平行.
教师并强调几何语言的表述方法
∵∠1=∠2
∴AB∥CD(同位角相等,两条直线平行)
㈡例题教学,体验新知
例1 已知:如图,直线l1,l2被l3所截,∠1=45°,∠2
=135°,试判断l1与l2是否平行,并说明理由.
复习已学过
的知识点,为本节
课的学习做铺垫。

培养了学生
的观察能力。

提出
具有启发性的问
题,刺激学生的原
有认识结构,激发
学生探索问题的
激情。

通过方法点
拨,加深学生对所
学知识的理解,掌
握解决相关问题
的基本方法。

通过学生练
习,对有关知识加
以巩固,让学生从1
2
A B
C D
l2
1
2
l1
l3
3
解: l1 ∥ l2
理由:∵∠2+∠3=180°(邻补角的定义) ∴∠3= 180°- ∠2= 180°- 135°=45 ° ∵∠1=45 ° ∴∠1= ∠3
∴l1∥l2 (同位角相等,两直线平行)
想一想:∠3还可以是哪个位置,你能证明l1∥l2
例2、“在同一平面内,垂直于同一直线的两条直线互相平行”是否可以看成平行线判定方法的特殊情形?
∵a ⊥b,c ⊥b,(已知)
∴∠1=∠2=90°(垂直的定义) ∴a ∥ c (同位角相等,两直线平行) 议一议:
通过观察,一排旗杆都平行。

那么,任意找两根旗杆,请说明一下它们为什么平行 ? 你是如何作判断的 。

结论:在同一平面内,垂直于同一直线的两直线平行。

㈢变式练习:
1、⑴∠DEA=130°,当∠BCE= _ 时,会使得DE ∥BC. ⑵判断:若∠1=89°,∠2=89° 则a ∥b 。

( )
运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性。

b
a
c
1
2
A
B
C
D E
1 2
a b
C
A D B
E F
2、火眼金睛,找出图中的平行线
如果∠ADE=∠ABC,则__∥ __
如果∠ACD=∠F,则__∥ __ 如果∠DEC=∠BCF,则__∥ __
㈣小结:
(1)在本节课的活动中,你有哪些收获? (2)如何判定两条直线平行?。

相关文档
最新文档