风电大规模并网对电网的影响

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于风能具有随机性、间歇性、不稳

定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。本文针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。并对风电的经济性进行了分析。

风电并网对电网影响主要表现为以下几方面:

1.电压闪变

风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。

2.谐波污染

风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。

3.电压稳定性

大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。

因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

风电场风速条件变化也将引起风电场及其附近的电压波动。比如当风场平均风速加大,输入系统的有功功率增加,风电场母线电压开始有所降低,然后升高。这是因为当风场输入功率较小时,输入有功功率引起的电压升数值小,而吸收无功功率引起的电压降大;当风场输入功率增大时,输入有功引起的电压升数值增加较大,而吸收无功功率引起的电压降增加较小。如果考虑机端电容补偿,则风电场的电压增加。特别的,当风电场与系统间等值阻抗较大时,由于风速变动引起的电压波动现象更为明显。研究发现,使用电力电子转换装置的风力发电机,能够减少电压波动,比如并网时风电场机端若能提供瞬时无功,则启动电流也大大减小,对地方电网的冲击将大大减轻。值得一提的是,如果采用异步发电机作为风力发电机,除非采取必要的预防措施,如动态无功补偿、加固网络或者采用HVDC连接,否则当网络中某处发生三相接地故障时,将有可能导致全网的电压崩溃。

4.无功控制、有功调度

大型风电场的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统中吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。因此风力发电机端往往配备有电容器组,进行无功补偿,从而提高电网运行质量及降低成本。双馈型变速恒频风力发电机对这一系列问题有很好地解决作用,由于添加了控制环节,它具有了以下优良特性:

1)可以实现对无功功率的控制--双馈发电机在实现电压控制的同时还可以从电网中吸收无功功率或是为电网提供无功补偿。

2)可以通过对转子励磁电流的独立控制实现了有功和无功功率的解耦控制。具体原理是,双馈发电机在转子侧的变频器通过转子电流d轴分量实现对转子转速和力矩的控制,无功和励磁则是通过转子电流的q轴分量来控制的。同时,电网侧的变频器也以类似的方式工作,d轴分量通过直流电压媒介电路控制有功功率,实现转子侧与电网侧变频器之间的有功交换。

随着风电的高速发展,对风电并网的研究会越来越重要。

相关文档
最新文档