统计与概率专题

合集下载

统计概率高考文科复习专题

统计概率高考文科复习专题

高考文科复习专题——概率知识点梳理1.随机抽样1简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体较少.2系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.3分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.2.常用的统计图表1频率分布直方图①小长方形的面积=组距×错误!=频率;②各小长方形的面积之和等于1;③小长方形的高=错误!,所有小长方形的高的和为错误!.2茎叶图在样本数据较少时,用茎叶图表示数据的效果较好.3.用样本的数字特征估计总体的数字特征1众数、中位数、平均数12n标准差:s=错误!.4.变量的相关性与最小二乘法1相关关系的概念、正相关和负相关、相关系数.2最小二乘法:对于给定的一组样本数据x1,y1,x2,y2,…,x n,y n,通过求Q=错误!y i -a-bx i2最小时,得到线性回归方程错误!=错误!x+错误!的方法叫做最小二乘法.5.独立性检验对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样本频数列联表是:则K2=错误!其中n1.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率.2.一支田径运动队有男运动员56人,女运动员42人;现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人;3.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.4.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.Ⅰ从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;Ⅱ现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.5.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换;每次发球,胜方得1分,负方得0分;设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立;甲、乙的一局比赛中,甲先发球;Ⅰ求开始第4次发球时,甲、乙的比分为1比2的概率;Ⅱ求开始第5次发球时,甲得分领先的概率.6.甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.Ⅰ求乙获胜的概率;Ⅱ求投篮结束时乙只投了2个球的概率.7.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查;I求应从小学、中学、大学中分别抽取的学校数目;II若从抽取的6所学校中随机抽取2所学校做进一步数据分析,1列出所有可能的抽取结果;2求抽取的2所学校均为小学的概率;8.若某产品的直径长与标准值的差的绝对值不超过...1mm 时,则视为合格品,否则视为不合格品;在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品;计算这50件不合格品的直径长与标准值的差单位:mm, 将所得数据分组,得到如下频率分布表:Ⅰ将上面表格中缺少的数据填完整;Ⅱ估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3内的概率;Ⅲ现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品;据此估算这批产品中的合格品的件数.9.2012·辽宁电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.1根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关2,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:10.甲、乙两位运动员在,记甲、乙两人的平均得分分别为错误!甲,错误!乙,则下列判断正确的是甲>错误!乙;甲比乙成绩稳定甲>错误!乙;乙比甲成绩稳定甲<错误!乙;甲比乙成绩稳定甲<错误!乙;乙比甲成绩稳定11. 15年广东文科某城市100户居民的月平均用电量单位:度,以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.()1求直方图中x的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户。

高中数学-概率与统计专题

高中数学-概率与统计专题

概率与统计专题一:二项分布一、必备秘籍一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (01p <<),用X 表示事件A 发生的次数,则X 的分布列为()(1)k k n k n P X k C p p -==-(0,1,2,k n =)如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomial distribution ),记作(,)X B n p 。

二、例题讲解1.(2021·全国高三其他模拟)羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求在经过4回合比赛甲获胜的概率;(2)在一局比赛中,记前4回合比赛甲选手得分为X,求X的分布列及数学期望()E X.2.(2021·青铜峡市高级中学高三开学考试(理))设甲、乙两位同学上学期间,.假定甲、乙两位同学到校情况互不影响,且任每天7:30之前到校的概率均为23一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的每周五天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多3天”为事件M,求事件M发生的概率. 3.(2020·全国高三专题练习(理))一名学生每天骑车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1.3(1)设X为这名学生在途中遇到红灯的次数,求X的分布列、期望、方差;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.实战练习1.(2021·湖北武汉·)在一次国际大型体育运动会上,某运动员报名参加了其中3个项目的比赛.已知该运动员在这3个项目中,每个项目能打破世,那么在本次运动会上:界纪录的概率都是23(1)求该运动员至少能打破2项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为X ,求X 的分布列及期望.2.(2021·渝中·重庆巴蜀中学高三开学考试)某医院为筛查某病毒,需要检验血液是不是阳性,现有)(n n N *∈份血液样本,为了优化检验方法,现在做了以下两种检验方式:实验一:逐份检验,则需要检验n 次.实验二:混合检验,将其中m (n *∈N 且2m ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这m 份血液样本全为阴性,因而这m 份血液样本只要检验一次就够了;若检验结果为阳性,为了明确这m 份血液样本究竟哪几份为阳性,就要对这m 份血液样本再逐份检验,此时这m 份血液样本的检验次数总共为1m +.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为)(01p p <<.现取其中k (k *∈N 且2k ≥)份血液样本,记釆用逐份检验方式,需要检验的这k 份样本的总次数为1ξ,釆用混合检验方式,需要检验的这k 份样本的总次数为2ξ.(1)若每份样本检验结果是阳性的概率为15P =,以该样本的阳性概率估计全市的血液阳性概率,从全市人民中随机抽取3名市民,(血液不混合)记抽取到的这3名市民血液成阳性的市民个数为X ,求X 的分布列及数学期望(2)若每份样本检验结果是阳性的概率为1p =总次数2ξ的期望值比逐份检验的总次数1ξ的期望值更少,求k 的最大值.(ln 4 1.386≈,ln5 1.609≈,ln 6 1.792≈)3.(2021·全国高三其他模拟(理))新冠疫情这特殊的时期,规定居民出行或出席公共场合均需佩戴口罩,现将A 地区居民20000人一周的口罩使用量统计如表所示,其中1个人一周的口罩使用为6个以及6个上的有14000人.(1)求m 、n 的值;(2)用样本估计总体,将频率视为概率,若从A 地区的所有居民中随机抽取4人,记一周使用口罩数量(单位:个)在范围[)6,8的人数为X ,求X 的分布列及数学期望.4.(2021·新沂市第一中学高三其他模拟)市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校200名高中学生的课外体育锻炼平均每天锻炼的时间进行了调查,数据如下表:将学生日均课外体育锻炼时间在[40,60]内的学生评价为“课外体育达标”.(1)请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关;(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取10名学生,再从这10名学生中随机抽取3人了解他们锻炼时间偏少的原因,记所抽取的3人中男生的人数为随机变量X,求X的分布列和数学期望;(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有高中学生中抽取4名学生,求其中恰好有2名学生课外体育达标的概率. 5.(2021·陕西汉中·高三月考(理))树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某块山地上种植了A树木,某农科所为了研究A树木的根部半径与树木的高度之间的关系,从这些地块中用简单随机抽样的方法抽取6棵A树木,调查得到A树木根部半径x(单位:米)与A树木高度y(单位:米)的相关数据如表所示:(1)求y关于x的线性回归方程;(2)对(1)中得到的回归方程进行残差分析,若某A树木的残差为零,则认为该树木“长势标准”,以此频率来估计概率,则在此片树木中随机抽取80棵,记这80棵树木中“长势标准”的树木数量为X,求随机变量X的数学期望与方差.参考公式:回归直线方程为y bx a=+,其中()()()1122211,n ni i i ii in ni ii ix y nxy x x y yb a y bxx nx x x====---===---∑∑∑∑6.(2021·四川成都·双流中学高三三模(理))从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.(1)求a 的值并估计该市中学生中的全体男生的平均身高(假设同组中的每个数据用该组区间的中点值代替);(2)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X 表示身高在180cm 以上的男生人数,求随机变量X 的分布列和数学期望()E X .7.(2021·安徽安庆一中高三三模(理))安庆市某学校高三年级开学之初增加晚自习,晚饭在校食堂就餐人数增多,为了缓解就餐压力,学校在原有一个餐厅的基础上增加了一个餐厅,分别记做餐厅甲和餐厅乙,经过一周左右统计调研分析:前一天选择餐厅甲就餐第二天选择餐厅甲就餐的概率是25%、选择餐厅乙就餐的概率为75%,前一天选择餐厅乙就餐第二天选择餐厅乙就餐的概率是50%、选择餐厅甲就餐的概率也为50%,如此往复.假设学生第一天选择餐厅甲就餐的概率是23,择餐厅乙就餐的概率是13,记某同学第n 天选择甲餐厅就餐的概率为n P . (1)记某班级的3位同学第二天选择餐厅甲的人数为X ,求X 的分布列,并求E (X );(2)请写出1n P +与(*)n P n N ∈的递推关系;(3)求数列{}n P 的通项公式并帮助学校解决以下问题:为提高学生服务意识和团队合作精神,学校每天从20个班级中每班抽调一名学生志愿者为全体学生提供就餐服务工作,根据上述数据,如何合理分配到餐厅甲和餐厅乙志愿者人数?请说明理由.8.(2021·湖北恩施·高三其他模拟)目前某市居民使用天然气实行阶梯价格制度,从该市随机抽取10户调查同一年的天然气使用情况,得到统计表如下:(1)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;(2)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市居民中抽取10户,其中恰有k 户年用气量不超过228立方米的概率为()P k ,求使()P k 取到最大值时,k 的值.概率与统计专题二: 超几何分布一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为2,r其中n ,N ,M N *∈,M N ≤,n N ≤,max{0,}m n N M =-+,min{,}r n M =,则称随机变量X 服从超几何分布.1.公式 C C ()C kn k M N M n NP X k --== 中个字母的含义N —总体中的个体总数M —总体中的特殊个体总数(如次品总数)n —样本容量k —样本中的特殊个体数(如次品数)注意:(1)“由较明显的两部分组成”:如“男生、女生”,“正品、次品”;(2) 不放回抽样;(3) 注意分布列的表达式中,各个字母的含义及随机变量的取值范围。

中考数学专题冲刺《统计与概率》练习题含答案

中考数学专题冲刺《统计与概率》练习题含答案

专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

人教版高中数学高三复习《概率与统计专题》

人教版高中数学高三复习《概率与统计专题》
16
2 x 27,s 35.
s表示10株甲树苗高度的方差,是描述树苗高度 离散程度的量. s越小,表示长得越整齐, s越大,表示长得越参差不齐.
17
考点3 线性相关分析
例3 某农科所对冬季昼夜温差大小与某反季节大豆新品 种发芽量之间的关系进行分析研究,他们分别记录了12 月1日至12月5日的每天昼夜温差与实验室每天每100颗种 子中的发芽数,得到如下资料:
作出散点图后,发现散点在一条直线附近,经计算得到 一些数据:
26
10
x 24.5,y 171.5, (xi x)( yi y) 557.5, i 1 10
(xi x )2 82.5.
i 1
刑侦人员在某案发现场发现一对裸脚印,量得每 个脚印长是26.5 cm,请你估计案发嫌疑人的身高
专题 概率与 统计
考点1 三种抽样方法与概率分布直方图
例1 1有一个容量为200的样本,其频率分
布直方图如图所示,根据样本的频率分布直方图估计,
样本数据落在区间10,12内的频数为( )
A.18
B.36
C.54
D.72
2
2 某高校甲、乙、丙、丁四个专业分别有
150、150、400、300名学生,为了解学生的就业倾向,用分 层抽样的方法从该校这四个专业共抽取40名学生进行调 查,应在丙专业抽取的学生人数为 ________.
600
7
解析 :成绩小于60分的频率为0.002 0.006 0.01210
0.2,所以30000.2 600.
8
考点2 茎叶图与特征数
例2某赛季,甲、乙两名篮球运动员都 参加了7场比赛,他们所有比赛得分的情况用如图所示 的茎叶图表示:
1 求甲、乙两名运动员得分的中位数; 2 你认为哪位运动员的成绩更稳定? 3 如果从甲、乙两位运动员的7场得

【高考第一轮复习数学】统计与概率专题

【高考第一轮复习数学】统计与概率专题

专题二:统计与概率1、随即现象的概念:必然现象是在一定的条件下必然发生的某种结果的现象.在试验中必然不发生的现象叫做不可能现象,在相同条件下多次观察同一现象,每次观察到得结果不一定相同,事先很难预料哪一种结果会出现,这种现象就叫做随机现象.2.必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件. 在一定条件下,可能发生也可能不发生的事件叫做随机事件.通常用大写的英文字母A 、B 、C 。

表示随机事件,随机事件可以简称为事件.3.基本事件和基本事件空间在试验中,能够表示其他事件且不能再分的最简单的事件成为基本事件. 所有基本事件构成的集合称为基本事件空间,常用大写的希腊字母Ω表示. 4.频率与概率(1).在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P(A).0《P(A)《1,这个定义叫做概率的统计定义.当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0.(2).频率与概率的关系频率不能很准确的反应出事件发生的可能性大小,但从大量的重复试验中发现,随着试验次数的的增多,频率就稳定与某一固定的值.概率是通过频率来测量的,或者说频率是概率的一个近似值. 5.概率的加法公式 (1).互斥事件不能同时发生的两个事件叫做互斥事件.(或称互不容事件)不能同时发生的两个事件A 、B 是指,如果A 发生,则B 不一定发生;如果B 发生,则A 不一定发生.推广:如果A 、B 、C 、D 。

中的任何两个都互斥,就称事件A 、B 、C 、D 。

彼此互斥,从集合角度看,n 个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2).事件的并一般的,事件A 与B 至少有一个发生(即A 发生,或B 发生,或A 、B 都发生),则由事件A 与B 构成的事件C 叫做A 与B 的并.记作:A ∪B ;类比集合:事件A ∪B 是由事件A 或事件B 所包含的基本事件组成的集合. 事件A 与事件B 的并等于事件B 与事件A 的并,即A ∪B=B ∪A. (3).互斥事件的概率加法公式 如果A 、B 是互斥事件,在n 次试验中,事件A 出现的频数为n 1,事件B 出现的频数为n 2,则事件A ∪B 出现的频数正好是n 1+n 2,所以时间A ∪B 的频数为nnnnnnn2121+=+.而).()(nnnn21nB A B A n B nA nnμμμμ+=⋃)(总有中事件出现的频率,则次试验表示在果用出现的频率,因此,如是事件出现的频率,是事件由概率的统计定义,可知P (A ∪B )=P (A )+P(B). 6.对立事件及概率公式(1).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。

初中数学统计与概率专题训练50题含答案

初中数学统计与概率专题训练50题含答案

初中数学统计与概率专题训练50题含答案一、单选题1.小华同学某体育项目5次测试的成绩如下(单位:分):9,7,10,8,10,这组数据的众数为()A.7B.8C.9D.102.要调查扬中市中学生了解“河豚节”的情况,下列调查方式最合适的是().A.在某中学随机选取100名女生B.在某中学随机选取100名男生C.在某中学随机选取100名学生D.在全市随机选取100名学生3.从4台A型电脑和5台B型电脑中任选一台,则选中A型电脑的概率为()A.0B.12C.49D.14.一个不透明的口袋里装有大小、形状都相同的5块奶糖、3块酥心糖和2块水果糖,将这些糖搅拌均匀后,现从中任意取出1块糖,则取出的糖是酥心糖的概率是()A.15B.310C.25D.125.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.56.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生7.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一个球得到白球”这个事件是()A.必然事件B.不可能事件C.不确定事件D.以上均有可能8.当前全国疫情防控已进入新常态,各行各业纷纷复工复产.下列调查中,不适合用抽样调查方式的是()A.调查全国餐饮企业员工的复工情况B.调查全国医用口罩日生产量C .调查和检测某学校七年级学生和老师的体温D .调查疫情期间广州地铁的客流量 9.某小组的组长统计组内7个人一天在课堂上发言的次数分别为2,2,4,3,0,2,1,则这组数据的方差为( )A .107B .2C .0D .1710.下列事件中是必然事件的是( )A .任意画一个正五边形,它是中心对称图形B .实数x 有意义,则实数x >3C .a ,b 均为实数,若a b ,则a >bD .5个数据是:6,6,3,2,1,则这组数据的中位数是311.有四张卡片,正面上分别标有数字﹣1,0,1,2,它们除所标数字不同外,其他都完全相同,现把这四张牌扣在桌面上,背面朝上,洗匀后随机抽取一张记下卡上数字后放回桌面洗匀,再随机抽取一张,记下卡上数字,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是( )A .16B .15C .14D .1312.一家鞋店在一段时间内各种尺码的某品牌男运动鞋的销售情况如下表:你认为鞋店更应该关注鞋子尺码的( )A .平均数B .众数C .中位数 D .方差13.下列命题:①四边形至少有一个角是钝角;①(1-a ①在直角坐标系中,点(,)A x y 与点(,)B y x 关于原点成中心对称;①已知数据1x 、2x 、3x 的方差为2s ,则数据12x +,22x +,32x +的方差为32s +,其中是真命题的个数是( ) A .0个 B .1个 C .2个 D .3个 14.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表则在这次活动中,该班同学捐款金额的众数是( )A .20元B .30元C .35元 D .100元 15.下列关于概率说法正确的是( )A .因为抛掷一枚图钉不是“钉尖着地”就是“钉尖不着地”(如图所示),所以“钉尖着地”发生的概率是0.5B .连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现反面朝上的可能性大一些C .小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能投中6次D .随机事件发生的频率就是该事件发生的概率16.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a ,第二次掷出的点数记为c ,则使关于x 的一元二次方程260ax x c ++=有实数解的概率为( )A .49B .1736C .12 D .193617.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( )A .15B .14C .13D .1218.已知样本1x ,2x ,3x ,…,n x 的方差是1,则样本123x +,223x +,323x +,…,23n x +的方差是( )A .1B .2C .3D .419.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )A .14B .38 C .12 D .5820.某校学生来自甲、乙、丙三个社区,其人数比例为3:4:5,如图所示的扇形图表示上述分布情况,那么乙社区所表示的扇形的圆心角为( )A.100°B.110°C.120°D.135°二、填空题21.已知一个不透明的袋中,有5个红球,3个白球,2个黑球,除颜色外小球完全一样,小明从袋中取出一个小球,取出的小球颜色为红色的概率是_____.22.我们知道,人的血液是由血浆和血细胞构成的,血浆是血液中的液态部分,约占血液总量的55%,图中是血浆成分的示意图,如果一次献血200毫升,水约占_____毫升.23.某校共有师生1500人,绘制成如图所示的扇形统计图.则表示教师人数的扇形的圆心角度数为_____,学生有_____人.24.某中学师、生、员工共有1 800人,学生占总人数的85%,教师占总人数的12%,后勤占总人数的3%,则学生有_______人,教师有________人,选择条形统计图能清楚地表示师、生、员工的数量.25.“明天的降水概率为80%”的含义有以下四种不同的解释:①明天80%的地区会下雨;①80%的人认为明天会下雨;①明天下雨的可能性比较大;①在100次类似于明天的天气条件下,历史记录告诉我们,大约有80天会下雨.你认为其中合理的解释是_____.(写出序号即可)26.“一个有理数的绝对值是负数”是_____的.(填“必然发生”或“不可能发生”或“可能发生”)27.将某班女生的身高分成三组,情况如表所示,则表中a的值是________.28.有五张正面分别标有数字2-,1-,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为b,则ab为非负数的概率为________.29.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷1000次啤酒瓶盖,凸面向上的次数为420次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到0.01)30.为了考察某种大麦穗长的分布情况,在一块试验田抽取了100个麦穗,量出它们的长度.在样本数据中,最大值是7.4cm,最小值是4.0cm.列频数分布表时,若取组距为0.3,则适合的组数是______.31.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.32.对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.33.如图,Rt△ABC是一块草坪,其中①C=90°,AC=9m,AB=15m,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟随机落在这块草坪上,则小鸟落在阴影部分的概率为________.34.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是____.35.有一个1万人的小镇,随机调查3000人,其中450人看中央电视台的晚间新闻,在该镇随便问一人,他(她)看中央电视台晚间新闻的概率是_____.36.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.37.从-1,0,1,2这四个数中任取一个数作为P的横坐标,再从剩下的三个数中任取一个作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为_____.x y的平均数为6,众数为5,则这组数据的方差为38.若一组数据4,,5,,7,9__________.三、解答题39.甲、乙、丙、丁四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档.(1)求甲抽取一张扑克牌刚好是红桃的概率;(2)若甲、乙两人各抽取了一张扑克牌,求两人恰好成为游戏搭档的概率.40.如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数.求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率.41.为了从甲、乙两名学生中选拔一人参加县级中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前6次测验成绩的折线统计图.现对甲、乙的6次测验成绩的数据进行统计分析列表对比如下:(1)填空:a=;b=;c=;(2)求m的值;(3)如果从稳定性来看,选谁参赛较合适?如果从发展趋势来看,选谁参赛较合适?请结合所学统计知识说明理由.42.甲、乙、丙、丁四名同学进行一次羽毛球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是;(2)任选两名同学打第一场,请画树状图或列表求恰好选中甲、乙两位同学的概率.43.为响应市政府关于“垃圾不落地•市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有2000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.44.近年以来,雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在全校范围内随机抽取部分学生进行问卷调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)求扇形统计图中,B部分扇形所对应的圆心角的度数;(4)若该校共有1200名学生,请你估计该校比较了解雾霾天气知识的学生的人数.45.某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:表(1):两班成绩表(2):两班成绩分析表(1)在表(2)中填空,a=________,b=________,c=________.(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.46.水稻种植是嘉兴的传统农业.为了比较甲、乙两种水稻秧苗的长势,农技人员从两块试验田中分别随机抽取5株水稻秧苗,将测得的苗高数据绘制成如图所示的统计图.请你根据统计图所提供的数据,计算甲、乙两种水稻苗高的平均数和方差,并比较两种水稻的长势.47.元旦联欢会上,小明设计了一种翻牌游戏:先在9张大小相同的正方形纸牌上分别写上数字1,2,3,…,9;再在另一面写上奖品的名称,其中4张写的是“铅笔”,3张写的是“贺年卡”,2张写的是“笔记本”.如图,将9张纸牌贴在黑板上.(1)小丽第一个翻牌,请问她获得奖品“笔记本”的概率是多少?(2)若小丽翻到的是“贺年卡”,则第二个翻牌人小勇翻到“铅笔”的概率是多少?48.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?参考答案:1.D【分析】根据众数的定义求解即可.【详解】解:这组数据中数字10出现次数最多,有2次,所以这组数据的众数为10.故选:D.【点睛】本题主要考查了众数,一组数据中出现次数最多的数据叫做众数.2.D【分析】本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:要调查扬中市中学生了解“河豚节”的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在全市随机选取100名学生.故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C【分析】选中A型电脑的概率等于A型电脑台数除以电脑总台数.【详解】解:从4台A型电脑和5台B型电脑共9台中任选一台,选中A型电脑的概率为44 459=+.故选:C.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率mP An=().4.B【分析】根据概率公式进行计算即可.【详解】解:从中任意取出1块糖,则取出的糖是酥心糖的概率是:33 53210=++,故B正确.故选:B.【点睛】本题主要考查了概率公式的应用,解题的关键是熟练掌握概率的计算公式.5.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.6.A【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.7.C【分析】根据不确定事件的概念即可判断.【详解】“从中任取一个球得到白球”,这是一个可能发生,也可能不发生的事件,因而是不确定事件,故选C.【点睛】解答本题的关键是熟练掌握不确定事件的概念:有些事情我们事先无法肯定它会不会发生,这些事件称为不确定事件.8.C【分析】根据全面调查和抽样调查的特点逐项判断即得答案.【详解】解:A、调查全国餐饮企业员工的复工情况,适合用抽样调查的方式,故本选项不符合题意;B、调查全国医用口罩日生产量,适合用抽样调查的方式,故本选项不符合题意;C、调查和检测某学校七年级学生和老师的体温,适合全面调查,不适合抽样调查,故本选项符合题意;D 、调查疫情期间广州地铁的客流量,适合用抽样调查的方式,故本选项不符合题意. 故选:C .【点睛】本题考查了普查和抽样调查,属于基本题型,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.A 【详解】这组数据的平均数为1(2243021)27⨯++++++=,则这组数据的方差为2222222110(22)(22)(42)(32)(02)(22)(12)77⎡⎤⨯-+-+-+-+-+-+-=⎣⎦. 10.D【分析】根据必然事件的定义,逐项判断即可求解.【详解】解:A .任意画一个正五边形,它是中心对称图形,是不可能事件,故本选项错误,不符合题意;B .实数x 有意义,则实数x >3,是随机事件,故本选项错误,不符合题意;C .a ,b 均为实数,若a b ,则a =2,b =2,所以a =b ,故a >b 是不可能事件,故本选项错误,不符合题意;D .5个数据是:6,6,3,2,1,则这组数据的中位数是3,是必然事件,故本选项正确,符合题意.故选D .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点落在第一象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:①共有16种等可能的结果,点落在第一象限的有4种情况,①点落在第一象限的概率是:416=14, 故选C .【点睛】此题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.12.B【分析】由题意根据平均数、中位数、众数、方差的意义分析判断即可得出鞋店老板最关心的数据.【详解】解:①众数体现数据的最集中的一点,这样可以确定进货的数量,①商家更应该关注鞋子尺码的众数.故选:B .【点睛】本题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.13.A【分析】根据多边形内角和,二次根式的性质,中心对称,方差的意义分别进行判断.【详解】解:①四边形至少有一个角是钝角或直角,故为假命题;①(()11a a --= ①在直角坐标系中,点(,)A x y 与点(,)B x y --关于原点成中心对称,故为假命题; ①已知数据1x 、2x 、3x 的方差为2s ,则数据12x +,22x +,32x +的方差也为2s ,故为假命题;故选A .【点睛】本题考查了命题与定理,多边形内角和,二次根式的性质,中心对称,方差的意义,解题的关键是掌握相应知识,判断各语句的正确性.14.A【分析】根据众数是一组数据中出现次数最多的数据求解即可.【详解】观察表格可知:捐款金额为20元的学生最多,所以该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查了众数的概念,一组数据中出现次数最多的数据叫做众数,在一组数据中,众数可能不止一个.15.C【分析】根据概率值只是反映了事件发生的机会的大小,不是会一定发生,故可依次判断.【详解】解:A.因为图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,不正确;B.连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现正面朝上和反面朝上的可能性一样大,故说法不正确;C.小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能会投中6次,故说法正确;D.根据定义,随机事件的频率只是概率的近似值,它并不等于概率,故不正确.故选:C.【点睛】本题解决的关键是理解概率的概念只是反映事件发生机会的大小;概率小的有可能发生,概率大的有可能不发生.16.B【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到①≥0,从而得到使得一元二次方程ax2-6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】解:列表得:①一共有36种等可能情况,①b=6,当b 2-4ac≥0时,有实根,即36-4ac≥0有实根,①ac≤9,①方程有实数根的有17种情况,①方程有实数根的概率=1736, 故选:B .【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.17.D【详解】根据题意画出树状图为:抽取不放回的等可能的结果有:12种可能,恰好两张卡片上的数字相邻的有6种,所以概率是 ,故选D . 点睛:此题主要考查了用树状图或列表法求概率,首先利用列举法可得抽取不放回的等可能的结果有:12种,相邻的有6种,然后利用概率公式求解即可求得答案.18.D【分析】设x 1,x 2,3x ,…,n x 的平均数为a ,根据已知数据的方差得到()()()()222212311n x a x a x a x a n ⎡⎤-+-+-+-=⎣⎦,再求出所求样本的平均数及方差即可. 【详解】解:设x 1,x 2,3x ,…,n x 的平均数为a ,①(x 1+x 2+3x +…+n x )=na ,①x 1,x 2,3x ,…,n x 的方差是1,①()()()()222212311n x a x a x a x a n ⎡⎤-+-+-+-=⎣⎦, ①123x +,223x +,323x +,…,23n x +的平均数为(123x ++223x ++323x ++…+23n x +)÷n =2a +3,①123x +,223x +,323x +,…,23n x +的方差为()()()()222212312323232323232323n x a x a x a x a n ⎡⎤+--++--++--++--=⎣⎦4, 故选:D .【点睛】此题考查了已知数据的方差求另一组数据的方差,正确掌握平均数的计算公式及方差的计算公式是解题的关键.19.B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果, 所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为63=168. 故选B .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.C【分析】用360度乘以乙社区所占的比例即可得解.【详解】①甲、乙、丙三个社区的人数比例为3:4:5,①乙社区所表示的扇形的圆心角为:360°×4345++=120°, 故选C. 【点睛】本题考查了扇形统计图,正确理解题意,掌握扇形统计图中圆心角的求解方法是解题的关键.21.12##0.5【分析】直接利用概率公式求解即可.【详解】①口袋中有5个红球,3个白球,2个黑球,①随机取出一个小球,取出的小球的颜色是红色的概率为:51= 5322++.故答案为:12.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.22.99【分析】先求出200毫升血液中所含血浆质量,进而得所含水的质量.【详解】解:水约占:200×55%×90%=99(毫升),故答案为:99.【点睛】本题考查了扇形统计图,得出200毫升血液中所含血浆质量是解答本题的关键.23.72°1200【分析】根据每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,求圆心角的度数;学生人数=总人数×所占比例(80%).【详解】解:表示教师人数的扇形的圆心角度数为360°×20%=72°,学生人数为1500×80%=1200人,故答案为72°、1200.【点睛】本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.24.1530;216.【详解】解析:学生人数占85%,总人数为1800,故学生人数为85%×1800=1530;同理教师人数为12%×1800=216.25.①①【分析】根据随机事件的定义可知“明天的降水概率为80%”的含义的解释为①①.【详解】根据随机事件的定义可知“明天的降水概率为80%”的含义的解释:①明天80%的地区会下雨,不符合题意;①80%的人认为明天会下雨,不符合题意;①明天下雨的可能性比较大,符合题意;。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列调查适合做普查的是()A.了解全国九年级学生身高的现状B.了解一批灯泡的平均使用寿命C.了解全球人类男女比例情况D.对患新型冠状病毒患者同一车厢的乘客进行医学检查2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率3.在开展“爱心捐助山区儿童”的活动中,某团小组8名团员捐款的数额分别为(单位:元):6,5,3,5,10,5,5,7.这组数据的中位数和众数分别是()A.10,3B.6,5C.7,5D.5,5 4.“命题”的英文单词为proposition,在该单词中字母o出现的频数是()A.0.3B.2C.3D.3 115.西安市今年10月11号至10月14号,每天的最高气温分别为11℃,12℃,13℃,13℃,则这几天最高气温的中位数和众数分别是()A.11℃,13℃B.12℃,12℃C.12.5℃,13℃D.13℃,12℃6.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,其它均相同,从袋子里随机摸出一个球记下颜色不放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.116B.18C.16D.127.数据2,2,4,8,9的中位数是()A.2B.3C.4D.68.在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是()A.25,26B.25,26.5C.27,26D.25,28 10.下列调查中,最适合用普查方式的是()A.调查某品牌牛奶质量合格率B.调查三亚市实验中学七(1)班学生的平均身高C.调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况D.调查海南省九年级学生一周内网络自主学习的情况11.必然事件的概率是()A.1B.0C.大于0且小于1D.大于1 12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙、丁的成绩分析如表所示:根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁13.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差14.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是()A.12B.13C.14D.1515.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072516.现有四张完全相同的卡片,上面分别标有数字1,4,5,7,把卡片背面朝上洗匀,两个人依次从中随机抽取一张卡片不放回,则这两个人抽取的卡片上的数字都是奇数的概率是().A.13B.12C.23D.1417.甲,乙两个班参加了学校组织的国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()A.乙班成绩优异的人数比甲班多B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲、乙两班的平均水平不相同18.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x甲=x乙=80,s=240,s=180,则成绩较为稳定的班级是().A.甲班B.两班成绩一样稳定C.乙班D.无法确定19.为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为()A.500B.被抽取的500名学生C.被抽取500名学生的视力状况D.我市八年级学生的视力状况二、填空题20.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是____小时.21.甲、乙、丙、丁四人各进行20次射击测试,他们的平均成绩相同,方差分别是2222,,,,则射击成绩最稳定的是__________.====0.80.60.9 1.0s s s s乙丙甲丁22.某校学生到校方式情况的扇形统计图如图所示,若该校步行到校的学生有200人,则乘公共汽车到校的学生有___人.23.不透明布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是______.24.如图是边长为3cm的正方形健康码,为了估计图中黑色部分的总而限,在正方型区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为______2cm.25.现有两个不透明的袋子,甲袋中装有一个白球和两个红球,乙袋中装有两个白球和一个红球,两个袋子中的球除了颜色不同外其他都相同,如果从两个袋子中各摸出一个球,则摸出的球颜色相同的概率是___.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.现有四张正面分别标有数字1-,1,2-,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后不放回,再从余下的卡P m n在第片中随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点(),二象限的概率是______.28.某校广播台要招聘一名播音员,应聘甲听,说,读,写的成绩分别为80,78,82,90,若成绩按3:3:2:2的比例计算,则甲的综合成绩为______.29.某校组织八年级三个班学生参加数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80,三班参赛人数40人,则三班的平均分为_______分.30.某校女子排球队的12名队员的身高如表:则身高178cm出现的频率是____________31.100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是______.32.一副52张的扑克牌(无大、小王),从中任意取出一张,抽到“Q”的可能性大小是____________.33.某学校将举行中小学生运动会,某校从甲、乙、丙、丁四名选手中选一名参加男子100米跑项目,预先对这四名选手个测试了8次,平均成绩都是12.6秒,方差如表:则这四名选手中发挥最稳定的是_______.34.一组数2,3,5,5,6,7 的中位数是_______.35.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵葡萄树,每棵葡萄树产量的平均数x (单位:千克)及方差2s (单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是______.36.“明天的降水概率为80%”的含义有以下三种不同的解释: ℃ 明天80%的地区会下雨; ℃ 80%的人认为明天会下雨; ℃ 明天下雨的可能性比较大;你认为其中合理的解释是_________.(写出序号即可)37.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:表中46x ≤<组的频数b 满足2535b ≤<.下面有四个推断: ℃表中a 的值为100; ℃表中c 的值可以为0.31:℃这a 名学生每周课外阅读时间的中位数一定不在6~8之间: ℃这a 名学生每周课外阅读时间的平均数不会超过6. 所有合理推断的序号是___________.38.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是 .39.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b .那么22a b +为完全平方数的概率是_________.三、解答题40.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?41.甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.42.已知一组同学练习射击,击中靶子的环数分别为103、98、99、101、100、98、97、104,计算它们的方差.43.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3C1≤t<1.51400.35D 1.5≤t<2800.2E2≤t<2.5400.1请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.44.为了解某种新能源汽车的性能,对这种汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次被抽检的新能源汽车共有辆;(2)将图1补充完整;在图2中,C等级所占的圆心角是度;(3)估计这种新能源汽车一次充电后行驶的平均里程数为多少千米?(精确到千米)45.计划在某水库建一座至多安装4台发电机的水电站,过去50年的水文资料显示,水库年入流量x(年入流量:一年内.上游来水与库区降水之和,单位:亿立方米)都在40以上.过去50年的年入流量的统计情况如下表(假设各年的年入流量不相互影响).以过去50年的年入流量的统计情况为参考依据.(1)求年入流量不低于120的概率;(2)若水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量x的限制,并有如表关系:若某台发电机运行,则该台发电机年利润为6000万元;若某台发电机未运行,则该台发电机年亏损2000万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.46.上个月,某校对学生进行了一次垃圾分类的宣传活动,为了解这次宣传活动的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了下面所示的不完整的统计表和统计图.垃圾分类知识测试成绩统计表请结合统计表和统计图,回答下列问题:(1)求本次参与测试的学生人数;(2)统计表中m=__________,n=__________;(3)补全“垃圾分类知识测试成绩统计图”;(4)如果测试结果是“良好”或“优秀”为对垃圾分类知识比较了解,已知该校学生总数为3600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数.47.把分别标有数字2,3,4,5的四个小球放入A袋,把分别标有数字13,14,16的三个小球放入B袋,所有小球的形状、大小、质地均相同,A、B两个袋子不透明.(1)如果从A袋中摸出的小球上的数字为3,再从B袋中摸出一个小球,两个小球上的数字互为倒数的概率是;(2)小明分别从A,B两个袋子中各摸出一个小球,请用树状图或列表法列出所有可能出现的结果,并求这两个小球上的数字互为倒数的概率.48.某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?49.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计),第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车,小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林,离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车从入口处到达塔林的时间.(2)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变).(3)若小聪在8:30至8:50之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过3分钟的概率是多少?参考答案:1.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解全国九年级学生身高的现状,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;B、了解一批灯泡的平均使用寿命,调查具有破坏性,适合抽样调查,故本选项不合题意;C、了解全球人类男女比例情况,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;D、对患新型冠状病毒患者同一车厢的乘客进行医学检查,特别重要,必须普查,故本选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.C【详解】解:A、数量较大,普查的意义或价值不大时,应选择抽样调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大的调查往往选用普查;D、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C.3.D【详解】试题分析:在这一组数据中5是出现次数最多的,故众数是5;将这组数据从小到大的顺序排列(3,5,5,5,5,6,7,10),处于中间位置的那两个数是5,则这组数据的中位数是5;故选D.考点:℃众数;℃中位数.4.C【分析】频数就是出现的次数,根据频数的定义求解即可.【详解】℃在英文单词为proposition中字母o出现的次数是3,℃在该单词中字母o出现的频数是3;故答案为C.【点睛】本题主要考查了频数的概念,熟记频数的定义是解题的关键.5.C【分析】利用中位数的定义“中位数是按顺序排列的一组数据中居于中间位置的数,且如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数”和众数的定义“众数是在一组数据中,出现次数最多的数据”逐项判断即可解答.【详解】根据题意有4个数据,按顺序排列,处于中间的2个数据分别是12℃和13℃,所以中位数是(12℃+13℃)÷2=12.5℃;4个数据中13℃出现次数最多为2次,所以众数为13℃.故选C【点睛】本题考查中位数和众数的定义.注意数据的个数是偶数,那么中间那2个数据的算术平均值才是这群数据的中位数是本题解题关键.6.C【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果,与两次摸到白球的情况,再利用概率公式求解即可.【详解】解:画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,;两次都摸到白球的概率为:21=126故选:C.【点睛】本题考查概率的知识点,解题关键是采用列表法与树状图法求出概率即可.7.C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);【详解】解:中位数是按从小到大排列后第3个数,所以是4,故选:C .【点睛】本题考查中位数的定义,中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),注意先进行排序. 8.D【分析】计算出各个选项中事件的概率,根据概率即可作出判断. 【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果;C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果; D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率. 9.A【分析】根据众数和中位数的定义,结合所给数据即可得出答案.【详解】将这组数据按从小到大的顺序排列为:25,25,25,26,27,27,28, 出现最多的数字为:25;故众数是25, 中位数为:26 故选:A .【点睛】此题考查众数和中未收到额定义,正确掌握众数和中位数的确定方法是解题的关键. 10.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】调查某品牌牛奶质量合格率,适合用抽样方式,A 不合题意;调查三亚市实验中学七(1)班学生的平均身高,适合用普查方式,B 符合题意;调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况,适合用抽样方式,C 不合题意;调查海南省九年级学生一周内网络自主学习的情况,适合用抽样方式,D 不合题意;所以B 选项是正确的【点睛】本题考查根据不同实际情况选择适合的调查方式,主要涉及抽样调查和普查知识11.A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答. 【详解】℃必然事件就是一定发生的事件 ℃必然事件发生的概率是1. 故选A.【点睛】本题考查概率的意义,熟练掌握概率的意义是解题关键. 12.D【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【详解】解:℃甲,乙,丙,丁四个人中丙和丁的平均数最大且相等, 甲,乙,丙,丁四个人中丁的方差最小,℃综合平均数和方差两个方面说明丁成绩既高又稳定, ℃最合适的人选是丁. 故选D .【点睛】本题考查了方差和平均数,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键. 13.D【分析】根据众数、中位数、平均数及方差可直接进行排除选项. 【详解】解:由题意得:原中位数为4,原众数为4,原平均数为2444645x ++++==,原方差为()()()()()2222222444444464855S ⎡⎤-+-+-+-+-⎣⎦==; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为244644x +++==,方差为()()()()222222444446424S ⎡⎤-+-+-+-⎣⎦==; ℃统计量发生变化的是方差; 故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.【分析】由将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,直接利用概率公式求解即可求得答案.【详解】℃将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,℃向上一面的点数,与点数4相差2的概率是:21=.63故选B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.B【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16.B【分析】画树状图展示所有12种等可能的结果数,再找出这两个人抽取的卡片上的数字都是奇数的结果数,然后根据概率公式计算.【详解】画树状图为:共有12种等可能的结果数,其中这两个人抽取的卡片上的数字都是奇数的结果数为6,所以这两个人抽取的卡片上的数字都是奇数的概率=61 122=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.A【分析】由两个班的中位数得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C不正确;由两个班的平均数相同得出选项D不正确;即可得出结论.【详解】解:A、由两个班的中位数得出:甲班成绩优异的人数比乙班多;故A正确;B、甲、乙两班竞赛成绩的众数不确定;故B不正确;C、乙班的成绩比甲班的成绩稳定;故C不正确;D、甲、乙两班的平均水平相同;故D不正确;故选:A.【点睛】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.18.C【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】℃2S甲>2S乙,℃成绩较为稳定的班级是乙班.故答案选C.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.C【分析】从总体中取出的一部分个体叫做这个总体的一个样本,依据样本的定义进行判断即可.【详解】为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为被抽取500名学生的视力状况,故选C.【点睛】本题主要考查了样本的定义,把组成总体的每一个考查对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.20.6.4【详解】解:平均体育锻炼时间=510615720856.450⨯+⨯+⨯+⨯=(小时).故答案为:6.4 21.乙【分析】方差越小,数据越稳定. 【详解】解:0.60.80.9 1.0<<< ∴乙的射击成绩最稳定故答案为:乙.【点睛】本题考查方差的实际应用,是基础考点,掌握相关知识是解题关键. 22.400.【分析】根据题意,该校步行到校的学生有200人,占总数的20%,即可求得总人数,再由乘公共汽车到校的学生占总数的40%即可求得乘公共汽车到校的学生人数. 【详解】若该校步行到校的学生有200人,则该校的学生总人数为200÷20%=1000(人),所以乘公共汽车到校的学生有1000×40%=400(人), 故答案为:400.【点睛】本题主要考查了数据统计中总体人数的求解,找准百分比与对应人数之间的关系是解决本题的关键 23.13【详解】根据概率公式可得摸出的球是白球的概率是2123++= 13.点睛:本题属于基础型题目,学生只需熟练掌握概率的求法,即可完成. 24.5.4【分析】先计算正方形的面积,再建立方程求解即可. 【详解】解:边长为3cm 正方形面积为239=, 设黑色部分的总面积为x 2cm , ℃0.69x=, ℃ 5.4x =, 故答案为:5.4.【点睛】本题考查了用频率来估计概率,解题关键是理解频率与概率的关系与概率计算公式,明确题中黑色部分的面积与正方形的面积比等于概率是解题的关键.。

中考数学统计与概率专题知识易错题50题-含参考答案

中考数学统计与概率专题知识易错题50题-含参考答案

中考数学统计与概率专题知识易错题50题含答案一、单选题1.为了了解我市2021年中考数学学科各分数段成绩分布情况,从中抽取200名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.200B.被抽取的200名考生的中考数学成绩C.被抽取的200名考生D.我市2021年中考数学成绩2.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.53.在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是()A.随机事件B.必然事件C.不可能事件D.以上事件都有可能4.下列调查中,最适合采用全面调查(普查)方式的是()A.对全国初中学生睡眠质量情况的调查;B.对2022年元宵节期间市场上“元宵”质量情况的调查;C.对春运期间乘车旅客携带危险品情况的调查;D.对母亲河——嘉玲江水质情况的调查.5.甲、乙、丙、丁四名同学进行体温测量,他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,则体温最稳定的是()A.甲B.乙C.丙D.丁6.下列说法正确的个数是()①为了了解一批灯泡的使用寿命,应采用全面调查的方式①一组数据5,6,7,6,8,10的众数和中位数都是6①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m≥0①23≥-≠-a a且A.1B.2C.3D.47.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()A.88B.90C.91D.928.为了估计一片树林中的麻雀的数量,爱鸟人在这个林子里随机捕捉到了30只麻雀,分别在它们的脚上做上标记后,再放归树林.一周后,再次在这片林子里捕捉到了50只麻雀,发现其中3只脚上有标记,(不考虑其他因素)则这片林子中麻雀的数量大约为()A.300只B.500只C.1000只D.1500只9.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A.15B.625C.25D.192510.下列说法正确的是()A.了解中央电视台新闻频道的收视率应采用全面调查B.了解岳池县初一年级学生的视力情况,现在我县城区甲、乙两所中学的初一年级随机地各抽取50名学生的视力情况C.反映岳池县6月份每天的最高气温的变化情况适合用折线统计图D.商家从一批粽子中抽取200个进行质量检测,200是总体11.以下调查中,最适合采用普查方式的是()A.调查某班级学生的身高情况B.调查全国中学生的视力状况C.调查山东省居民的网上购物状况D.调查一批电脑的使用寿命12.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.1913.淘淘和丽丽是九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是()A.13B.19C.23D.2914.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3①5①2变成5①3①2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加15.某校举行防疫知识竞赛,甲、乙两班的参加人数及成绩(满分100分)的平均数、中位数、方差如下表所示,规定成绩大于或等于96分为优异.佳佳根据上述信息得出如下结论:①甲、乙两班学生成绩的平均水平相同;①甲班的成绩比乙班的成绩稳定;①乙班成绩优异的人数比甲班多;①佳佳得94分将排在甲班的前20名.其中正确的结论是()A.①①B.①①C.①①D.①①①16.某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中()A.个体是每个学生B.样本是抽取的1200名学生的数学毕业成绩C.总体是40本试卷的数学毕业成绩D.样本是30名学生的数学毕业成绩17.下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160B.170,160C.170,180D.160,20018.下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数19.甲乙二人做出拳(石头、剪刀、布)游戏,则甲赢的概率为()A.16B.13C.12D.1920.已知一组数据的方差为345,数据为:-1,0,3,5,x,那么x等于()A.-2或5.5B.2或-5.5C.4或11D.-4或-11二、填空题21.博物馆拟招聘一名优秀讲解员,张三的笔试、试讲、面试成绩分别为94分、90分、95分.综合成绩中笔试占50%、试讲占30%、面试占20%,那么张三最后的成绩为_____分.22.一组数据2,3,2,3,5的方差是__________.23.A,B,C三把外观一样的电子钥匙对应打开a,b,c三把电子锁.(1)任意取出一把钥匙,恰好可以打开a锁的概率是;(2)求随机取出A,B,C三把钥匙,一次性对应打开a,b,c三把电子锁的概率.24.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.25.小华想了解光明小区500户家庭的教育费用支出情况,随机抽查了该小区的50户家庭并做了相关统计.在这次调查中,样本容量是_____.26.若一组数据2、2、3、1、5的极差是_________27.制作频数直方图的步骤:(1)确定所给数据的最大值、最小值,求出最大值与最小值的差;(2)将数据适当________;(3)统计每组中数据出现的________;(4)绘制频数直方图.28.一组数据:1,2,2,3,3,3,4,4,4,4的平均数等于_________.29.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼_____尾.30.为做好疫情防控工作,学校南门设置了A,B两台体温快速检测设备,小成和小林随机进入学校,二人恰好均从设备A检测入校的概率是______.31.万州区九池乡盛产草莓,每年三四月正是草莓成熟的季节.某水果经销商为了更好地了解市场,分别对甲、乙、丙、丁四个市场四月份每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为22228.1, 5.7,9.5, 6.4====s s s s,则该经销商四月份草莓价格最稳定的市场是甲乙丁丙__________.32.在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:59.569.579.599.59151289.599.5出现的频率为15%,则这一次抽样调查的容量是(1)已知最后一组()________.69.579.5的频数是________,频率是________.(2)第三小组()33.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是_____.34.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:由此你能给这家鞋店提供的进货建议是________________________.35.有四张完全相同且不透明的的卡片,正面分别标有数字-1,-2,1,2,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为a ,放回后洗匀,再抽一张,卡片上的数字记为b ,则函数y ax =与函数by x=没有交点的概率是_______. 36.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____.37.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.38.某校为了了解该校学生在家做家务的情况,随机调查了50名学生,得到他们在一周内做家务所用时间的情况如下表所示:这组数据的中位数是_____.39.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.40.我们把a 、b 、c 三个数的中位数记作,,Z a b c ,直线12y kx =+与函数22,1,1y Z x x x =-+-+的图象有且只有2个交点,则k 的值为______.三、解答题41.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 27 26 18 19 22 17 16 19 32 30 16 15 16 28 15 32 23 17 14 15 27 27 16 19,对这30个数据按组距3进行分组,并整理和分析如下: 频数分布表:数据分析表:请根据以上信息解答下列问题:(1)上表中=a ,b = ,c = ,d = ;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.42.体育测试即将进入中考,某校随机抽取八年级50名男生进行立定跳远测试,并把测试成绩(单位:m )绘制成如下统计表和统计图.(每组数据含前一个边界值,不含后一个边界值)八年级50名男生立定跳远测试成绩的频数表(1)求a,b的值,并把频数直方图补充完整;(2)学生立定跳远成绩在1.85m(含1.85m)以上为合格,若该年级共有600名男生,试估计有多少名男生达到合格水平?43.东京奥运会10米跳台决赛在2021年8月5日下午15:00举行,来自广东湛江的14岁小女孩全红婵让全世界记住了她的名字.下表是7名裁判对全红婵第一跳的打分情况:(1)写出7名裁判打分的众数和中位数.(2)跳水比赛计分规则规定,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这一跳的完成分,根据“最后得分=难度系数×完成分×3”,那么全红婵第一跳的最后得分多少?44.如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1)根据图中信息分别求出上午和下午四个整点时间的平均气温.(2)请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.45.西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为____________,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.46.2021年底,西安突发新冠肺炎疫情、在各方共同努力下,取得了抗击疫情的阶段性胜利.日前,新一波新冠肺炎疫情又在中国香港地区蔓延,同时深圳、呼和浩特等多地也出现散发病例.做好新冠肺炎疫情防控时刻不能放松,对中学生来说抗击疫情的最好办法是强身健体,提高免疫力.某校为了解九年级学生周末在家体育锻炼的情况,在该校九年级随机抽收了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了如下数据(单位:分钟):【收集数据】男生:28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105;女生:29,35,36,48,55,56,62,69,69,72,73,78,88,88,90,98,99,109.【整理数据】【分析数据】两组数据的平均数、中位数、众数如表:根据以上信息解答下列问题:a______,b=______;(1)填空:m=______,=(2)如果该校九年级的男生有270人、女生有360人,估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数;(3)王老师看了表格数据后认为九年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.47.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:规定:演讲答辩得分按.......“.去掉一个最高分和一个最低分再算平均分..................”.的方法确定.....;. 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; 综合得分=演讲答辩得分×(1-a)+民主测评得分×a (0.5≤a≤0.8); (1) 当a=0.6时,甲的综合得分是多少?(2) 如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.48.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数; (2)求这位同学将两种不同类型的垃圾都正确投放的概率.49.我校团委举办了一次“中国梦·我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀. 这次大赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏下!”观察上表,请说明小明是哪一组学生,并说明理由;(3)如果学校准备推荐其中一个组参加县级比赛,你推荐哪一组参加?请你从两个不同的角度说明推荐理由.50.甲、乙二人做如下的游戏;从编号为1到20的卡片中任意抽出一张.(1)若抽到的数字是奇数,则甲获胜,否则乙获胜,你认为这个游戏对甲、乙双方公平吗?请从概率的角度分析你的结论.(2)若抽到的数字是3的倍数,则甲获胜;若抽到的数字是5的倍数,则乙获胜,你认为这个游戏对甲、乙双方公平吗?参考答案:1.B【分析】根据样本的定义(从总体中抽取出的一部分个体叫做这个总体的一个样本)即可得.【详解】解:由题意可知,样本是指被抽取的200名考生的中考数学成绩,故选:B.【点睛】本题考查了样本,熟记样本的定义是解题关键.2.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.3.A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是随机事件,故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对全国初中学生睡眠质量情况的调查,适合采用抽样调查方式,不符合题意;B.对2022年元宵节期间市场上“元宵”质量情况的调查,适合采用抽样调查方式,不符合题意;C.对春运期间乘车旅客携带危险品情况的调查,适合采用全面调查方式,符合题意;D.对母亲河——嘉玲江水质情况的调查,适合采用抽样调查方式,不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.A【分析】根据方差越小,数据越稳定,比较方差的大小即可.【详解】解:他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,0.020.040.060.08<<<.∴甲体温最稳定.故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.6.A【分析】根据全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件逐一判断即可.【详解】解:①为了了解一批灯泡的使用寿命,调查具有破坏性,应采用抽样调查的方式,故错误;①一组数据5,6,7,6,8,10的众数是6,中位数是(6+7)÷2=6.5,故错误;①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m>0,故错误;①23≥-≠-a a且,故正确.综上:正确的有1个故选A.【点睛】此题考查的是调查方式的选择、求一组数据的众数、中位数、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件,掌握全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件是解决此题的关键. 7.C【分析】根据“平均分=总分数÷科目数”计算即可解答. 【详解】解:()919488391++÷=(分), 故小华的三科考试成绩平均分式91分; 故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可. 8.B【分析】设这片林子中麻雀的数量为x 只,根据样本估计总体列式求解即可. 【详解】解:设这片林子中麻雀的数量为x 只, 由题意得:30:3:50x =, 解得:500x =,所以这片林子中麻雀的数量大约为500只, 故选:B .【点睛】本题主要考查了用样本估计总体,熟练掌握相关知识是解题的关键. 9.B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案. 【详解】根据题意列树状图得:①共有25可能出现的情况,两个指针同时指在偶数上的情况有6种, ①两个指针同时指在偶数上的概率为:625, 故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.10.C【详解】A. ①了解中央电视台新闻频道的收视率,如果采用应采用全面调查,工作量很大,故不正确;B. ①从城区甲、乙两所中学的初一年级随机地各抽取50名学生,漏掉了农村中学的学生,不具代表性,故不正确;C. ①折线统计图能反应一个量的变化情况,①反映岳池县6月份每天的最高气温的变化情况适合用折线统计图正确;D. 商家从一批粽子中抽取200个进行质量检测,200是样本容量,故不正确;故选C.11.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班级学生的身高情况,适合采用普查方式,故本选项符合题意B.调查全国中学生的视力状况,适合采用抽样调查,故本选项不合题意;C.调查山东省居民的网上购物状况,适合采用抽样调查,故本选项不合题意;D.调查一批电脑的使用寿命,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】此题考查了普查和抽样调查的问题,解题的关键是掌握普查和抽样调查的定义以及区别.12.D【详解】解:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故选:D.13.B【分析】根据题意列表法求概率即可. 【详解】列表如下总共有9种等可能结果,他们两人都抽到物理实验的结果有1种 ①两人都抽到物理实验的概率是19故选B【点睛】本题考查了列表法或树状图法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比. 14.B【详解】创意权重没有改变,所以可以不计算.小明原先:700.3600.5⨯+⨯=51.现在: 700.5600.353⨯+⨯=. 小亮原先:900.3750.5⨯+⨯=63.5 .现在:900.5750.3⨯+⨯=67.5. 小丽原先:600.3840.5⨯+⨯=60.现在:600.5840.3⨯+⨯=55.2. 显然小亮增加最多, 故选B . 15.D【分析】根据平均数、中位数、方差的意义逐项分析判断即可.【详解】解:①甲、乙两班学生的平均成绩相等,故成绩的平均水平相同,故①正确; ①甲班的成绩的方差比乙班的大,故乙班的成绩稳定,故①不正确,①根据中位数可得乙班的中位数大于甲班的中位数,故乙班成绩优异的人数比甲班多,故①正确;①根据甲班的中位数为93,则①佳佳得94分将排在甲班的前20名,正确故选D【点睛】本题考查了平均数、中位数、方差的意义,掌握平均数、中位数、方差的意义是解题的关键.16.B【详解】A. 个体是每份试卷,C. 总体是一万名初中毕业生的数学毕业成绩;D. 样本是抽取的1200名学生的数学毕业成绩,故B正确17.B【分析】将这些数从小到大排列起来,找出中位数,众数即可.【详解】把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170,160出现了2次,出现的次数最多,则众数是160,故选:B.【点睛】本题考查众数和中位数的概念,能够找到一组数据的众数,中位数是解决本题的关键.18.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.19.B【分析】由题意列表格,根据概率公式进行求解即可.【详解】解:由题意知,列表法表示甲、乙可能的结果如下:共有9种可能,甲赢乙共有3种情况;①甲赢的概率为3193=故选B .【点睛】本题考查了列表法求概率.解题的关键在于正确的列表格. 20.A【分析】根据平均数和方差的公式列出关于x ,m 的方程求解.【详解】解:设数据的平均数为m ,则11(1035)(7)55m x x =-++++=+①,222222134(1)(0)(3)(5)()55s m m m m x m ⎡⎤=--+-+-+-+-=⎣⎦, 整理得22514210m m mx x --++=①,把①代入①,得:221115(7)14(7)2(7)10555x x x x x ⎡⎤+-⨯+-⨯+⋅++=⎢⎥⎣⎦,化简得227220x x --= 解得:x =-2或5.5. 故选A .【点睛】本题主要考查的是方差公式,平均数公式,以及一元二次方程的解法,方程思想在初中数学的学习中极为重要,也是中考中的热点,本题思考问题的角度独特,难度较大. 21.93【分析】根据加权平均数的定义列式计算即可.【详解】解:张三最后的成绩为:9450%9030%9520%93⨯+⨯+⨯=(分), 故答案为:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 22.1.2【详解】解:先求出平均数(2+3+2+3+5)÷5=3,再根据方差公式计算方差=22222[(23(33)(23)(33)(53)]5 1.2-+-+-+-+-÷=)即可23.(1)13;(2)16【详解】试题分析:1)直接利用概率公式求解即可;(2)根据题意列表后利用概率公式求概率即可.试题解析:(1)①3把钥匙中有1把打开a锁,①任意取出一把钥匙,恰好可以打开a锁的概率是13;(2)由题意可列表如下:由上表可知共有六种方法,故刚好A能开a锁,B能开b锁,C能开c 锁的概率为:16.考点:列表法与树状图法.24.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.25.50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量可得答案.。

中考数学统计与概率专题知识易错题50题(含答案)

中考数学统计与概率专题知识易错题50题(含答案)

中考数学统计与概率专题知识易错题50题含答案一、单选题1.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2.某中学46名女生体育中考立定跳远成绩如下表:这些立定跳远成绩的中位数和众数分别是()A.185,170B.180,170C.7.5,16D.185,163.下列事件中,是随机事件的是()A.守株待兔B.水涨船高C.拔苗助长D.瓮中捉鳖4.对某班学生在家做家务的时间进行调查后,将所得数据分成4组,第一组的频率为0.15,第二组和第三组的频率之和为0.75,则第四组的频率为()A.0.35B.0.30C.0.20D.0.105.下列调查中,调查方式选择合理的是()A.了解某河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查6.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 7.数据:-2,1,1,2,4,6的中位数是()A.1B.2C.1.5D.1或28.在一次男子马拉松长跑比赛中,抽得10名选手所用的时间(单位:min)如下:136,140,129,180,146,145,158,175,165,148,则这10名选手的成绩中位数是()A.145B.145.5C.146D.1479.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.下列事件中,是确定事件的有()A.打开电视,正在播放广告B.三角形三个内角的和是180°C.两个负数的和是正数D.某名牌产品一定是合格产品11.下列事件是随机事件的是()A.从一副扑克牌中抽取一张牌是红桃KB.投掷一颗骰子两次,向上的面数字之和大于12C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办D.北京大学的校训是“爱国进步民主科学”12.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.12D.3413.下列命题是真命题的是()A.一个正数的算术平方根一定比这个数小B.若22a b=,则a b= C.三角形的任意两边之和大于第三边D.“守株待兔”是必然事件14.一组数据由m 个a 和n 个b 组成,那么这组数据的平均数是( ) A .2a b+ B .a bm n++ C .ma nba b++ D .ma nbm n++ 15.在一次数学测试中,某小组的成员得分如下:95、85、95、85、80、95、90、95这组数据的平均数、中位数和众数分别为( ) A .92、95和90 B .92、95和85 C .90、92.5和95D .90、80和8516.下列统计量中,能够刻画一组数据的离散程度的是( ) A .方差或标准差B .平均数或中位数C .众数或频率D .频数或众数17.“递减数”是一个数中右边数字比左边数字小的自然数(如:32,421,9732等),任取一个两位数,是“递减数”的概率是( ) A .718 B .25C .35D .1218.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )A .从甲袋摸到黑球的概率较大B .从乙袋摸到黑球的概率较大C .从甲、乙两袋摸到黑球的概率相等D .无法比较从甲、乙两袋摸到黑球的概率19.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m20.我国古代有着辉煌的数学研究成果,其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作,这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习,则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为( ) A .13B .15C .115D .118二、填空题21.若1x , 2 x ,3x 的平均数为3,则15+1x , 2 5+2x ,35+3x 的平均数为________. 22.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.23.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________. 24.为保证新冠疫情防控工作的口罩供应,某公司及时转产,开设了多条生产线批量生产口罩,以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:估计这一批口罩的合格率为_____(结果精确到0.01).25.对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图(图①)和扇形统计图(图①).根据图中信息,这些学生的平均分数是________分.26.某学校招聘一名教师,对甲、乙、丙三名候选人进行了笔试、面试测试,他们的各项测试成绩如下表所示,根据要求,学校将笔试、面试得分按6:4的比例确定各人的最后成绩,然后录用得分最高的候选人,最终被录用的是______.27.在一个不透明的袋子中装有仅颜色不同的8个球,其中红球3个,黄球5个.请你从袋子中取出m 个红球,再从袋子中随机摸出一个球,将“摸出的球为黄色”记为事件A ,若此事件为必然事件,则m 的值为__________.28.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是4,方差是5,将这组数据中的每个数据都减去2,得到一组新数据,则这组新数据的方差是______. 29.某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多_____万元.30.在4张完全一样的纸条上分别写上1、2、3、4,做成4支签,放入一个不透明的盒子中搅匀,则抽到的签是偶数的概率是 ___.31.一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是__________.32.冬奥会单板U 型池比赛中,某单板滑雪动员的成绩(单位:分)为81,89,83,88,84,83.则这组数据的中位数是________.33.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.34.如图是某中学七年级学生视力统计图,其中近视400度以上的学生所在扇形的圆心角为_____度_______分______秒.35.远远在一个不透明的盒子里装了4个除颜色外其他都相同的小球,其中有3个是红球,1个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是_____.36.现有下列长度的五根木棒:5,6,8,12,13,从中任取三根,可以组成直角三角形的概率为______.37.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)38.(2016·荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.39.盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是________.三、解答题40.在一个不透明的口袋里装有4个白球和6个红球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出一个球,摸到球的概率大(填白或红);(2)从中任意摸出一个球,摸到白球的概率是;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是45,求x的值.41.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中①α的度数是° ,把图2条形统计图补充完整;(3)该区九年级有学生4500名,如果全部参加这次体育科目测试,请估计不及格的人数是多少?42.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:=a______;b=______;(2)请估计当n很大时,频率将会接近______,假如你去转动该转盘一次,你获得“书画作品”的概率约是______;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加多少度?43.近年来,“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n 名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题: n 名学生对使用计算器影响计算能力的发展看法人数统计表(1)求n 的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数. 44.综合题(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)(2)如果甲跟另外n (n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).45.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?46.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=;(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是多少人.47.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题(1)填写表格.(2)这三个厂家的推销广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是位顾客,宜选购哪家工厂的产品?为什么?48.2021年2月10日,“天问一号”火星探测器抵达火星轨道,成为中国首颗人造火星卫星.某学校组织首届“航天梦报国情”航天知识竞赛活动,九年级全体同学参加了“航天知识竞赛”,为了解本次竞赛的成绩,小彬进行了下列统计活动,收集数据:现随机抽取九年级40名同学“航天知识竞赛”的成绩(单位:分)如下:75 85 75 80 75 75 85 70 75 90 75 80 80 70 75 80 85 80 80 95 95 75 90 80 70 80 95 85 75 85 80 80 70 80 75 80 80 55 70 60整理分析:小彬按照如下表格整理了这组数据,并绘制了如下的频数分布直方图和频数分布表,(1)请直接写出m,n的值,并补全图形.(2)活动组委会决定,给“航天知识竞赛”成绩在90分及以上的同学授予“小宇航员”称号.根据上面的统计结果,估计该校九年级840人中约有多少人将获得“小宇航员”称号,(3)本次活动中获得“小宇航员”称号的小颖得到了A,B,C,D四枚纪念章(除图案外完全相同),她将这四枚纪念章背面朝上放在桌面上,从中随机选取两枚送给小彬,求小颖送给小彬的两枚纪念章中恰好有一枚是A的概率.49.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写大赛”预赛,各参赛选手的成绩如下:八(1)班:91,92,93,93,93,94,98,88,98,100八(2)班:93,93,93,95,96,96,98,89;98,99通过整理,得到数据分析表如下:(1)直接写出表中a,b,c的值;(2)依据数据分析表,有人说:“八(1)班的最高分100大于八(2)班的最高分99,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩比较好,请给出两条支持八(2)班成绩好的理由.参考答案:1.A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.2.B【分析】根据中位数和众数的定义求解即可.【详解】由上表可得中位数是180,众数是170故答案为:B.【点睛】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.3.A【详解】A、是随机事件,故A选项符合题意;B、是必然事件,故B选项不符合题意;C、是不可能事件,故C选项不符合题意;D、是必然事件,故D选项不符合题意;故选:A.【点睛】本题考查了随机事件的定义,解题的关键是熟练掌握随机事件的定义:在一定条件下,可能发生也可能不发生的事件.4.D【分析】根据各组频率之和为1即可求出答案.【详解】解:根据题意得:第四组的频率为10.150.750.10.故选:D【点睛】本题考查频率的性质,解题的关键是熟练运用各组频率之和为1,本题属于基础题型.5.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解某河的水质情况,应该选择抽样调查,故A正确;B.了解每种型号节能灯的使用寿命,应该选择抽样调查;故B错误;C.了解一架Y-8GX7新型战斗机各零部件的质量,应该选择全面调查,故C错误;D.了解一批药品是否合格,应该选择抽样调查,故D错误.故选A.【点睛】本题主要考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于破坏性的调查、无法进行普查、普查的意义和价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C【详解】试题分析:在试验中,可能出现也可能不出现事件叫做随机事件;一定出现的事件叫必然事件;一定不出现的事件叫不可能事件.所以任意打开七年级下册数学教科书,正好是97页是随机事件,故C错误.考点:简单随机事件7.C【分析】根据中位数的定义即可得.【详解】解:将这组数据从小到大排序得-2,1,1,2,4,6,其中最中间的两个数为1,2,∴这组数据的中位数为121.52+=,故选:C.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,熟记中位数的定义是解题的关键.8.D【分析】根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】解:这10名选手的成绩从小到大排列为:129,136,140,145,146,148,158,165,175,180,则中位数为1461482+=147(mm ). 故选:D .【点睛】此题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.B【分析】根据平均数与方差的意义解答即可.【详解】解: =x x x x <=甲乙丁丙, ∴乙与丁二选一,又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 10.B【详解】试题分析:解:分析4个事件可得:B .符合三角形内角和定理,是必然事件;C .两个负数的和是正数,是不可能事件;A .打开电视,不一定正在播放广告;D .某名牌产品不一定是合格产品,故它们是不确定事件;故确定事件的有B ;故选B .考点:事件的分类.11.A【分析】根据随机事件的定义逐项判断即可【详解】A.从一副扑克牌中抽取一张牌是红桃K ,这是随机事件,故符合题意;B.投掷一颗骰子两次,向上的面数字之和大于12,因为数字之和的最大值为12,所以这不是随机事件,故不符合题意;C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办,这是已经确定的事实,不是随机事件,故不符合题意;D.北京大学的校训是“爱国进步民主科学”, 这是已经确定的事实,不是随机事件,故不符合题意;故选:A【点睛】本题考查了随机事件的定义,理解随机事件的定义是解决问题的关键12.B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.13.C【分析】根据算术平方根和平方根的定义,三角形三边的关系,随机事件的定义逐一判断即可.【详解】解:A、如1的算术平方根是1,但是1=1,故一个正数的算术平方根不一定比这个数小,是假命题,此选项不符合题意;B、若22a b=,则a b=±,是假命题,此选项不符合题意;C、三角形的任意两边之和大于第三边,是真命题,符合题意;D、“守株待兔”是随机事件,是假命题,不符合题意;故选C.【点睛】本题主要考查了判断命题真假,算术平方根,平方根,三角形三边的关系,随机事件,熟知相关知识是解题的关键.14.D【分析】由题意知,这组数总共有m+n个,m个a和为ma,n个b的和为nb,则根据平均数的定义即可求得该组数据的平均数.【详解】该组数据的和=ma+nb,该组数据的个数=m+n;则平均数nbmam n++;故选D.【点睛】本题考查了平均数的计算,弄清数据的和以及个数是解题的关键.15.C【分析】根据平均数、中位数、方差的定义逐一进行求解即可得.【详解】这组数据的平均数是18×(95+85+95+85+80+95+90+95)=90;将95、85、95 、85 、80 、95 、90、95按照从小到大的顺序排列是:80,85,85,90,95,95,95,95,则中位数是90952=92.5;①95出现了4次,出现的次数最多,①众数是95,故选C.【点睛】本题考查了平均数、中位数和众数,熟练掌握定义和公式是解题的关键.16.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.17.D【分析】由共有90个两位数,其中是“递减数”的有45个,直接利用概率公式求解即可求得答案.【详解】①共有90个两位数,其中是“递减数”的有45个,①任取一个两位数,是“递减数”的概率是:12.故选D.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.B【详解】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算19.B【分析】利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.【详解】①骰子落在世界杯图案中的频率稳定在常数0.4左右,①估计骰子落在世界杯图案中的概率为0.4,①估计宣传画上世界杯图案的面积=0.4×(4×2)=3.2(m 2).故选B .【点睛】本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.20.C【分析】设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,列树形图表示所有等可能性,根据概率公式即可求解.【详解】解:设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,根据题意列树形图得由树形图得共有30种等可能性,其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性,①所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点睛】本题考查了列树形图求概率,根据题意分别用字母表示六种算经并正确列出树形图是解题关键.21.17【分析】根据平均数的定义得到1x + 2 x +3x =9,再求出15+1x , 2 5+2x ,35+3x 的和即可求解.【详解】①1x ,2x ,3x 的平均数是3,①()123123515253512351x x x x x x +++++=+++++=, ①51173x ==.故填:17.【点睛】此题主要考查平均数的求解,解题的关键是熟知平均数的性质.22.93【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:①观察表格可知5名选手的平均成绩为91分,①3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93(分);故答案为:93.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.23.23【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,故从中任取一个数,则恰为奇数的概率是42 63 =,故答案为:23.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.24.0.92【分析】由抽检的合格率即可估计这批产品的合格率.【详解】解:由图标可得,抽检的数量越大,合格率与接近0.92,∴估计这批产品的合格率是0.92.故答案为:0.92.【点睛】本题考查用频率估计概率,掌握抽查数据越大,频率越接近概率是解题的关键.25.2.95【详解】略26.甲【分析】分别计算甲、乙、丙三名候选人的加权平均数,然后做出判断即可.。

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题含答案一、单选题1.下表是小明星期一至星期五每天下午练习投篮的命中率统计表,下列说法正确的一项是()A.可以看出每天投中的次数B.五天的命中率越来越高C.可以用扇形统计图统计表中的数据D.可以用折线统计图分析小明的投篮命中率2.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.3.下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解黄河的水质,采用抽样调查C.了解河北省中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用普查4.下列问题中,不适合用全面调查的是()A.了解全省七年级学生的平均身高B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全班同学每周体育锻炼的时间5.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分)规定笔试成绩占40%,面试成绩占60%,应聘者蕾蕾的笔试成绩和面试成绩分别是90分和85分,她最终得分是()A.87.5分B.87分C.88分D.88.5分6.在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.127.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是()A.抽到男同学名字的可能性是50%B.抽到女同学名字的可能性是50% C.抽到男同学名字的可能性小于抽到女同学名字的可能性D.抽到男同学名字的可能性大于抽到女同学名字的可能性8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如右表所示:关于这组数据,下列说法正确的是()A.众数是2B.中位数是2C.极差是2D.方差是2 9.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()A.众数B.中位数C.平均数D.都可以10.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个11.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定12.某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A .176cmB .177cmC .178cmD .180cm13.为了解本校学生周末玩手机所花时间的情况,七、八、九年级中各抽取50名学生(男女各25名)进行调查,此次调查所抽取的样本容量是( ) A .150B .75C .50D .2514.数据2,3,1,1,3的方差是:( ) A .1B .3C .2D .0.815.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )A .从中随机抽出一个球,一定是红球B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C .从袋中随机抽出2个球,出现都是红球的概率为35D .从袋中抽出2个球,出现颜色不同的球的概率是3516.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2B .2.5C .3D .517.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,则成绩最稳定的是( ).A .甲B .乙C .丙D .丁18.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A .2B .3C .4D .619.响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动.某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:则关于这组数据的结论正确的是( )A .平均数是144 B .众数是141C .中位数是144.5D .方差是5.4二、填空题20.一组数据3,4,5,4,6的中位数是________.21.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.22.甲、乙人进行射击,每人10次射击成绩的平均数都是8.8环,方差分别为2s 甲=0.65, 2s 乙=0.52,则成绩比较稳定的是__.(填“甲”或“乙”) .23.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.24.若一组数据12345x x x x x ,,,,的平均数是a ,另一组数据1234523521x x x x x ++--+,,,,的平均数是b ,则a ______b (填写“>”、“<”或“=”).25.数据0,-1,3,2,4的极差是__________________.26.已知一组数据3、a 、4、6的平均数为4,则这组数据的中位数是______. 27.某学校300名学生参加植树活动,要求每人植树2~5棵,活动结束后随机抽查了20名学生,调查他们每人的植树情况,并绘制成如图所示的折线统计图,则这20名学生每人平均植树________棵.28.某组数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是_______.29.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是____.30.为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖.1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为__.31.某食堂午餐供应8元/盒、10元/盒、12元/盒三种价格的盒饭,如图为食堂某月销售午餐盒饭的统计图,由统计图可计算出该月食堂午餐盒饭的平均价格是__________元/盒.32.淮北到上海的431N次列车,沿途停靠宿州、滁州、南京、镇江、常州、无锡、苏州,需要准备_____________ 种不同的车票33.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___34.数据80,82,85,89,100的标准差为__________(小数点后保留一位).35.有许多事情我们事先无法肯定它会不会发生,这些事情称为__,也称为__,一般地,不确定事件发生的可能性是有大有小的.36.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.37.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是___,众数是___,中位数是___.38.数据1,2,3,5,5的众数是___________.39.从小到大排列的一组数据:-2,0,4,4,x,6,6,9的中位数是5,那么这组数据的众数是_______.三、解答题40.为进一步加强学生对“垃圾分类知识”的重视程度,某中学初一、初二年级组织了“垃圾分类知识”比赛,现从初一、初二年级各抽取10名同学的成绩进行统计分析(成绩得分用x 表示,共分成四组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86 初二年级10名学生的成绩在C 组中的数据是:86,87,87初一、初二年级抽取学生比赛成绩统计表(1)b c +的值为______.(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可)(3)若两个年级共有400人参加了此次比赛,估计参加此次比赛成绩优秀()90100x ≤≤的学生共有多少人?41.为了有效控制新型冠状病毒的传播,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了部分民进行问卷调查,把调查结果分为A (准备接种)、B (不接种)、C (已经接种)、D (观望中)四种类别.并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C 类别所在扇形的圆心角度数;(3)若该社区共有居民14000人,请你估计该社区已接种新冠疫苗的居民约有多少人? 42.为了让全校学生牢固树立爱国爱党的崇高信念,某校举行了一次党史知识竞赛(百分制).现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,对成绩进行整理分析,得到了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩为:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.(1)a = ,b = ; (2)请补全条形统计图;(3)若初一有400名学生,请估计此次测试成绩初一达到90分及以上的学生有多少人?43.为了了解某小区今年6月份家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计表和统计图:根据以上信息,解答下列问题:(1)本次抽样调查的样本容量是,m的值为,n的值为;(2)若该小区共有500户家庭,请估计该月有多少户家庭用水量不超过...9.0吨?44.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?45.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?46.党的教育方针“培养德智体美劳全面发展的社会主义建设者和接班人”把劳动教育列入教育目标之一,学校更要重视开展劳动教育,某校为了解九年级学生一学期参加课外劳动时间(单位:h)的情况,从该校九年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.010t < 1020t < 2030t < 3040t <4050t <解答下列问题:(1)求频数分布表中a ,m 的值,并将频数分布直方图补充完整;(2)若九年级共有学生300人,试估计该校九年级学生一学期课外劳动时间不少于20h 的人数;(3)已知课外劳动时间在30h 40h t ≤<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.47.为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.48.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰子的质量.49.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.参考答案:1.D【分析】根据表格中给出的信息进行解答即可.【详解】解:根据折线统计图表示的是事物的变化情况,故小明星期一至星期五每天下午练习投篮的命中率可以用折线统计图分析小明的投篮命中率.故选:D.【点睛】本题主要考查了数据的整理和应用,解题的关键是理解题意,熟练掌握扇形统计图、折线统计图和条形统计图的特点.2.A【详解】试题分析:一共有4种等可能的结果:小明打扫社区卫生,小华打扫社区卫生;小明打扫社区卫生,小华参加社会调查;小明参加社会调查,小华打扫社区卫生;小明参加社会调查,小华参加社会调查.其中两人同时选择参加社会调查只有1种.所以两人同时选择参加社会调查的概率.故此题选A.考点:概率.3.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批灯泡的使用寿命,数量较多,应采用抽样调查,故此选项符合题意;B.了解黄河的水质,量较大,适宜用抽样调查,故此选项不合题意;C.了解河北省中学生睡眠时间,人数较多,适宜用抽样调查,故此选项不合题意;D.了解某班同学的数学成绩,适宜用全面调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A【分析】由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析即可.【详解】A 、了解全省七年级学生的平均身高,调查范围广,费时费力,适合抽样调查,不适合用全面调查,故该项符合题意;B 、旅客上飞机前的安检,涉及到安全问题,需要一一检查,适合全面调查,故该项不符合题意;C 、学校招聘教师,对应聘人员面试,需要依次进行面试,适合全面调查,故该项不符合题意;D 、了解全班同学每周体育锻炼的时间,好调查,适合全面调查,故该项不符合题意; 故选:A .【点睛】本题考查了全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小,理解全面调查与抽样调查的适用范围是解题的关键. 5.B【分析】根据加权平均数公式计算即可. 【详解】解:应聘者蕾蕾的最终得分是9040%8560%8740%60%⨯+⨯=+分,故选:B .【点睛】此题考查了加权平均数的计算,正确掌握加权平均数的计算公式是解题的关键. 6.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:设盒子中有白球x 个, 由题意可得:0.425x=, 解得:10x =, 故选C .【点睛】本题考查了利用频率估计概率.解题的关键在于明确大量试验得到的频率可以估计事件的概率. 7.D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D、正确,由AB可知抽到男同学名字的可能性大于抽到女同学名字的可能性.故选:D.【点睛】本题考查概率的有关知识,需注意可能性的求法.8.B【分析】根据极差、方差、众数、中位数及平均数的算法,依次计算各选项即可作出判断.【详解】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,S2≠2,故D不符合题意.故选:B.【点睛】考查平均数、中位数、众数的意义和求法,掌握计算方法是解决问题的关键.9.B【详解】因为6位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.10.B【分析】由共摸了300次球,发现有61次摸到白球,知摸到白球的概率为61300,设布袋中白球有x个,可得x6150300=,,解之即可.【详解】由共摸了300次球,发现有61次摸到白球,①摸到白球的概率为61 300,设布袋中白球有x个,可得x61 50300=,解得:x=1016,①布袋中白球的个数最有可能是10个故选B.【点睛】:此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.A【分析】列举出甲获胜的所有可能,求出甲获胜的概率,然后求出乙获胜的概率,比较大小即可得到结果.【详解】解:由题意知,甲取出4时,乙有3,5,10共三种可能,其中甲获胜有1种可能;甲取出6时,乙有3,5,10共三种可能,其中甲获胜有2种可能;甲取出8时,乙有3,5,10共三种可能,其中甲获胜有2种可能;①甲获胜的概率为122599++=,则乙获胜的概率为54199-=①54 99 >①甲获胜的概率大故选A.【点睛】本题考查了列举法求概率.解题的关键在于正确列举事件.12.B【分析】根据中位数的定义即可求解.【详解】表格中第10,11位队员的身高分别为176cm、178cm,故中位数为1761781772+=cm,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义. 13.A【分析】根据样本容量的定义解答即可.【详解】①从七、八、九年级中各抽取50名学生进行调查,①一共抽了150名学生,①样本容量是150.故选A.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 14.D【详解】X =(2+3+1+1+3)÷5=2,S 2="1/5" [(2-2)2+(3-2)2+(1-2)2+(1-2)2+(3-2)2]=0.8 故选D . 15.D【分析】先求出随机事件所有情况数,再求出对应的事件发生的情况数,根据概率=所求情况数与总情况数之比进行依次解答.【详解】解:A .从中随机抽出一个球,不一定是红球,故此选项不合题意;B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C .从袋中随机抽出2个球,出现都是红球的概率为310,故此选项不合题意; D .从袋中抽出2个球,出现颜色不同的球的概率是35,故此选项符合题意;故选:D .【点睛】本题主要考查概率的定义,熟练掌握概念的定义和概率计算公式是解决本题的关键. 16.B【详解】数据2,1,x ,7,3,5,3,2的众数是2,说明2出现的次数最多,所以当x =2时,2出现3次,次数最多,是众数;再把这组数据从小到大排列:1,2,2,2,3,3,5,7,处于中间位置的数是2和3,所以中位数是:(2+3)÷2=2.5. 故选B. 17.D【详解】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.①2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,①2S 丁<2S 丙<2S 甲<2S 乙,①成绩最稳定的是丁.故选D .考点:方差;算术平均数. 18.A【分析】该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】①a 、b 、c 的中位数与众数都是5, ①a 、b 、c 三个数中有两个数是5, 设不是5的那个数为x , ①a 、b 、c 的平均数是4, ①5543x ++=⨯, 解得,2x =,即a 可能是2,也可能是5. 故选:A .【点睛】用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 19.B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可. 【详解】根据题目给出的数据,可得: 平均数为:14151442145114621435212x ⨯+⨯+⨯+⨯+++==,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52+=,故C 选项错误; 方差是:()()()()2222211411435144143214514311461432 4.40[]1s -⨯+-⨯+-⨯+-⨯==,故D 选项错误; 故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键. 20.4【分析】根据中位数的定义求解可得.【详解】解:把这些数从小大排列为3,4,4,5,6,则中位数是4.故答案为:4.【点睛】本题主要考查了中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】①共有23510++=个小球,3个黄球,①第10次摸出黄球的概率是3 10.故答案为3 10.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.22.乙【分析】根据方差的性质可知,方差越小,数据波动越小,数据情况越趋于稳定,据此进行分析即可.【详解】解:由题干可得甲、乙的方差分别为2s甲=0.65,2s乙=0.52,有2s甲=0.65>2s乙=0.52,故乙的成绩比较稳定.【点睛】本题考查方差所反映的数据稳定情况,掌握方差越小,数据波动越小,数据情况越趋于稳定即可.23.8.【分析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、8、8、10、10,所以这组数据的中位数为882+=8.故答案为8.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.24.>【分析】根据12345x x x x x ,,,,的平均数是a ,可得123455x x x x x a ++++=,再根据1234523521x x x x x ++--+,,,,的平均数是b ,可得15a b -=进而即可得到解答. 【详解】解:①12345x x x x x ,,,,的平均数是a , ①123455x x x x x a ++++=,①12345235215x x x x x ++++-+-++12345155x x x x x ++++=-15a =-b =,①a b >, 故答案为:>.【点睛】本题考查了算术平均数的的定义(是指在一组数据中所有数据之和再除以数据的个数),灵活运用所学知识求解是解决本题的关键. 25.5【详解】试题解析:极差=4-(-1)=5. 考点:极差. 26.3.5【分析】先根据平均数的计算公式求出x 的值,再根据中位数的定义即可得出答案. 【详解】①数据3、a 、4、6的平均数是4, ①(3+a+4+6)÷4=4, ①x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5, 则中位数是3.5; 故答案为3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a 的值. 27.3.3【分析】根据折线统计图中的数据和算术平均数的求法,可以解答本题. 【详解】解:243846523.320⨯+⨯+⨯+⨯=(棵),故答案为:3.3.【点睛】本题考查折线统计图,平均数,熟练掌握平均数计算公式是解题的关键. 28.0.2.【详解】分析:根据各组的频率的和是1即可求解. 详解:第五组的频率是:12×(1﹣0.35﹣0.25)=0.2.故答案为0.2.点睛:本题考查了频率的意义,利用各组的频率的和为1分析是解题的关键. 29.2【分析】先根据平均数的公式求出x 的值,再根据方差公式即可得. 【详解】解:由题意得:()()121205x +++-+-=,解得0x =,则方差为()()()()()222221102000102025⎡⎤⨯-+-+-+--+--=⎣⎦, 故答案为:2.【点睛】本题考查了平均数和方差,熟记平均数和方差的计算公式是解题关键. 30.0.611【详解】买一张中奖的概率为:P =1010010005000100000+++=0.0611,则买10张中奖的概率为0.0611×10=0.611. 故答案为0.611.点睛:本题关键在于先算出买一张获奖的概率,再计算买10张获奖的概率. 31.10.2【分析】根据加权平均数公式计算即可. 【详解】解:815%1225%1060%10.215%25%60%⨯+⨯+⨯=++(元/盒),故答案为:10.2.【点睛】此题考查了求加权平均数,正确理解题意及加权平均数的计算公式是解题的关键. 32.36【分析】根据概率公式求解所有种类出现的情况即可. 【详解】共有9个车站,且属于单向车程。

初中数学专题复习统计与概率含答案

初中数学专题复习统计与概率含答案

专题训练16统计与概率一、选择题(每小题3分,共24分) 1.下列调查工作需采用的普查方式的是()(A )环保部门对淮河某段水域的水污染情况的调查. (B )电视台对正在播出的电视节目收视率的调查. (C )质检部门对各家生产的电池使用寿命的调查. (D )企业在给职工做工作服前进行的尺寸大小的调查.2.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离 铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99 的中位数为( )4.在一个暗箱里放有Q 个除颜色外其它完全相同的球,这Q 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发 现,摸到红球的频率稳定在25%,那么可以推算出Q 大约是()(A ) 18.(B ) 50.3 .下列事件中,必然事件是()(A )中秋节晚上能看到月亮.(C )早晨的太阳从东方升起.(C ) 35.(D ) 35.5.(B )今天考试小明能得满分. (D )明天气温会升高. (A) 12. (B) 9. (C ) 4. (D ) 3.5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()1v 3 <33超(A ) — .(B ) -兀.(C ) ――^ .(D ) ----- .2 6 9几6.将50个个体编成组号为①④的四个组,如下表:组号 ① ②③ ④统计图,在一片果园中,有不同种类的果树,为了反映某种果树的种10 .有长为2、4、6、8、10的五根木棍,从中任意抽取三根,能构成三角形的概率是 11 .某校学生会调查60名同学体育爱好项目的统计图如图所示,根据图中信息,喜欢各12 .某地湖水在一年中各个月的最高温度和最低温度统计图如图所示.由图可知,全年湖频数 14 1113(A) 24.(B) 0.24.(C) 12.(D) 0.12.7.甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出 的统计图如图所示,则符合这一结果的实验可能是 (A )掷一枚正六面体的骰子,出现1点的概率. (B) 一个袋子中有2个白球和1个红球从中8. 二、 9. 任取一个球,则取到红球的概率. (C )抛一枚硬币,出现正面的概率.(D )任意写一个整数,它能被2整除的概率.在—2, — 1, 0, 1, 2中任取一个数 2 (C) 5填空题(每小题3分,共18分) 反映某种股票涨跌情况,应选用40% 30% 20% 10%200 400 600 次数 … .2 + x .................... ....恰好使分式___有意义的概率是()4(D) 5(E) 1.统计图;学校统计各年级的总人数应选值面积占整个果园的面积百分比,应选用统计图.那么第③组的频率为(频率(第11题)(第12题) (第13项体育项目的人数极差.水的最低温度是___________ ,温差最大的月份是 __________ .13.如图,数轴上两点A B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是___________ .14.为备站2008年奥运会,教练要判断刘翔100米跨栏成绩是否稳定,对他10次训练成绩进行统计分析,则教练需了解刘翔这10次成绩的.三、解答题(每小题6分,共24分)15.请将表示下列事件的序号按其发生概率的大小标在下图中.A.掷一枚均匀的硬币,正面朝上.B.在分别标有1〜9连续自然数的九张卡片中,随机抽出两张,和大于17.C任意找到两个负数,它们的乘积为正数.D.在某次有奖销售活动中,共准备了1000个抽奖号码,其中设一等将10个,二等将40个,三等将50个,顾I I I I I I I I I I I客摸一次中奖. 0 116.某校学生会生活部长王敏同学随机调查部分同学对食堂伙食的评价,准备绘制成统计图表,现已完成其中的一部分,请你运用统计知识将其他空缺部分逐一补上.食堂伙食意见统计表食堂伙食意见条形统计图食堂伙食意见扇形统计图17.下表是某校九(1)班20名学生某次数学测验的成绩统计表.成绩/分60708090100■人数/人151y(1)若这20名学生的平均成绩为82分,求1和y的值;(2)在(1)的条件下,求这20名学生本次测验成绩的众数与中位数.18.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.画树形图或列表求下列事件发生的概率.(1)甲、乙、丙三名学生在同一个餐厅用餐;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐.四、解答题(每小题7分,共14分)19.“十•一”七天长假期间,很多同学都和父母一起旅游,下图是班长小明将本班同学出游2天、3天、4天的数据绘制成扇形统计图的一部分:(1)若问一位出游的同学十一期间旅游几天,那么最有可能的回答是 ______ 天;............ ,一」,,3 …… 一、」…八, (2)小明说旅游4天的人数是2天的;,请你通过这一信息,并通过计算将扇形统计4图补充完整.20.在背面图案一样的四张卡片的正面标有数字1、2、3、4,将正面朝上洗匀后抽取一张数字为m,把此卡片放回洗匀后以同样的方式再次抽取一张卡片数字为n .若把m、n作为点的横、纵坐标,求点(m , n)在函数y 2x的图象上的概率.五、解答题(每小题10分,共20分)21 .张明、王成两位同学的10次数学单元自我检测成绩分别如下图所示:(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.张明同学王成同学1 1 S -1 5 6 7 3 1 W %号 成结/7T sT5 77 m 号(1)完成下表:(2)如果将90分以上(含90分)的成绩视为优秀,则获得优秀次数较多的同学22. A、B、C三个工程队共修建一段长240km的公路,图中分别反映了每个工程队的工程比例及每月完成公路的进度.(1)根据图中的信息,求出每个工程队的工程量;(2)若B队9个月的工程量与A队6个月的工程量相同,求a的的值;(3)在(2)的条件下,同时开工,完成全部工程需要几个月时间.参考答案一、选择题1. D2. D3. C4. A5. C6. B7. B8. C 二、填空题29.折线,条形,扇形10. 0.3 11. 25名12. 22℃, 9月份13. 3 14.方差 三、解答题15 . P (A )=0.5, P (B )=0, P (C )=1, P (D )=0.1,图略.16 .一般:20,好:(10+20+120);(1—50%)X 50% = 50,条形、扇形统计图略. 17 . (1) X + J = 12, 8 X + 9 J = 103,解得了 = 5, J = 7; (2) 90 分,80 分. 18 .树形图或列表如图所示:(1) P (甲、乙、丙三名学生在同一餐厅用餐)=1.47 (2) P (甲、乙、丙三名学生中至少有一人在B 餐厅用餐)=-. 8四、解答题19. (1) 3; (2)人数是2天的百分比为20%,人数是4天的百分比为15%,图略. 20. 点(m , n )共有16种情况,而在函数J = 2X 图象上的点有(1, 2) (2, 4)两种,丙 ABABABAB甲 A A A A B B B B 乙 A A BB A A B B 丙 A B AB A B AB-8所以点(m , n )在函数J = 2X图象上的概率为0.125.五、解答题21. (1)平均成绩均为80分,张明的方差为60分2,王成的中位数为85分,众数为90分;(2)王成;(3)王成的学习要持之以恒,保持稳定;张明的学习还须加油,提高优秀率(答案不唯一,只有你的建议合理即可).22. (1) A 工程队的工程量为:35% x 240 = 84, C 工程队的工程量为:45%x 240 = 108 ,B 工程队的工程量为:20% x 240 = 48.(2) 4x 9 = 6a , a = 6.答:三个工程队同时开工需要14个月完成全部工程. (3) T 二 14,手二 12,T = 13.5 .。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含答案一、单选题1.玉林市连续5天的最高气温(单位:℃)分别是:31,26,32,26,29,这组数据的众数是()A.31B.26C.32D.292.在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是()A.47B.48C.48.5D.493.数据-1,0,1,2,-2的中位数是()A.-1B.0C.1D.24.下列调查中,适宜采用普查的是()A.了解重庆市空气质量情况B.了解长江水流的污染情况C.了解重庆市居民的环保意识D.了解全班同学每周体育锻炼的时间5.如图是某微信群抢红包的结果,六个群成员抢到的金额分别为0.07,1.42,2.40,0.30,1.57,0.90,这些红包金额的中位数是()A.2.40B.0.30C.1.35D.1.166.一组数据5,7,8,10,12,12,44的众数和中位数分别是()A.44和10B.12和10C.10和12D.12和11 7.某校运动会4100m拉力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰好抽中相邻赛道的概率为()A.116B.14C.12D.388.下列判定正确的是()A是最简二次根式B .方程210x += 不是一元二次方程C .已知甲、乙两组数据的平均数分别是=80x 甲,=90x 乙,方差分别是2=10S 甲,2=5S 乙,则甲组数据的波动较小D 2x 的值为5 9.下列事件中最适合使用普查方式收集数据的是( ) A .了解某品牌LED 灯的使用寿命 B .了解全市每年使用塑料袋的个数 C .了解某远程弹道导弹的飞行距离D .了解八年级(1)班学生的近视情况10.已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2B .4C .5D .611.一组数据4,5,7,7,8,6的中位数和众数分别是( ) A .7,7B .7,6.5C .6.5,7D .5.5,712.同时抛掷两枚均匀的硬币,出现两个正面朝上的概率是( )A .15B .14C .13D .1213.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为( )A .2kg/包B .3kg/包C .4kg/包D .5kg/包14.下列说法正确的是( ) A .不可能事件发生的概率为1 B .随机事件发生的概率为13C .概率很小的事件不可能发生D .掷一枚质地均匀的硬币,正面朝上的概率为1215.下表是苏州10个市(区)今年某日最低气温(℃)的统计结果:则该日最低气温(℃)的中位数是( )A .15.5 B .14.5 C .15D .1616.2015年12月18日易车网报道,作为中国重要的汽车生产基地,重庆到2017年的汽车产量将会突破400万辆,某汽车厂将2015年9月~12月的汽车产量绘制成如图所示的条形统计图,则产量最低的月份的产量頕2015年9月~12月汽车总产量的( )A .19%B .20%C .23%D .28%17.已知一组数据﹣16,π ,123,,则无理数出现的频率是( )A .20%B .40%C .60%D .80%18.期末考试中出现了如下图所示的一道题,小明同学从中任选了两个选项(每一个选项被选中的机会均等),请问小明答对的概率是( )A .16B .12C .14D .11219.某中学数学兴趣小组12名成员的年龄情况如下表:则这个小组成员年龄的平均数、中位数和众数分别是( )A .15,16,14 B .13,15,13C .13,14,14D .14,14,1320.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率( ) A .34B .12C .14D .1二、填空题21.一个样本的数据有1,2,3,3,3,5,5,8,8,9,9那么它的中位数是__________.22.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.23.一个样本数据为1、7、2、5,那么这个样本的极差为_____.24.为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.25.已知一组数据5,8,10,x ,7,9的众数是9,那么这组数据的方差是______. 26.小丽每周每天的睡眠时间如下(单位:h )8,9,7,9,7,8,8,则小丽该周每天的睡眠时间为_____h .27.已知第一组数据:12,14,16,18的方差为21s ;第二组数据:2022,2021,2020,2019的方差为22s ,则21s ,22s 的大小关系是21s ______22s (填“>”,“=”或“<”).28.在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.29.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.甲的平均成绩__,乙的平均成绩__,公司将录取__. 30.已知数据1x , 2x ,, n x 的方差是 0.1 ,则 142x - , 242x - ,, 42n x - 的方差为________.31.体育测试前,甲、乙两名男同学进行跳远训练,两人在相同条件下每人跳10次,统计得两人的平均成绩均为2.43米,方差分别为20.03s =甲,20.1s =乙,则成绩比较稳定的是__________(填“甲”或“乙”).32.已知在一样本中,50个数据分别落在5个小组中,第1,2,3,4组数据的个数分别为3,7,13,17,那么第5小组的频率是______33.有一组数据:2,4,4,x ,5,5,6,其众数为4,则这组数据的平均数是________.34.如图,以正方形ABCD 的对角线交点O 为圆心画圆.直线EF 经过圆心O ,且EF℃BC .小明向ʘO 中投掷一个飞镖,则飞镖落在阴影部分的概率为_______.35.记“太阳从东方升起”为事件A ,则P (A )=_____.36.和睦社区一次歌唱比赛共500名选手参加,比赛分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得比赛分数在80~90分数段的选手有________名.37.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8.这10名同学平均捐款_______元,捐款金额的中位数是______元,众数是______元38.若从1-,0,1三个数中随机选取一个数记为k ,再从2-,0,2个数中随机选取一个数记为b ,则k ,b 的取值使得y kx b =+是一次函数且它的图象不过第二象限的概率是___________.39.有一组数据:(),,,,a b c d e a b c d e <<<<.将这组数据改变为2,,,,2a b c d e -+.设这组数据改变前后的方差分别是2212,s s ,则21s 与22s 的大小关系是______________.三、解答题40.某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:一般地,1000kg 种子中大约有多少是不能发芽的?41.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求: (1)指针指向4的概率; (2)指针指向数字是奇数的概率; (3)指针指向数字不小于5的概率.42.为践行习总书记提出的“绿水青山就是金山银山”生态环境保护重要思想,让绿水青山成为梅州人民幸福的靠山.我市某中学举办了“生态文明知识竞赛",赛后整理参赛学生成绩,将学生成绩分为,,,A B C D 四个等级,并绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图;(2)在图2扇形统计图中,m 的值为______________,表示“D 等级”的扇形的圆心角为__________度;(3)学校决定从本次竞赛获得A 等级的学生中,选出2名去参加全市知识竞赛,已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.43.为庆祝中国共产党建党100周年,某学校组织全校学生参加青少年党史知识竞赛,老师从全校学生中随机抽取了男、女同学各40名,并将数据进行整理分析,得到了如下信息:℃女生成绩形统计图和男生成绩频数分布直方图如图所示(数据分组为A 组:70x <,B 组:7080x ≤<,C 组:8090x ≤<,D 组:90100x ≤≤)℃女生C 组中全部15名学生的成绩为:86,87,81,83,89,84,85,87,86,89,82,88,89.85.89.℃两组数据的相关统计数据如下表(单位:分)(1)扇形统计图中A组学生对应的圆心角α的度数为______度,认真分析以上数据信息后填空:中位数b=______,众数c=______.(2)通过以上的数据分析你认为______(填“女生”或“男生”)知识竞赛成绩更好,并说明理由.(3)若成绩在90分(包含90分)以上为优秀,请你估计我校2400名学生此次知识竞赛中优秀的人数.44.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A:010t≥;t≤<;E:40 t≤<;B:1020t≤<;D:3040t≤<;C:2030通过调查得到的一组数据:D C C A D A B A D BB E D D E D BC C EE C B D E E D D E DB BC CD CE D D AB D DCD DE D C E【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.45.在一个不透明的口袋里装有颜色不同的黄、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复..下表是活动中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)试估算口袋中白种颜色的球有多少只?(3)请你设计一个增(减)袋中白球或黄球球个数的方案,使得从袋中摸出一个球,这只球是黄球的概率大于是白球的概率.46.2014年阜宁县中小学积极开展体艺“2+1”活动,某校学生会准备调查八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:(1)确定调查方式时,甲同学说:“我到八年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到八年级每个班随机调查一定数量的同学”.请你指出哪位同学的调查方式最合理;(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:℃填空;a= ,b= , c= ,℃在扇形统计图中器乐类所对应扇形的圆心角的度数是;℃若该校八年级有学生560人,请你估计大约有多少学生参加武术类校本课程. 47.为了解九年级学生“居家学习”的自主学习能力,某校随机抽取该年级部分学生,对他们的自主学习能力进行了测评统计,(其中自主学习能力指数级别“1”级,代表自主学习能力很强;“2”级,代表自主学习能力较强;“3”级,代表自主学习能力一般;“4”级,代表自主学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数______人,并将条形统计图补充完整.(2)本次抽查学生“居家学习”自主学习能力指数级别的众数为______,中位数为______级.(3)根据上述统计结果,估计该校九年级850名学生自主学习能力较强及以上的学生有多少名?48.某中学利用班会课对全校学生进行了一次防疫知识测试活动,现从初二、初三两个年级各随机抽取了15名学生的测试成绩,得分用x表示(采取百分制,x为整数),共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息:初二的测试成绩在C组中的数据为:80,86,88.初三的测试成绩:76,83,100,88,81,100,82,71,95,90,100,93,89,86,86.(1)a=,b=;(2)通过以上数据分析,你认为哪个年级学生对防疫知识的掌握更好?请写出一条理由;(3)若初二、初三共有3000名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?49.一名战士射击10次,每次命中的环数如下:8,6,7,8,9,10,6,5,4,7,计算这组数据的平均数和方差.参考答案:1.B【分析】根据众数的定义求解即可.【详解】解:26出现了2次,出现的次数最多,故这组数据的众数是26,故选:B.【点睛】本题主要考查众数的定义,熟练地掌握众数的定义是解决问题的关键,题目较简单.2.C【详解】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数.本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5.因此中位数是48.5.故选C.3.B【分析】根据中位数的定义求解即可.【详解】解:数据-2,1,0,1,2的中位数是0.故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解重庆市的空气质量情况,适合采用抽样调查,故此选项错误;B.了解长江水流的污染情况,适合采用抽样调查,故此选项错误;C.了解重庆市居民的环保意识,人数众多,适合采用抽样调查,故此选项错误;D.了解全班同学每周体育锻炼的时间,范围小,适宜普查,正确;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D【分析】根据中位数的定义求解即可.【详解】解:将6个数据按从小到大的顺序排列如下,0.07,0.30,0.90,1.42,1.57,2.40,最中间两个数为0.90,1.42,℃中位数为0901421162...+=,故选:D.【点睛】本题主要考查的是中位数的定义,注意找中位数的时候一定要先排好顺序,如果数据有奇数个则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B【分析】根据众数和中位数的定义进行求解即可得.【详解】解:这一组数据中12出现了两次,是出现次数最多的,故众数是12,这组数据一共7个数,从小到大排列后第4个数据是中位数,观察可知中位数是10,故选:B.【点睛】本题考查了中位数和众数,熟练掌握“众数是指一组数据中出现次数最多的数”、“中位数是指将一组数据从小到大排列后,处于中间的数(如果是奇数个数据,则是最中间的那个,如果有偶数个数据,则是中间两个的平均数)”是解题的关键.7.C【分析】根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:画树状图如下由图可知:共有12种等可能的结果,其中甲乙两名同学恰好抽中相邻赛道的结果共有6种℃甲乙两名同学恰好抽中相邻赛道的概率为6÷12=12故选C.【点睛】此题考查的是求概率问题,掌握画树状图和概率公式是解决此题的关键.8.D【分析】根据最简二次根式、一元二次方程、方差和二次根式有意义的条件判断即可.【详解】A. ;B. 方程210x+=是一元二次方程;C. 乙组方差小,所以乙组数据的波动较小;D. 由题意可得:2x-5≥0,5-2x≥0,解得:55x22≤≤,所以5x2=,则原式=5.故选D.【点睛】本题考查了最简二次根式、一元二次方程的定义、方差和二次根式有意义的条件,其中最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.【详解】A. 了解某品牌LED灯的使用寿命,调查具有破坏性,适合抽样调查,故A不符合题意;B. 了解全市每年使用塑料袋的个数,调查范围广,费时费力,适合抽样调查,故B不符合题意;C. 了解某远程弹道导弹的飞行距离,,调查具有破坏性,适合抽样调查,故C不符合题意;D. 了解八年级(1)班学生的近视情况,人员不多,适合普查,故D符合题意.故选D.【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.10.B【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数.【详解】把数据从小到大排列为:2,2,4,5,6,中间的数是4,℃中位数是4,故选:B.【点睛】本题考查中位数的定义,将一组数据按从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数是中位数,如果数据的个数是偶数,则处于中间两个数据的平均数是中位数.11.C【分析】根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为672=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.℃给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.℃给定一组数据,出现次数最多的那个数,称为这组数据的众数.12.B【分析】把所有可能出现的情况列举出来,将需要的结果数出来,代入概率公式计算即可.【详解】同时抛掷两枚均匀的硬币,正面朝上记为“正”,背面朝上记为“背”,则可能出现的情况有(正,背),(正,正),(背,正),(背,背)共4种情况,其中出现两个正面朝上的情况有(正,正)共1种,故出现两个正面朝上的概率为14.故选B.【点睛】本题考查了列举法求概率,熟悉列举法的步骤是解决本题的关键.13.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.14.D【详解】A. 不可能事件发生的概率为0,故错误;B. 随机事件发生的概率介于0和1之间,不一定是13,故错误;C. 概率很小的事件不是不可能发生,而是发生的机会较小,故错误;D. 抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是12,故正确.故选D.15.A【分析】根据中位数的概念求解即可.【详解】把这组数据按照从小到大的顺序排列14,14,15,15,15,16,16,16,16,17,位于中间位置的两个数的平均数为(15+16) 2=15.5,故中位数为15.5.故选A.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.B【详解】如图可知,产量最低的月份为2015年12月份,产量为1500辆,2015年9月~12月汽车总产量为:2100+ 1700 + 2200 + 1500=7500辆,1500÷7500=20%,故选B.17.B【分析】由于开方开不尽的数、无限不循环小数是无理数,根据频率、频数的关系即可判断选择项.【详解】在题目所给的5个数据中,π,2个,所以无理数出现的频率是25=40%,故选:B.【点睛】本题主要考查了无理数的定义及频率、频数灵活运用,其中频率、频数的关系为:频率等于频数与数据总和之比.18.A【分析】画树状图,共有12个等可能的结果,选择C、D和D、C的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,小明答对的情况只有C 、D 和D 、C 这两种情况,℃小明答对的概率是21126= , 故选:A .【点睛】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键.19.D 【详解】试题分析:根据平均数的意义,可知其平均数为:121+134+143+15?2+16?2=1412⨯⨯⨯;根据中位数的概念,从小到大排列,然后取中间的一个或两个的平均数,可知其中位数为14,而众数是出现次数最多的数,因此众数是13. 故选D20.C【分析】列表得出所有等可能的情况数,找出两次摸出的卡片的数字之和等于4的情况,即可求出所求的概率.【详解】列表得:所有等可能的情况有8种,其中两次摸出的卡片的数字之和等于4的情况有2种,则P =28=14, 故选C .【点睛】此题考查了列表法或树状图法求事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.21.5【分析】根据中位数的定义回答即可.【详解】解:数据1,2,3,3,3,5,5,8,8,9,9中,中位数为5,故答案为:5.【点睛】本题考查了中位数的定义,解题的关键是学会根据定义找出一组数据的中位数.22.1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【详解】解:画出树状图得:℃共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,℃出场顺序恰好是甲、乙、丙的概率为16,故答案为:16.【点睛】本题考查了树状图法求概率问题,关键是根据题意正确画出树状图进而求解. 23.6【分析】根据极差是指一组数据中最大数据与最小数据的差可得答案.【详解】解:这个样本的极差为7﹣1=6,故答案为:6.【点睛】本题主要考查了极差,关键是掌握极差=最大值−最小值.24.500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.25.83##223【分析】先根据众数求出x ,再求这组数据的平均数,最后求出方差即可.【详解】解:℃一组数据5,8,10,x ,7,9的众数是9,℃9x =,则这组数据为:5,8,10,9,7,9, 平均数是1(5810979)86+++++=, 这组数据的方差是()()()()()()22222218588810898789863⎡⎤-+-+-+-+-+-=⎣⎦, 故答案为:83【点睛】此题考查了众数、平均数和方差,熟练掌握方差的求法是解题的关键. 26.8【分析】利用平均数的定义列式求解即可. 【详解】解:小丽每周的睡眠时间为897978887++++++= 故答案为:8.【点睛】本题考查求平均数,掌握平均数的定义是解题的关键.27.>【分析】利用方差代表的意义判断即可.【详解】解:由题意可知:℃第一组数据是间隔为2的偶数,第二组数据是间隔为1的数,℃第一组数据波动比较大,℃2212s s >,故答案为:>.【点睛】本题考查方差的意义,关键是理解方差代表的意义:方差代表一组数据在其平均数附近的波动情况,波动越大,方差越大.28.21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.【详解】解:℃小明通过多次试验发现,摸出白球的频率稳定在0.3左右,℃白球的个数=30×0.3=9个,℃红球的个数=30-9=21个,故答案为:21.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.29.87分86分甲【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(85×6+90×4)÷10=87(分),乙的平均成绩为:(90×6+80×4)÷10=86(分),因为甲的平均分数最高,所以甲将被录取.故答案为:87分,86分,甲.【点睛】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.30.1.6【详解】0.1×42=1.6.【点睛】当把一组数据每个数都加上或减去同一个数时,方差不变;当把一组数据每个数都乘以或除以同一个数时,方差变为这个数的平方倍.31.甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】℃甲的方差为0.03,乙的方差为0.1,0.03<0.1,℃成绩较为稳定的是甲.故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.32.0.2【分析】总数减去其它四组的数据就是第5组的频数,再除以50可得频率.。

中考数学统计与概率专题知识易错题50题含答案

中考数学统计与概率专题知识易错题50题含答案

中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列事件中,不可能发生的事件是()A.明天气温为30C︒B.学校新调进一位女教师C.大伟身长丈八D.打开电视机,就看到广告2.数据1,2,3,4,5,3-的平均数是()A.0B.2C.3D.2.53.下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.将一滴花生油滴入水中,油会浮在水面上C.车辆随机到达一个路口,遇到红灯D.掷一枚质地均匀的硬币,一定正面向上4.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.中位数是9B.众数是9C.平均数是10D.方差是3 5.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是()A.280B.100C.380D.2606.一个布袋中装有7个红球,2个黑球和1个白球,它们除颜色外都相同.从中任意摸出一个球,被摸到的可能性最大的球是()A.红球B.黑球C.白球D.黄球7.一个不透明的口袋里有10个黑球和若干个红球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验600次,其中360次摸到红球,由此估计袋中的红球有()个A.15B.9C.10D.208.对于数据:80,88,85,85,83,83,84.下列说法中错误的有()①这组数据的平均数是84;①这组数据的众数是85;①这组数据的中位数是84;①这组数据的方差是36.A.1 个B.2 个C.3 个D.4 个9.下列事件中属于随机事件的是()A.13名同学中,至少有两名同学出生月份相同B.任意一个实数的绝对值小于0a b b a D.经过有交通信号的路口,遇到红灯C.a,b是实数,+=+10.技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A.平均数B.方差C.中位数D.众数11.如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是()A.甲B.乙C.丙D.丁12.下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>013.一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0B.1、0C.1、1D.2、114.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87B.87,85C.83,87D.83,85 15.一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,则他合格的概率为()A.710B.12C.25D.1516.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1B.67C.12D.017.从编号为1~10的10个完全相同的球中,任取一球,其号码能被3整除的概率是()A.110B.115C.310D.2518.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.6519.下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a b=,则22a b=C.一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上20.已知A样本的数据如下:67,68,68,71,66,64,64,72,B样本的数据恰好是A样本数据每个都加6,则A、B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数二、填空题21.在一次体检中,某班学生视力检查结果如表:从表中看出全班视力的众数是___.22.端午假期鼓浪屿商场为了吸引顾客,举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会,不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,如果摸到红色小球则有机会以优惠价28.88元购买“冰墩墩”一个.如图显示了活动第一天开展上述摸球活动的获奖的结果.李老师在活动第二天去购物,刚好消费了100元,推测李老师能以优惠价购买“冰墩墩”的概率为___.23.如图,用两个可以自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是___.24.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.25.如图,是用黑白打印机在纸张上打印的边长为20cm的正方形“易加学院”微课二维码.为了估计图中黑色部分的总面积,在该二维码内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可以估计黑色部分的总面积约为_________2cm.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是_____.28.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是_________年,私人汽车拥有量年增长率最大的是_________年.29.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=___.30.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是_______;________.31.现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中b的值是______.32.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___33.抽样时要注意样本的______性和______性.34.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为________35.一套书有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为__ __.36.如图,Rt△ABC是一块草坪,其中①C=90°,AC=9m,AB=15m,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟随机落在这块草坪上,则小鸟落在阴影部分的概率为________.37.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.38.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是______.39.甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:x甲=1.70m,x乙=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,_____的成绩更稳定.40.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________三、解答题41.如表是我国运动员在最近六届奥运会上所获奖牌总数情况:数学小组分析了上面的数据,得出这六届奥运会我国奖牌总数的平均数、中位数如表所示:(1)上表中的中位数m的值为;(2)经过数学小组的讨论,认为由于第29届奥运会在我国北京召开,我国运动员的成绩超常,所以其数据应记为极端数据,在计算平均数时应该去掉,于是计算了另外五属奥运会上我国奖总数的平均数,这个平均数应该是(3)根据上面提供的信息,预估我国运动员在2020年举行的第32届奥运会上将获得多少枚奖牌,并写出你的预估理由42.小丽在家备战体育中考,增强自身免疫力抗击疫情,每天晚上进行5组1分钟跳绳训练,10天成绩如下图.(1)扇形统计图中a=.(2)补全条形统计图.(3)小丽的跳远成绩是跳绳平均成绩的90%,小丽的跳远成绩是多少分?(精确到个位)43.某单位欲招聘一名员工,现有A,B,C三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.(1).请将表一和图一中的空缺部分补充完整;(2).竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;(3).若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.44.某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?45.(1) 请你调查自己家一周内每天消耗粮食的数量.(2) 统计本班学生这一周内消耗粮食的总数,并用科学记数法表示.(3) 根据你收集的数据,估计全校学生的家庭,一周内消耗粮食的总数并用科学记数法表示.46.某数学研究小组为了解各类危险天气对航空飞行安全的影响,从国际航空飞行安全网提供的近百年飞行事故报告中,选取了650起与危险天气相关的个例,研究小组将危险天气细分为9类:火山灰云(A),强降水(B),飞机积冰(C),闪电(D),低能见度(E),沙尘暴(F),雷暴(G),湍流(H),风切变(I),然后对数据进行了收集、整理、描述和分析,相关信息如下:信息一:各类危险天气导致飞行事故的数量统计图;信息二:C类与E类危险天气导致飞行事故的月频数统计图;(以上数据来源于国际航空飞行安全网)根据以上信息,解决下列问题:(1)导致重大飞行事故发生数量最多的危险天气类别是______类;(填写字母)(2)从C类与E类危险天气导致飞行事故的月频数统计图来看,______类危险天气导致飞行事故发生次数的波动性小;(填“C”或“E”)(3)根据以上信息,下列结论正确的是______.(只填序号)①C类危险天气导致飞行事故的概率最高;①每年1—4月份C类危险天气比E类危险天气导致飞行事故发生的次数要多;①每年的12月至次年的1月是C类危险天气导致飞行事故发生的多发时期.47.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的可能性大还是选中两名女生的可能性大?48.由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A、B、C三家快餐店,对每家快餐店随机选择1000条网络评价统计如表:(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A、B、C中推荐一家快餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.49.某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图①),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有________人,女生有________人;(2)扇形统计图中a=________,b=________;(3)补全条形统计图(不必写出计算过程).50.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物PQ高度为96cm,放置文物的展台QO高度为168cm,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视),则分隔参观者角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的PAQ与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;①通常围栏的摆放位置需考虑参观者的平均身高)参考答案:1.C【分析】不可能事件是指在一定条件下,一定不发生的事件,根据概念即可解决问题.【详解】A、B、D选项都是可能发生也可能不发生的事件,是随机事件;C、大伟身长丈八是一定不发生的事件,是不可能事件.故选:C.【点睛】本题考查了不可能事件的概念,理解掌握相关的概念是解题的关键.2.B【分析】根据题目中的数据,可以计算出这组数据的平均数,本题得以解决.【详解】解:() 12345326+++++-=,故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.3.B【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、如果a2=b2,那么a=b或a=-b,故该选项不是必然事件,该选项不符合题意;B、将一滴花生油滴入水中,油会浮在水面上,故该选项是必然事件,该选项符合题意;C、车辆随机到达一个路口,可能遇到红灯,故该选项不是必然事件,该选项不符合题意;D、掷一枚质地均匀的硬币,不一定正面向上,故该选项不是必然事件,该选项不符合题意.故选:B.【点睛】本题考查了必然事件,熟练掌握必然事件的定义是解题的关键.4.A【分析】根据给出的折线统计图确定他在一周内每天跑步圈数的数据分别为多少,再根据各选项要求的数据进行求解即可.【详解】解:由题目中折线统计图可知,每天跑步圈数数据分别为7、10、9、9、10、8、10,A、将数据按照从小到大排列,依次为7、8、9、9、10、10、10,中位数应为9,故A正确;B 、该组数据中10出现的次数最多,为3次,所以众数为10,故B 错误;C 、平均数应为710991081097++++++=,故C 错误; D 、由C 可知平均数为9,方差应为222222218(79)(109)(99)(99)(109)(89)(109)77⎡⎤-+-+-+-+-+-+-=⎣⎦,故D 错误, 故选:A .【点睛】本题主要考查众数、中位数、平均数、方差的求法,结合了折线统计图的应用,重点在于熟练掌握各类数据定义进而求出数值.5.C【分析】根据条形统计图中的数据可以计算出统计图中8~12小时的学生数,从而可以估计该校五一期间参加社团活动时间在8~12小时的学生数.【详解】解:由题意可得,条形统计图中,参加社团活动时间8~12小时的学生有:100−8−24−30=38(名),则该校五一期间参加社团活动时间在8~12小时之间的学生数大约是:1000×38100=380(名),故选:C .【点睛】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,根据样本的频数估计总体的频数.6.A【分析】根据布袋哪个颜色的球最多即可判断.【详解】解:∵红球最多,∴被摸到的可能性最大.故选:A .【点睛】本题考查了概率,解决本题的关键是灵活运用所学知识解决问题.7.A【分析】先求出摸到红球的频率,用频率估计概率,再用频率公式,列出方程,即可求解.【详解】由题意得:P (摸到红球)≈360÷600=0.6,设红球的个数为x 个,则0.610x x=+,解得:x=15, 答:估计袋中的红球有15个.故选A .【点睛】本题主要考查用频率估计概率以及概率公式,根据概率公式,列出方程是解题的关键.8.B【详解】由平均数公式可得这组数据的平均数为84;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、84、85、85、88,可得其中位数是84; 其方差为367, 故选B .9.D【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件),据此判断即可.【详解】解:A 、13名同学中,至少有两名同学出生月份相同,为必然事件,不符合题意;B 、任意一个实数的绝对值小于0为不可能事件,不符合题意;C 、a ,b 是实数,+=+a b b a ,根据加法交换律可知为必然事件,不符合题意;D 、经过有交通信号的路口,遇到红灯是随机事件,符合题意;故选:D .【点睛】本题考查了随机事件的定义,熟知定义是解题的关键.10.B【详解】试题分析:根据平均数、方差、中位数及众数的定义求解.解:①为考察某种小麦长势整齐的情况,①应该需要知道这些麦苗的方差,故选B .点评:本题考查了统计量的选择及平均数、方差、中位数及众数的定义,方差能反映一组数据的稳定情况,方差越大,越不稳定.11.C【分析】成绩好,需要考查平均分;发挥稳定,需要考查方差.【详解】①乙和丙的平均数最高,乙和丙的方差分别为8.5和1.5①丙的成绩好又发挥稳定.故答案为:C.【点睛】本题考查平均数和方差,需要注意,方差越小,则这组数据越稳定,理解方差衡量数据的稳定性时,方差越小,越稳定是解题的关键.12.C【分析】先判断各个选项事件的可能性,再根据必然事件的概念进行判断即可.【详解】A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖为随机事件,不符合题意;B.一组数据1,2,4,5的平均数是124534+++=,故平均数是4是不可能事件,不符合题意;C.三角形的内角和等于180°为必然事件,符合题意;D.若a是实数,则0a≥,故|a|>0为随机事件,不符合题意.故选:C.【点睛】本题考查了必然事件、不可能事件及随机事件,必然事件是一定会发生的事件,即发生的概率是1的事件;不可能事件是一定不会发生的事件,即发生的概率为0;随机事件发生的概率在0和1之间.13.C【分析】根据的中位数和众数的概念进行分析即可.【详解】这组数据1出现的次数最多,所以这组数据的众数为1,从小到大排列:﹣2,0,1,1,1,2,处在最中间的两个数的平均数为1,所以这组数据的中位数是1,故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可.【详解】①这组数据排序后为83,83,87,87,87,90,①这组数据的众数是87,这组数据的中位数是87872=87.故选A.【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.15.A【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.【详解】共有20种情况,合格的情况数有14种,所以概率为7 10.故选A.【点睛】考查用列树状图的方法解决概率问题;得到合格的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.16.C【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).17.C【分析】根据数的整除性得出连续自然数每10个有三个能整除3,即可得出卡片号能被3整除的概率.【详解】解:①10张已编号的球(编号为连续的自然数)有三个能整除3,为3,6,9,①号码能被3整除的概率为3 10.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18.C【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.19.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意画一个四边形,它的内角和是360°是必然事件,故A不符合题意;B、若a=b,则a2=b2是必然事件,故B不符合题意;C、一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”是不可能事件,故C符合题意;D、掷一枚质地均匀的硬币,落地时正面朝上是随机事件,故D不符合题意;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.B【分析】根据样本A,B中数据之间的关系,结合众数,平均数,中位数和方差的定义即可得到结论.【详解】设样本A中的数据为xi,则样本B中的数据为yi=xi+6,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差6,只有方差没有发生变化.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的21.4.9【分析】根据众数的定义可知出现次数最多的数据是众数,然后根据表格中的数据,可知4.9所占的百分比最大,即4.9就是这组数据的众数.【详解】解:由表格中的数据可得,视力4.9的学生所占的百分比最大,故全班视力情况的众数是4.9,故答案为:4.9.【点睛】本题考查了众数,解答本题的关键是明确众数的定义,会求一组数据的众数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.22.0.35【分析】根据概率的定义推测即可得出答案.【详解】解:随着摸球次数的增加,摸到红球的频率总是在0.35的附近摆动,显示出一定的稳定性,可以推测摸到红球的概率即是老师能以优惠价购买“冰墩墩”的概率为0.35,故答案为0.35.【点睛】本题主要考查了概率的定义,在做重复试验时,当试验次数很大时,事件A的频率总是会在一个常数的附近摆动,这就是频率的稳定性,我们用这个常数表示事件A发生的可能性大小,我们把刻画事件A发生可能性大小的数值成为事件A的概率,掌握概率的概念是解题的关键.23.1 3【分析】用列表法表示所有可能出现的结果情况,从中找出能配成紫色的情况,即可求出配紫的概率.【详解】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的结果,其中能配成紫色的有2种,所以,能配成紫色的概率为21=63,故答案为:13.。

专题1.6统计与概率三大考点与真题训练(解析版)

专题1.6统计与概率三大考点与真题训练(解析版)

2023年中考数学考前30天迅速提分复习方案(上海地区专用)专题1.6统计与概率三大考点与真题训练考点一:数据的收集与整理一、单选题1.(2023·上海·模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法正确的是( )A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生D.样本容量是400名学生【答案】A【分析】我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.总体是该校4000名学生的体重,说法正确,故A符合题意;B.个体是每一个学生的体重,原来的说法错误,故B不符合题意;C.样本是抽取的400名学生的体重,说法错误,故C不符合题意;D.样本容量是400,说法错误,故D不符合题意.故选:A.【点睛】本题主要考查了总体、个体、样本、样本容量,解题的关键是正确记忆各自的概念.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.2.(2022·上海徐汇·统考二模)在知识竞赛中,成绩分为A,B,C,D四个等级,相应等级的得分依次记为100分,90分,80分,70分.将九年级二班参赛选手的成绩整理并绘制成如下的统计图,九年级二班参赛选手成绩的众数和中位数分别是()A.100和90B.100和80C.80和90D.80和80.【答案】B【分析】根据中位数和众数的定义求解即可.【详解】解:由统计图可知,A级的占比最多,即得分为100分的人数最多,∴二班参赛选手的成绩的众数为100;∵中位数是一组数据中处在最中间或处在最中间的两个数据的平均数,∴由扇形统计图可知处在最中间的成绩为80分或处在最中间的两个数据分别为80分,80分,∴中位数即为80,故选B.【点睛】本题主要考查了求中位数和众数,熟知二者的定义是解题的关键.3.(2020·上海虹口·统考二模)如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是()A.8,7B.7,6.5C.7,7D.8,7.5【答案】D【分析】先根据折线图将这10个数据从小到大排列,再根据众数和中位数的概念求解可得.【详解】解:由折线图知,这10个数据分别为3、4、6、7、7、8、8、8、9、10,+=7.5,所以这组数据的众数为8,中位数为782故选:D.【点睛】本题主要考查众数和中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数.4.(2021·上海·上海市实验学校校考二模)为了了解某校九年级300名学生的体重情况,从中抽取50名学生的体重进行分析,在这项调查中,样本是指()A.300名学生B.300名学生的体重C.被抽取的50名学生D.被抽取的50名学生的体重【答案】D【分析】根据总体、个体、样本、样本容量的定义判断即可.【详解】解:为了解某校九年级300名学生的体重情况,从中随机抽取50名学生的体重进行分析,在这项调查中,样本是被抽取的50名学生的体重.故选:D.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题5.(2021·上海青浦·统考二模)为了解某区2400名初中教师中接种新冠疫苗的教师人数,随机调查了其中200名教师,结果有150人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有_______人.【详解】解:估计该区接种新冠疫苗的初中教师人数约有2400×150=1800(人),200故答案为:1800.【点睛】本题考查用样本估计总体.理解用样本估计总体的含义和掌握其公式是解答本题的关键.6.(2021·上海金山·二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.根据此信息,估计该校480名初三学生报名足球的学生人数约为_____人.7.(2021·上海嘉估计某个鱼塘里的鱼的数量,养殖工人网住了50条鱼,在每条鱼的尾巴上做个记号后,又将鱼放回鱼塘.等鱼游散后再随机撒网,网住60条鱼,发现其中有2条鱼的尾巴上有记号.设该鱼塘里有x条鱼,依据题意,可以列出方程:_____.8.(2021·上海静安·统考二模)为了了解学生用于阅读课外书籍的时间的情况,某校在300名九年级学生中随机对40名学生每周阅读课外书籍所用的时间进行统计.根据调查结果画出频率分布直方图,如图所示(每个小组可包括最小值,不包括最大值),由此可以估计该校九年级学生阅读课外书籍用的时间在6小时及以上的人数约为________.【答案】120【分析】根据直方图分析出课外阅读时间在6小时及以上的人数的频率,然后利用频率乘总人数即可求解.【详解】由图中可知,课外阅读时间在6小时及以上的人数的频率为0.25+0.15=0.4,∴所有学生中,课外阅读时间在6小时及以上的人数300×0.4=120人,故答案为:120.【点睛】本题考查频率分布直方图,理解频率分布直方图的意义是解题关键.9.(2021·上海闵行·统考二模)为了解全区104000个小学生家庭是否有校内课后服务需求,随机调查了4000个小学生家庭,结果发现有2800个小学生家庭有校内课后服务需求,那么估计该区约有________个小学生家庭有校内课后服务需求.【答案】72800【分析】先求出样本中学生参加校内课后服务所占的百分比,再用样本估算总体.【详解】280010400072800´=(人).4000故答案为:72800.【点睛】考查了用校本估算总体,解题关键先计算出样本中所占的百分比,再用样本的数据去估算总体情况.10.(2021·上海松江·统考二模)一次数学测试后,某班40名学生按成绩分成5组,第1、2、3、4组的频数分别为6、7、10、13,则第5组的频率为 _____.11.(2022·上海杨浦·统考二模)为了了解全区近4800名初三学生数学学习状况,从中随机抽取500名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组)数据可含最低值,不含最高值根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是_______.【答案】1920【分析】根据题意和表格中的数据,可以先计算出80~90和90~100的学生人数,然后即可计算出70~80的学生人数,再计算出全区此次成绩在70~80分的人数即可.【详解】解:由题意可得,80~90的学生有:500×0.18=90(人),90~100学生有:500×0.04=20(人),∴样本中70~80的学生有:500-12-18-160-90-20=200(人),=1920,∴估计全区此次成绩在70~80分的人数大约是4800×200500故答案为:1920.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出样本中70~80分的人数.12.(2021·上海·上海市实验学校校考二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:70~90有15人,90~105有42人,105~12 0有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是______________.三、解答题13.(2023·上海·模拟预测)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4710142055++++=(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.7211.520.2-=(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.14.(2021·上海徐汇·统考二模)问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到100 00千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:①从仓库中最方便处打开若干箱子逐个检查;②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.解决:(1)公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;(2)该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.:被抽到的箱子里橘子的损耗情况表根据如表信息,请你估计这批橘子的损耗率;(3)根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).【答案】(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)8.36%;(3)2.73元/千克【分析】(1)根据抽样调查时选取的样本必须具有代表性即可求解;(2)计算出抽取的20箱橘子的平均损耗率即可;(3)设该公司确定这批橘子的销售价格为x元/千克,根据利润=售价﹣进价列出方程即可.【详解】解:(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)(8.57+8.15)÷(10×20)×100%=8.36%.即估计这批橘子的损耗率为8.36%;(3)10000×(1﹣8.36%)x﹣2×10000=5000,解得,x≈2.73.答:该公司可确定这批橘子的销售价格约为2.73元/千克,能够尽可能达到该公司的盈利目标.【点睛】本题是一道利用统计知识解答实际问题的重点考题,主要考查利用统计图表处理数据的能力和利用样本估计总体的思想.从统计表中获取有用信息是解题的关键.15.(2022·上海青浦·统考二模)为了解某区3200名学生放学后在校体育运动的情况,调研组选择了有600名学生的W校,抽取40名学生进行调查,调查情况具体如下表:图表1:感兴趣的运动项目(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;【点睛】本题主要考查平均数、众数、中位数、方差及频数直方图;熟练掌握平均数、众数、中位数、方差及频数直方图是解题的关键.考点二:数据分析一、单选题1.(2022·上海松江·校考三模)小丽连续7次的数学考试成绩分数是:93、85、88、89、90、87、90.关于这组数据,下列说法正确的是( )A.中位数是88B.众数是90C.平均数是89D.方差是87【答案】B【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【详解】解:将数据重新排列为85、87、88、89、90、9093,、则这组数的中位数为89,众数为90,平均数为18587888990909388.97´++++++»(),所以说法正确的是B.故选:B.【点睛】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.2.(2022·上海普陀·统考二模)某公司有9个子公司,某年各子公司所创年利润的情况如下表所示.根据表中的信息,下列统计量中,较为适宜表示该年各子公司所创年利润的平均水平的是( )A.方差B.众数C.平均数D.中位数【答案】D【分析】先分别求出平均数和中位数,再进行分析即可得.3.(2022·上海杨浦·统考二模)在一次引体向上的测试中,如果小明等5位同学引体向上的次数分别为:6、8、9、8、9,那么关于这组数据的说法,正确的是()A.平均数是8.5B.中位数是9C.众数是8.5D.方差是1.24.(2022·上海黄浦·统考二模)下列各统计量中,表示一组数据波动程度的量是()A.方差B.众数C.平均数D.频数【答案】A【分析】根据方差、众数、平均数、频数的意义即可求解.【详解】解:方差是表示一组数据波动程度的量,众数、平均数是表示一组数据集中趋势的量,频数是表示数据出现的次数,故选A.【点睛】本题考查了方差、众数、平均数、频数的意义,掌握以上知识是解题的关键.5.(2021·上海青浦·统考二模)某校为了解学生在“慈善募捐”活动中的捐款情况,进行了抽样调查,结果如表所示.那么该样本中学生捐款金额的中位数和众数分别是( )A.20元,50元B.35元,50元C.50元,50元D.20元,20元【答案】A【解析】根据中位数和众数的定义求解即可.【详解】解:∵本组数据从小到大排列共50个,且最中间的两个数据是20和20,∴这组数据的中位数为:2020202+=;∵捐款50元的人数最多,∴这组数据的众数是50.故选:A【点睛】本题考查中位数和众数的知识点,充分利用中位数和众数的定义是解题的关键.6.(2021·上海金山·二模)某人统计九年级一个班35人的身高时,算出平均数与中位数都是158厘米,但后来发现其中一位同学的身高记录错误,将160厘米写成了166厘米,经重新计算后,正确的中位数是a 厘米,那么中位数a 应( )A.大于158B.小于158C.等于158D.无法判断【答案】C【分析】根据中位数的定义得出最中间的数还是158厘米,从而选出正确答案.【详解】解:∵原来的中位数158厘米,将160厘米写成166厘米,最中间的数还是158厘米,∴a =158,故选:C.【点睛】本题考查了中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(2021·上海·统考二模)某校对进校学生进行体温检测,在某一时段测得6名学生的体温分别为36.8℃,36.9℃,36.5℃,36.6℃,36.9℃,36.5℃,那么这6名学生体温的平均数与中位数分别是()A.36.7℃,36.7℃B.36.6℃,36.8℃C.36.8℃,36.7℃D.36.7℃,36.8℃8.(2021·上海普陀·统考二模)已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是( )A.平均数相等B.中位数相等C.众数相等D.方差相等【答案】D【分析】根据平均数、中位数、众数和方差的意义求解即可.【详解】解:因为新数据是在原数据的基础上每个加2,∴这两组数据的平均数、中位数和众数都改变,而波动幅度不变,即方差不改变,故选:D.【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.(2021·上海闵行·统考二模)如果一组数据为,0,1,0,0,那么下列说法不正1-确的是()A.这组数据的方差是0B.这组数据的众数是0C.这组数据的中位数是0D.这组数据的平均数是010.(2022·上海·上海市娄山中学校考二模)某射击选手10次射击成绩统计结果如下表,这10A.8、8B.8、8.5C.8、9D.8、10【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题11.(2021·上海宝山·统考三模)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.(2021·上海浦东新·统考模拟预测)某商店4月份销售的鞋子部分情况如表:根据这组数据可知,这个月销售36到41码鞋子尺寸的众数是_____.【答案】39.【分析】根据表格中的数据,正确使用众数的定义即可.【详解】根据表格中数据,可以知道36到41码的鞋子的销售量,其中尺寸为39码的鞋子销售量最大,故众数为39.故答案为:39.【点睛】本题考查统计表的理解和众数的定义,正确理解统计表并掌握众数概念是解题关键.13.(2021·上海普陀·统考二模)为了唤起公众的节水意识,从1993年起,联合国将每年的3月22日定为“世界水日”.某居委会表彰了社区内100户节约用水的家庭,5月份这100户家庭节约用水的情况如表所示,那么5月份这100户家庭节水量的平均数是_____吨.【答案】5.5【分析】根据加权平均数的定义列式计算即可.【详解】解:5月份这100户家庭节水量的平均数是5626287.210100´+´+´=5.5(吨),故答案为:5.5.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.14.(2023·上海·模拟预测)已知第一组数据:12,14,16,18的方差为21s ;第二组数据:32,34,36,38的方差22s ;第三组数据:2020,2019,2018,2017的方差为23s ,则21s ,22s ,23s 的大小关系是21s _______22s ________23s (填“>”,“=”或“<”)【答案】 = >【分析】根据方差是反映数据波动情况的量进行判断即可.【详解】解:Q 第一组和第二组数据都是间隔为2的偶数,\两组数据波动情况相同,即:2212s s =,Q 第三组数据是相差为1的整数,\方差最小,即:222123s s s =>,故答案为:=,>.【点睛】考查了方差的知识,解题时可以直接根据波动情况判断,也可以利用方差公式计算后确定答案,难度不大.考点三:概率一、填空题1.(2022·上海松江·统考二模)甲乙两人做“石头、剪刀、布”游戏,能在一个回合中分出胜负的概率是____________.【答案】23【分析】直接用列表法求出所有可能的情况,然后根据基本概率公式即可得出答案.【详解】分别用、、A B C 表示石头、剪刀、布,则在一个回合下的所有情况列表如下:一共有9种等可能结果,其中获胜的情况有6种,故获胜的概率6293P ==.【点睛】本题考查了基本概率的求法,解题的关键是熟练掌握求概率的方法,包括列表法和树状图法.2.(2022·上海金山·统考二模)一个布袋中有8个红球和16个黑球,这两种球除了颜色以外没有任何其他区别,从布袋中任取1个球是黑球的概率是______.3.(2022·上海黄浦·统考二模)一副52张的扑克牌(无大王、小王),从中任意抽出一张,抽到红桃K 的概率是________.4.(2022·上海闵行·统考二模)一个布袋中有三个完全相同的小球,把它们分别标号为1、2、3,从布袋中任取一个球记下数字作为点P 的横坐标x ,不放回小球,然后再从布袋中取出一个球记下数字作为点P 的纵坐标y ,那么点(),P x y 落在直线1y x =+上的概率是_________.共有6种等可能的结果,其中,点(),P x y 落在直线1y x =+上的结果有2种,∴点(),P x y 落在直线1y x =+上的概率=2163=.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,还需要注意实验是不放回实验.5.(2023·上海·模拟预测)一个袋子里装有10个材质均匀,大小相同,颜色不同的球,每个球上面都标有0到9中任意一个数字.现从中任意摸取一个球,摸取到数字是合数的球的概率是___________.【答案】25##0.4数与总情况数之比.6.(2023·上海·模拟预测)从2π这三个数中任选一个数,选出的这个数是有理数的概率为________________.7.(2023·上海·模拟预测)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是_____.8.(2022·上海虹口·统考二模)如果从1、2、3、4、5、6、7、8、9、10这10个数中任取一个数,那么取到的数恰好是素数的概率是______.9.(2022·上海奉贤·统考二模)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是2的倍数的概率是_____ _______.##0.5【答案】1210.(2022·上海·上海市进才中学校考一模)将 1、2、3 三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是__________.【真题训练】一、单选题1.(2022·上海·统考中考真题)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.2.(2021·上海·统考中考真题)商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【分析】选择人数最多的包装是最合适的.【详解】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故选:A.【点睛】本题较简单,从图中找到选择人数最多的包装的范围,再逐项分析即可.3.(2020·上海·统考中考真题)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( ) A.条形图B.扇形图C.折线图D.频数分布直方图【答案】B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能。

专题24 统计与概率(学生版)

专题24 统计与概率(学生版)

【高频考点精讲】1、统计图:条形统计图,扇形统计图,折线统计图。

2、统计调查过程:(1)问卷调查法——收集数据;(2)列统计表——整理数据;(3)画统计图——描述数据。

3、统计调查方法:全面调查(普查)和抽样调查。

(1)通过全面调查(普查)可以得到较为全面、可靠的信息,但花费时间长,耗费大。

(2)有些项目不适合全面调查(普查)①调查者能力有限,例如个体调查者无法对全国中小学生视力情况进行全面调查(普查)。

②调查过程具有破坏性,例如调查手机是否符合IPX6级防水标准。

4、总体、个体、样本、样本容量(1)总体:调查对象的全体;(2)个体:组成总体的每一个调查对象;(3)样本:总体中取出部分个体;(4)样本容量:一个样本包括的个体数量。

(样本容量只是个数字,没有单位)5、频数与频率(1)频数:每个对象出现的次数。

(2)频率:每个对象出现的次数与总次数的比值,即频率=频数÷总数。

6、统计图的选择(1)扇形统计图特点①用扇形面积表示部分在总体中所占百分比;②容易显示每组数据相对于总数的大小。

(2)条形统计图的特点①能清楚地表示出每个项目中的具体数目;②方便比较数据之间的差别。

(3)折线统计图的特点①能清楚地反映事物的变化情况;②显示数据变化趋势。

知识点02:数据分析【高频考点精讲】1、算术平均数(1)平均数:所有数据之和除以数据的个数,是反映数据集中趋势的一项指标。

(2)算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)叫做这n个数的算术平均数。

2、加权平均数(1)加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数。

(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如演讲内容占50%,语言表达占40%,形象风度占20%,权的大小直接影响结果。

小升初数学七大专题:统计和概率(专项突破) 小学数学六年级下册人教版(含答案)

小升初数学七大专题:统计和概率(专项突破) 小学数学六年级下册人教版(含答案)

小升初七大专题:统计和概率(专项突破)-小学数学六年级下册人教版一、选择题1.淘气一天的主要活动的所用时间如下,要表示淘气一天内各项活动所占时间的百分比,应当绘制A.条形统计图B.折线统计图C.扇形统计图D.都可以2.观察分析淘气跑步的时间和速度关系图,下面说法错误的是()。

A.在第1分内,淘气的速度从0米/分提高到150米/分B.从第1分到第4分,淘气一共跑了150米C.从第1分到第4分,淘气跑步的速度保持不变D.从第4分到第6分,淘气的速度在下降3.张师傅8:00开货车从A地出发运送一批货物去B地,共行驶了2小时,平均每小时行驶56千米。

到达A地后张师傅卸货用去1.5小时,然后返程。

途中12:30进入高速服务区,花半小时吃午饭后继续行驶,下午13:30回到A地。

下面()图正确描述张师傅离开A地时间和距离的关系。

A.B.C.D.、、、四种长度不同的钢筋,它们的尺寸分别是5m、3m、2m、1m。

这批4.某工地购入一批A B C D钢筋的数量分布如图所示,则这批钢筋的平均长度是()。

A.2.25米/根B.2.15米/根C.2.75米/根D.1.95米/根5.某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是()。

A.72°,36°B.100°,50°C.80°,40°D.120°,60°6.甲、乙、丙三个数的比是1:2:3,如果它们的平均数是30,那么乙数是()。

A.10B.15C.30D.457.下列说法正确的是()。

A.画直径是8cm的圆,圆规两脚之间的距离是8cm。

B.圆有无数条半径,它们的半径就是圆的对称轴。

C.在比例尺中,实际距离都大于图上距离。

D.玩掷硬币游戏,如果掷10次,可能有5次是“正面向上”。

8.在13个人里面,()有在同一个月份出生的。

A.一定B.可能C.不可能D.无法确定二、填空题9.在一个条形统计图中,如果用1厘米长的直条表示40人,那么应该用( )厘米长的直条表示120人。

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题含参考答案一、单选题1.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为()A.92分B.92.4分C.90分D.94分2.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()A.14,15B.14,14C.15,13D.15,153.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()A.甲B.乙C.丙D.丁4.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.14B.12C.13D.345.下列数据是2019年3月一天某时公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A.162和155B.169和155C .155和162D .102和1556.下列调查中,适合采用全面调查方式的是( ) A .对横锦水库水质情况的调查B .新冠疫情期间,对某高危县市居民的体温进行调查C .某厂生产出的口罩进行质量合格率的调查D .春节期间对某类烟花爆竹燃放安全情况的调查 7.以下调查中,适宜全面调查是( ) A .调查某种灯泡的使用寿命 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率D .调查我市居民日平均用水量8.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是( ) A .1B .2C .3D .49.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出红球的概率是( )A .14B .13C .12D .3410.七个人并成一排照相,如果a 表示甲、乙两人相邻的可能性,b 表示甲、乙两人不相邻的可能性,则( ) A .a b >B .a b <C .a b =D .无法确定11.8名学生的鞋码(单位:原米)由小到大是21,22,22,22,23,23,24,25,则这组数据的众数和中位数是( ) A .23,22B .23,22.5C .22,22D .22,22.512.以下问题,不适合采用全面调查方式的是(). A .调查全班同学对“商合杭”高铁的了解程度 B .春运期间检查旅客的随身携带物品 C .学校竞选学生会干部,对报名学生面试D .了解全市中小学生对“2019年海军阅兵”的知晓程度13.若一组数据1,1,2,3,x 的平均数是2,则这组数据的众数是( ) A .1B .1和3C .1和2D .314.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是015.下列说法正确的是( )A .为了解一批电池的使用寿命,应采用全面调查的方式B .数据1x ,2x ,...,n x 的平均数是5,方差是0.2,则数据12x +,22x +,...,2n x +的平均数是7,方差是2.2C .通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为20.3s =甲,20.5s =乙,则乙数据较为稳定D .为了解官渡区九年级8000多名学生的视力情况,从中随机选取500名学生的视力情况进行分析,则选取的样本容量为50016.下列结论中:①ABC 的内切圆半径为r ,ABC 的周长为L ,则ABC 的面积是12Lr ;①同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为12;①圆内接平行四边形是矩形;①无论p 取何值,方程()()2320x x p ---=总有两个不等的实数根.其中正确的结论有( ) A .4个B .3个C .2个D .1个17.将50个数据分成3组,第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3B .0.7C .15D .3518.教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x 及方差s 2如表所示:如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是( )A .甲B .乙C .丙D .丁19.有下列调查:①了解地里西瓜的成熟程度;①了解某班学生完成20道素质测评选择题的通过率;①了解一批导弹的杀伤范围;①了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①①B .①①①C .①①①D .①①①20.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( ) A .12B .13C .34D .1二、填空题21.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法 _____(填“合理”或“不合理”).22.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择___________. 23.为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________. (2)了解全班同学周末时间是如何安排的________. (3)了解我国八年级学生的视力情况________. (4)了解中央电视台春节联欢晚会的收视率________. (5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.24.我市11月份30天的最高气温变化情况如图所示,将1日-15日气温的方差记为21S ,15日-30日气温的方差记为22S .观察统计图,比较21S ,22S 的大小:21S ______22S (填“>、=、<”)25.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________元.26.某校为了解学生课外阅读情况,随机调查了50名学生,得到某一天各自课外阅读所用时间,结果如图.根据条形图估计这一天该校学生平均课外阅读时间为______小时.27.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S2=0.04,成绩比较稳定的是__(填“甲”或“乙”).乙28.某社区开展“节约每一滴水”活动,为了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表①请你估计这1000个家庭一个月节约用水的总量大约是________m3.29.某射击运动员在同一条件下的射击结果如下表:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率是______(结果保留小数点后两位).30.一组数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是___________.31.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为___________.32.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;①乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);①甲班成绩的波动比乙班大,则正确结论的序号是____.33.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________ 34.一组数据为5,7,3,x,6,4. 若这组数据的众数是5,则该组数据的平均数是______.35.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.36.数据-5,3,4,0,1,8,2的极差为_______.37.从1-,23-,0,23,1这五个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为正数的概率是______.38.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.39.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.40.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,①两数在相对位置上的概率是________.三、解答题41.某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校比赛.两个队选出的五名选手的决赛成绩如图所示.(1)根据图示,填写下表:(2)结合两个队的成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较稳定.42.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?43.某市在,,,,A B C D E五处客流中心存放共享单车,并陆续投放至城区.在D处客流中心存放了甲、乙、丙三种型号的单车,其中甲型号单车500辆.根据单车存放数量绘制了如图1的条形统计图和图2的扇形统计图.图1图2(1)补全条形统计图1,该市在五处客流中心存放共享单车共______辆,这五处客流中心单车存放量的中位数是________千辆;(2)在客流中心D处有_________辆乙型号单车;(3)张华和姐姐准备一起从所住小区每人骑一辆单车去书店.小区门口停放着甲型单车两辆,乙型和丙型单车各一辆,张华认为自己随机选中乙型单车,同时姐姐选中甲型单车的概率是13.张华的说法是否正确?请通过列树状图的方法说明理由.44.为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出),根据以上提供的信息,解答下列问题:(1)本次调查共抽取了名学生?(2)①请补全条形统计图;①扇形统计图中表示“及格”的扇形的圆心角度数为°(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?45.小明和小聪最近5次数学测验的成绩如下:小聪:76,84,80,87,73;小明:78,82,79,80,81.哪位同学的数学成绩比较稳定?46.在一个不透明的口袋中装有4个红球,3个白球,2个黄球,每个球除颜色外都相同.(1)请判断下列事件是不确定事件、不可能事件还是必然事件,填写在横线上.①从口袋中任意摸出1个球是白球;①从口袋中任意摸出4个球全是白球;①从口袋中任意摸出1个球是红球或黄球;①从口袋中任意摸出8个球,红、白、黄三种颜色的球都有;(2)请求出(1)中不确定事件的概率.47.佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.48.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答年新型冠状病毒防治全国统一考试全国卷试卷满分100分,社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,根据他们的成绩数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题: .a,b=,c=;(1)统计表中的=(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?49.在学校组织的迎接建党100周年知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相等级的得分依次记为100分,90分,80分,70分.学校将九年级一班和二班的成绩整理并绘制成统计图.(1)根据统计图,求出在此次竞赛中二班成绩为C的人数.(2)①请完成下面的表格:①结合以上统计量,请你从不同角度分析两个班级的成绩.50.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.参考答案:1.B【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.2.D【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:这组数据中出现次数最多的是15,所以这组数据的众数是15,这组数据中第12个数据是15,所以这组数据的中位数是15,故选:D.【点睛】本题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.3.D【分析】根据方差的意义进行判断即可.【详解】解:由题意知:丁的方差最小,所以丁的成绩最稳定,应选择的选手是丁,故D 正确.故选:D.【点睛】本题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【详解】解:估计摸白色乒乓球的概率为901 3604,故选A.【点睛】此题考查利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率.5.A【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.【详解】解:由图可得出这组数据中155出现的次数最多,因此,这组数据的众数是155;把这一组数据按从小到大的数序排列,在中间的两个数字是155、169,因此,这组数据的中位数是1691551622+=.故选:A.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.6.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查某种灯泡的使用寿命,适宜抽样调查,故本选项不符合题意;B、调查某班学生的身高情况,适宜全面调查,故本选项符合题意;C、调查春节联欢晚会的收视率,适宜抽样调查,故本选项不符合题意;D、调查我市居民日平均用水量,适宜抽样调查,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【分析】用球的总个数乘以摸到白球的频率即可.【详解】解:估计箱子里白色小球的个数是4(10.75)⨯-=1(个),故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.C【分析】由袋子中装有2个红球,1个黄球,1个黑球,随机从袋子中摸出1个球,这个球是黄球的情况有1种,根据概率公式即可求得答案.【详解】解:①袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,①摸到这个球是红球的概率是1÷2=12.故选:C.【点睛】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.B【分析】可分析特定情况下a,b的值,比较即可.【详解】若甲站在一排最左边的位置,那么第二个位置可有6个人选择,是乙的只有1种,故a<b.故选B.【点睛】易错点是得到特定情况下两人相邻的情况数和不相邻的情况数.11.D【分析】根据中位数和众数的概念求解即可.【详解】解:数据按从小到大的顺序排列为21,22,22,22,23,23,24,25,所以中位数是22232=22.5;数据22出现了3次,出现次数最多,所以众数是22.故选:D.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.D【分析】根据全面调查和抽样调查的特点对每个选项进行判断即可.【详解】A、调查全班同学对“商合杭”高铁的了解程度,适合采用全面调查,故A项错误;B、春运期间检查旅客的随身携带物品,适合采用全面调查,故B项错误;C、学校竞选学生会干部,对报名学生面试,适合采用全面调查,故C项错误;D、了解全市中小学生对“2019年海军阅兵”的知晓程度,不适合采用全面调查,故D项正确;故选:D.【点睛】本题考查了全面调查和抽样调查的区别,掌握这两种调查方式的特点是解题关键.13.B【分析】先根据算术平均数的定义列出关于x的方程,解之求出x的值,从而还原这组数据,再利用众数的概念求解可得.【详解】解:①数据1,1,2,3,x的平均数是2,①1+1+2+3+x=5×2,解得x=3,则这组数据为1,1,2,3,3,①这组数据的众数为1和3,故选:B .【点睛】本题主要考查众数和算术平均数的求法,解题的关键是掌握算术平均数和众数的概念.14.B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B 、众数是15.3%,正确;C 、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误; D 、①5个数据不完全相同,①方差不可能为零,故此选项错误.故选B .点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.15.D【分析】根据普查与抽样调查的区别判断A ,根据平均数的计算方法和方差的计算方法可得出B ,根据方差的意义可得出C ,最后根据样本容量的含义进行分析即可.【详解】为了解一批电池的使用寿命,应采用抽样调查,故A 错误; 由题可得125n x x x n+++=可得,125n x x x n +++=, 所以12+25+27n x x x n n n n n +++==; 因为()()()22212-5-5-50.2n x x x n+++=, 所以()()()22212+2-7+2-7+2-7n x x x n+++,()()()22212-5-5-5=0.2n x x x n +++=.故B 错误;根据方差的意义可知,方差越小越稳定,故C错误;题目中的500确实是样本容量,故D正确;故答案选D.【点睛】本题主要考查了平均数和方差的求解,准确的理解方差意义及样本容量的意义是解题的关键.16.B【分析】①如图1,连接圆心和切点,则可得到垂直关系,此时将图形分割成三个三角形,求三个三角形的面积和即为ABC的面积;①用列举法求此种情况的概率即可;①如图3,根据矩形的判定性质:对角线相等,且互相平分的四边形是矩形,判断其是否为矩形;①根据一元二次方程根的判别式性质判断该方程有几个实数根.【详解】①如图1,连接OE,OD,OF;OA,OB,OC;则OE①AB,OF①AC,OD①BC;①S△ABC=12AB·OE+12BC·OD+12AC·OF①OE=OF=OD=r,AB+BC+AC=l,①S△ABC=12AB·r+12BC·r+12AC·r=2r(AB+BC+AC)=12Lr,①①正确.①列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反,①满足硬币全部正面向上的概率=14,①①错误.①如图3,①平行四边形ABCD为圆内接平行四边形,①OA=OB=OC=OD,且圆心O是对角线的交点,①BD=2OB=2OC=AC ,①平行四边形ABCD 是矩形,①①正确.①①()()2320x x p ---=,即x 2-5x +6-p 2=0,①△=b 2﹣4ac =(-5)2-4(6-p 2),①△=25-24+4 p 2>0,①无论p 取何值,该方程总有两个不相等的实数根,①①正确,故选:B .【点睛】①本小问考查了三角形内切圆的性质,三角形的面积公式,解答本小问的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和;①本小问考查了用列举法求概率,解答本题的关键是列举出所能产生的全部结果,然后再找出题目所要求的结果数量除以全部结果的数量;①本小问考查了圆的性质,矩形的判定,熟练掌握并运用对角线互相平分且相等的四边形是矩形是解题的关键;①本小问考查了一元二次方程根的判别式,熟练掌握并运用一元二次方程根的判别式是解题的关键(①>0时,有两个不同的实数根;①=0时,有两个相等的实数根;①<0时,无实数根).17.C【分析】根据频率的性质,即各组的频率和是1,求得第二组的频率;再根据频率=频数÷总数,进行计算【详解】根据频率的性质,得第二小组的频率是0.3,则第二小组的频数是50×0.3=15.故选C .【点睛】本题考查频率、频数的关系:频率=数据数据总数.注意:各组的频率和是1.18.C【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:①乙、丙的平均数比甲、丁大,①应从乙和丙中选,①丙的方差比乙的小,①丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;①了解某班学生完成20道素质测评选择题的通过率,适合普查;①了解一批导弹的杀伤范围,不适合普查而适合抽样调查;①了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.20.C【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计与概率专题
1如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.
(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?
2某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为,并把条形统计图补充完整;
(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
3某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
4某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:(1)求图中的x的值;
(2)求最喜欢乒乓球运动的学生人数;
(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
5 “五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:
(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).
(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?
(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?
6为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共查了名学生:
(2)请补全两幅统计图:
(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.
7今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
(1)本次参与调查的学生共有人,m=,n=;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;
(3)请补全图1示数的条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
8,6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).
(1)补全条形统计图.
(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
9为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
10,为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.
(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;
(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.。

相关文档
最新文档