2015年高考理科数学押题密卷(全国新课标II卷)
2015年高考全国新课标卷Ⅱ理科数学真题含答案解析(超完美版)
2015年高考全国新课标卷Ⅱ理科数学真题(青海;西藏;甘肃;贵州;内蒙古;新疆;宁夏;吉林;黑龙江;云南;辽宁;广西;海南)一、选择题1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则AB=( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}2.若a 为实数,且(2+ai )(a-2i )= - 4i ,则a=( )A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .845.设函数f (x )=f (x )={1+log 2,(2−x ),x <12x−1,x ≥1则f (-2)+f (log 212)=( )A .3B .6C .9D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .157.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则IMNI=( )A .2√6B .8C .4√6D .108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a , b 分别为14 ,18,则输出的a=( )A .0B .2C .4D .149.已知A,B 是球O 的球面上两点,∠AOB=90o ,C 为该球上的动点,若三棱锥O-ABC 的体积最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=,将动点P 到,A B 两点距离之和表示为x 的函数,则()y f x =的图像大致为( )A .B .C .D .11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D 12.设函数f ’(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,x f ’(x)- f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(−∞,-1)∪(0,1)B .(−1,0)∪(1,+∞)C .(−∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)二、填空题13.设向量a,b 不平行,向量λ a+b 与a+2b 平行,则实数 λ =14.若x ,y 满足约束条件,则z=x+y 的最大值为 15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a=16.设S n 是数列{a n }的前n 项和,且1111,n n n a a s s ++=-=,则S n =三、解答题17.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍(I )求Csin B sin ∠∠ (II )若AD=1,DC=22,求BD 和AC 的长18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果互相独立。
2015高考数学真题精准预测密卷 理科(含答案)
2015 高考数学真题精准预测密卷 (理科)
(考试时间 120 分钟 满分 150 分) 本试卷分为选择题(共 40 分)和非选择题(共 110 分)两部分
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号 填写在答题卡上. 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如 需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内 相应位置上; 如需改动, 先划掉原来的答案, 然后再写上新的答案; 不准使用铅笔和涂改液. 不 按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
①曲线 C 关于原点对称; ③曲线 C 围成的面积大于 上述命题中, 真命题的序号为 A.①②③
②曲线 C 关于直线 y x 对称 ④曲线 C 围成的面积小于 ( C.①④ D.①③ )
B.①②④
18、若直线 y kx 1 与曲线 y x ( ).
1 1 x 有四个不同交点,则实数 k 的取值范围是 x x
c
.
0 x , 2sin x, 7、若 f x 2 则方程 f x 1 的所有解之和等于 x 0, x ,
.
8 、 若 数 列
lim a1 a2 an n2
an
为 等 差 数 列 , 且 .
a1 1, a2 a3 a4 21
, 则
n
9、 设 等 比 数 列 an 的 公 比 为 q , 前 n 项 和 为 Sn , 若 Sn 1 , Sn , Sn 2 成 等 差 数 列 , 则
2015年新课标2高考数学试题及答案(理科)【解析版】
2015年全国统一高考数学试卷(理科)(新课标II)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}考点:交集及其运算.专题:集合.分析:解一元二次不等式,求出集合B,然后进行交集的运算即可.解析:解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.评析:考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0C.1D.2考点:复数相等的充要条件.专题:数系的扩充和复数.分析:首先将坐标展开,然后利用复数相等解之.解析:解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.评析:本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关考点:频率分布直方图.专题:概率与统计.分析:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.解析:解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D评析:本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.解析:解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B评析:本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12考点:函数的值.专题:计算题;函数的性质及应用.分析:先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.解析:解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.评析:本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.解析:解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.评析:本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10考点:两点间的距离公式.专题:计算题;直线与圆.分析:设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.解析:解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.评析:本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14考点:程序框图.专题:算法和程序框图.分析:由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.解析:解:由a=14,b=18,a>b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.评析:本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.解析:解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB ===36,故R=6,则球O的表面积为4πR2=144π,故选C.评析:本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据函数图象关系,利用排除法进行求解即可.解析:解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.评析:本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.解析:解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.评析:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)考点:函数的单调性与导数的关系.专题:创新题型;函数的性质及应用;导数的综合应用.分析:由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.解析:解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.评析:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.考点:平行向量与共线向量.专题:平面向量及应用.分析:利用向量平行即共线的条件,得到向量λ+与+2之间的关系,利用向量相等解析.解析:解:因为向量,不平行,向量λ+与+2平行,所以λ+=μ(+2),所以,解得;故答案为:.评析:本题考查了向量关系的充要条件:如果两个非0向量共线,那么存在唯一的参数λ,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.解析:解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.评析:本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.考点:二项式定理的应用.专题:计算题;二项式定理.分析:给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.解析:解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.评析:本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.考点:数列递推式.专题:创新题型;等差数列与等比数列.分析:通过an+1=S n+1﹣S n=S n S n+1,并变形可得数列{}是以首项和公差均为﹣1的等差数列,进而可得结论.解析:解:∵a n+1=S n S n+1,∴a n+1=S n+1﹣S n=S n S n+1,∴=﹣=1,即﹣=﹣1,又a1=﹣1,即==﹣1,∴数列{}是以首项和公差均为﹣1的等差数列,∴=﹣1﹣1(n﹣1)=﹣n,∴S n=﹣,故答案为:﹣.评析:本题考查求数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解析题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.解析:解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.评析:本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.考点:古典概型及其概率计算公式;茎叶图.专题:概率与统计.分析:(Ⅰ)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(Ⅱ)根据概率的互斥和对立,以及概率的运算公式,计算即可.解析:解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(Ⅱ)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.评析:本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.考点:直线与平面所成的角.专题:空间角;空间向量及应用.分析:(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.解析:解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.评析:考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.考点:直线与圆锥曲线的综合问题;直线的斜率.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.解析:解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=因此x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.评析:本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:创新题型;导数的概念及应用.分析:(1)利用f'(x)≥0说明函数为增函数,利用f'(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.解析:解:(1)证明:f'(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f'(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f'(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f'(x)<0;当x∈(0,+∞)时,emx ﹣1<0,f'(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f (x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g'(t)=e t﹣1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e﹣m+m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]评析:本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.考点:相似三角形的判定.专题:开放型;空间位置关系与距离.分析:(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.解析:(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.评析: 本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:23cos ρθ=。
2015年全国统一高考数学试卷(理科)(新课标II)
2015年全国统一高考数学试卷(理科)(新课标II)一、选择题(共12小题,每小题5分,满分60分)1. 已知集合A={−2, −1, 0, 1, 2},B={x|(x−1)(x+2)<0},则A∩B=()A.{−1, 0}B.{0, 1}C.{−1, 0, 1}D.{0, 1, 2}2. 若a为实数,且(2+ai)(a−2i)=−4i,则a=()A.−1B.0C.1D.23. 根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4. 已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845. 设函数f(x)={1+log2(2−x),x<12x−1,x≥1,则f(−2)+f(log212)=()A.3B.6C.9D.126. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.157. 过三点A(1,3),B(4,2),C(1,−7)的圆交y轴于M,N两点,则|MN|=()A.2√6B.8C.4√6D.108. 程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10. 如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A. B.C.D.11. 已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120∘,则E 的离心率为( ) A.√5 B.2 C.√3 D.√212. 设函数f′(x)是奇函数f(x)(x ∈R )的导函数,f(−1)=0,当x >0时,xf′(x)−f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A.(−∞, −1)∪(0, 1) B.(−1, 0)∪(1, +∞) C.(−∞, −1)∪(−1, 0) D.(0, 1)∪(1, +∞)二、填空题(共4小题,每小题5分,满分20分)13. 设向量a →,b →不平行,向量λa →+b →与a →+2b →平行,则实数λ=________.14. 若x ,y 满足约束条件{x −y +1≥0x −2y ≤0x +2y −2≤0 ,则z =x +y 的最大值为________.15. 若(a +x)(1+x)4的展开式中x 的奇数次幂的系数之和为32,则a =________.16. 设S n 是数列{a n }的前n 项和,且a 1=−1,a n+1=S n S n+1,则S n =________. 三、解答题(共5小题,满分60分)17. 在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠Bsin ∠C ;(2)若AD =1,DC =√22,求BD 和AC 的长.18. 某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19. 如图,长方体ABCD −A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.20. 已知椭圆C:9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(m3, m),延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.21. 设函数f(x)=e mx +x 2−mx .(1)证明:f(x)在(−∞, 0)单调递减,在(0, +∞)单调递增;(2)若对于任意x 1,x 2∈[−1, 1],都有|f(x 1)−f(x 2)|≤e −1,求m 的取值范围. 四、选做题.选修4-1:几何证明选讲22. 如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点.(1)证明:EF // BC ;(2)若AG 等于⊙O 的半径,且AE =MN =2√3,求四边形EBCF 的面积. 选修4-4:坐标系与参数方程23. 在直角坐标系xOy 中,曲线C 1:{x =t cos αy =t sin α (t 为参数,t ≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2√3cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值. 选修4-5:不等式选讲24. 设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a −b|<|c −d|的充要条件.参考答案与试题解析2015年全国统一高考数学试卷(理科)(新课标II)一、选择题(共12小题,每小题5分,满分60分)1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:∵B={x|−2<x<1},A={−2, −1, 0, 1, 2},∴A∩B={−1, 0}.故选A.2.【答案】B【考点】复数的运算复数的基本概念虚数单位i及其性质【解析】首先将坐标展开,然后利用复数相等解之.【解答】因为(2+ai)(a−2i)=−4i,所以4a+(a2−4)i=−4i,4a=0,并且a2−4=−4,所以a=0;3.【答案】D【考点】频率分布直方图【解析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004−2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.4.【答案】B【考点】等比数列的通项公式【解析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴a1(1+q2+q4)=21,∴q4+q2+1=7,∴q4+q2−6=0,∴q2=2,∴a3+a5+a7=a1(q2+q4+q6)=3×(2+4+8)=42.故选B.5.【答案】C【考点】分段函数的应用函数的求值【解析】先求f(−2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)={1+log2(2−x),x<12x−1,x≥1,即有f(−2)=1+log2(2+2)=1+2=3,f(log212)=2log212−1=12×12=6,则有f(−2)+f(log212)=3+6=9.故选C.6.【答案】D【考点】由三视图求体积【解析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为13×12×1×1×1=16,∴剩余部分体积为1−16=56,∴截去部分体积与剩余部分体积的比值为15.7.【答案】C【考点】圆的一般方程两点间的距离公式斜率的计算公式【解析】本题考查圆的方程.【解答】解:∵k AB⋅k BC=3−21−4×2+74−1=−1,∴三角形ABC为直角三角形且∠B=90∘,∴三角形外接圆的圆心为斜边AC的中点(1,−2),圆的半径为12|AC|=5,∴圆的方程为(x−1)2+(y+2)2=25.令x=0,得y2+4y−20=0,记M,N的坐标为(0,y1),(0,y2),则|MN|=|y1−y2|=√(y1+y2)2−4y1y2=√(−4)2−4×(−20)=4√6.故选C.8.【答案】B【考点】程序框图【解析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】由a=14,b=18,a<b,则b变为18−14=4,由a>b,则a变为14−4=10,由a>b,则a变为10−4=6,由a>b,则a变为6−4=2,由a<b,则b变为4−2=2,由a=b=2,则输出的a=(2)9.【答案】C【考点】球的体积和表面积柱体、锥体、台体的体积计算【解析】当点C位于垂直于面AOB的直径端点时,三棱锥O−ABC的体积最大,利用三棱锥O−ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O−ABC的体积最大,设球O的半径为R,此时V O−ABC=V C−AOB=13×12×R2×R=16R3=36,故R=6,则球O的表面积为4πR2=144π.故选C.10.【答案】B【考点】正切函数的图象【解析】根据函数图象关系,利用排除法进行求解即可.【解答】当0≤x≤π4时,BP=tan x,AP=√AB2+BP2=√4+tan2x,此时f(x)=√4+tan2x+tan x,0≤x≤π4,此时单调递增,当P在CD边上运动时,π4≤x≤3π4且x≠π2时,如图所示,tan∠POB=tan(π−∠POQ)=tan x=−tan∠POQ=−PQOQ=−1OQ,∴OQ=−1tan x,∴PD=AO−OQ=1+1tan x,PC=BO+OQ=1−1tan x,∴PA+PB=√(1−1tan x )2+1+√(1+1tan x)2+1,当x=π2时,PA+PB=2√2,当P在AD边上运动时,3π4≤x≤π,PA+PB=√4+tan2x−tan x,由对称性可知函数f(x)关于x=π2对称,且f(π4)>f(π2),且轨迹为非线型,排除A,C,D,11.【答案】D【考点】双曲线的特性【解析】本题考查双曲线的几何性质.【解答】解:设双曲线方程为x 2a2−y2b2=1(a>0,b>0),据题意不妨设点M位于双曲线的右支上,于是∠ABM=120∘,|AB|=|BM|=2a,所以∠MBx=60∘,可得点M的坐标为(2a,±√3a),代入双曲线方程有4a 2a2−3a2b2=1,得a2=b2,所以e=ca =√a2+b2a2=√2.故选D.12.【答案】A【考点】利用导数研究函数的单调性函数奇偶性的判断函数的单调性及单调区间【解析】由已知当x>0时总有xf′(x)−f(x)<0成立,可判断函数g(x)=f(x)x为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(−∞, 0)∪(0, +∞)上的偶函数,根据函数g(x)在(0, +∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x⋅g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=f(x)x,则g(x)的导数为:g′(x)=xf′(x)−f(x)x2,∵当x>0时总有xf′(x)−f(x)<0,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=f(x)x为减函数,又∵g(−x)=f(−x)−x=−f(x)−x=f(x)x=g(x),∴函数g(x)为定义域上的偶函数.又∵g(−1)=f(−1)−1=0,∴当x∈(0,1)时,g(x)=f(x)x>0,则f(x)>0;当x∈(1,+∞)时,g(x)=f(x)x<0,则f(x)<0;又∵g(x)为定义域上的偶函数,∴当x∈(−1,0)时,g(x)=f(x)x>0,则f(x)<0;当x∈(−∞,−1)时,g(x)=f(x)x<0,则f(x)>0;综上所述,f(x)>0的取值范围是(−∞, −1)∪(0, 1).故选A.二、填空题(共4小题,每小题5分,满分20分)13.【答案】12【考点】平行向量的性质【解析】利用向量平行即共线的条件,得到向量λa→+b→与a→+2b→之间的关系,利用向量相等解答.【解答】解:因为向量a→,b→不平行,向量λa→+b→与a→+2b→平行,所以λa→+b→=μ(a→+2b→),所以{λ=μ1=2μ,解得λ=μ=12.故答案为:12.14.【答案】32【考点】简单线性规划 【解析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值. 【解答】不等式组表示的平面区域如图阴影部分,当直线经过D 点时,z 最大, 由{x −2y =0x +2y −2=0 得D(1, 12), 所以z =x +y 的最大值为1+12=32;15.【答案】 3【考点】二项式定理及相关概念 【解析】 此题暂无解析 【解答】解析 设(a +x)(1+x)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =−1,得0=a 0−a 1+a 2−a 3+a 4−a 5,②两式相减,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数和为a 1+a 3+a 5=8(a +1), 所以8(a +1)=32,解得a =3. 16. 【答案】 −1n【考点】 数列递推式 【解析】通过a n+1=S n+1−S n =S n S n+1,并变形可得数列{1S n }是以首项和公差均为−1的等差数列,进而可得结论.【解答】解:∵ a n+1=S n S n+1,∴ a n+1=S n+1−S n =S n S n+1,∴ S n+1−S nS n+1Sn=1S n−1Sn+1=1,即1S n+1−1S n=−1,又a 1=−1,即1S 1=1a 1=−1,∴ 数列{1S n}是以首项和公差均为−1的等差数列,∴ 1S n=−1−1(n −1)=−n ,∴ S n =−1n , 故答案为:−1n .三、解答题(共5小题,满分60分) 17.【答案】解:(1)如图,过A 作AE ⊥BC 于E ,∵S △ABD S △ADC=12BD×AE 12DC×AE =2,∴ BD =2DC , ∵ AD 平分∠BAC , ∴ ∠BAD =∠DAC . 在△ABD 中,BD sin ∠BAD=AD sin B,∴ sin B =AD×sin ∠BADBD .在△ADC 中,DCsin ∠DAC =ADsin C , ∴ sin C =AD×sin ∠DACDC ;∴ sin Bsin C =ACAB =12.(2)由(1)知,BD =2DC =2×√22=√2.过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,∵ AD 平分∠BAC , ∴ DM =DN , ∴S △ABD S △ADC=12AB×DM 12AC×DN =2,∴ AB =2AC ,令AC =x ,则AB =2x , ∵ ∠BAD =∠DAC ,∴ cos ∠BAD =cos ∠DAC , ∴ 由余弦定理可得:(2x)2+12−(√2)22×2x×1=x 2+12−(√22)22×x×1,∴ x =1, ∴ AC =1,∴ BD 的长为√2,AC 的长为1.【考点】 三角形求面积 余弦定理 正弦定理【解析】(1)如图,过A 作AE ⊥BC 于E ,由已知及面积公式可得BD =2DC ,由AD 平分∠BAC 及正弦定理可得sin ∠B =AD×sin ∠BADBD,sin ∠C =AD×sin ∠DACDC,从而得解sin ∠B sin ∠C.(2)由(1)可求BD =√2.过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,由AD 平分∠BAC ,可求AB =2AC ,令AC =x ,则AB =2x ,利用余弦定理即可解得BD 和AC 的长. 【解答】解:(1)如图,过A 作AE ⊥BC 于E ,∵ S △ABDS△ADC=12BD×AE 12DC×AE =2,∴ BD =2DC , ∵ AD 平分∠BAC , ∴ ∠BAD =∠DAC .在△ABD 中,BD sin ∠BAD=AD sin B,∴ sin B =AD×sin ∠BADBD .在△ADC 中,DCsin ∠DAC =ADsin C , ∴ sin C =AD×sin ∠DACDC ;∴ sin Bsin C =ACAB =12.(2)由(1)知,BD =2DC =2×√22=√2.过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,∵ AD 平分∠BAC , ∴ DM =DN , ∴ S △ABDS△ADC=12AB×DM 12AC×DN =2,∴ AB =2AC ,令AC =x ,则AB =2x , ∵ ∠BAD =∠DAC ,∴ cos ∠BAD =cos ∠DAC , ∴ 由余弦定理可得:(2x)2+12−(√2)22×2x×1=x 2+12−(√22)22×x×1,∴ x =1, ∴ AC =1,∴ BD 的长为√2,AC 的长为1. 18.【答案】两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意评分的平均值高于B 地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散;记C A1表示事件“A 地区用户满意度等级为满意或非常满意”, 记C A2表示事件“A 地区用户满意度等级为非常满意”, 记C B1表示事件“B 地区用户满意度等级为不满意”, 记C B2表示事件“B 地区用户满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥, 则C =C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2), 由所给的数据C A1,C A2,C B1,C B2,发生的频率为1620,420,1020,820, 所以P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820, 所以P(C)=1620×1020+820×420=0.48.【考点】 茎叶图 【解析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可; (2)根据概率的互斥和对立,以及概率的运算公式,计算即可. 【解答】两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意评分的平均值高于B 地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散;记C A1表示事件“A 地区用户满意度等级为满意或非常满意”, 记C A2表示事件“A 地区用户满意度等级为非常满意”, 记C B1表示事件“B 地区用户满意度等级为不满意”,记C B2表示事件“B 地区用户满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥, 则C =C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2), 由所给的数据C A1,C A2,C B1,C B2,发生的频率为1620,420,1020,820, 所以P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,所以P(C)=1620×1020+820×420=0.48. 19.【答案】解:(1)线围成的正方形EFGH 如图:(2)作EM ⊥AB ,垂足为M ,则:EH =EF =BC =10,EM =AA 1=8;∴ MH =√EH 2−EM 2=6,∴ AH =10;以边DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: A(10, 0, 0),H(10, 10, 0),E(10, 4, 8),F(0, 4, 8); ∴ EF →=(−10,0,0),EH →=(0,6,−8); 设n →=(x,y,z)为平面EFGH 的法向量,则:{n →⋅EH →=6y −8z =0n →⋅EF →=−10x =0,取z =3,则n →=(0,4,3);若设直线AF 和平面EFGH 所成的角为θ,则:sin θ=|cos <AF →,n →>|=√180⋅5=4√515; ∴ 直线AF 与平面α所成角的正弦值为4√515. 【考点】用空间向量求直线与平面的夹角直线与平面所成的角【解析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA ,DC ,DD 1为x ,y ,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A ,H ,E ,F 几点的坐标.设平面EFGH 的法向量为n →=(x,y,z),根据{n →⋅EF →=0˙即可求出法向量n →,AF →坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sin θ=|cos <n →,AF →>|即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)线围成的正方形EFGH 如图:(2)作EM ⊥AB ,垂足为M ,则:EH =EF =BC =10,EM =AA 1=8;∴ MH =√EH 2−EM 2=6,∴ AH =10;以边DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: A(10, 0, 0),H(10, 10, 0),E(10, 4, 8),F(0, 4, 8); ∴ EF →=(−10,0,0),EH →=(0,6,−8);设n →=(x,y,z)为平面EFGH 的法向量,则:{n →⋅EH →=6y −8z =0n →⋅EF →=−10x =0,取z =3,则n →=(0,4,3);若设直线AF 和平面EFGH 所成的角为θ,则: sin θ=|cos <AF →,n →>|=√180⋅5=4√515; ∴ 直线AF 与平面α所成角的正弦值为4√515. 20. 【答案】设直线l:y =kx +b ,(k ≠0, b ≠0),A(x 1, y 1),B(x 2, y 2),M(x M , y M ),将y =kx +b 代入9x 2+y 2=m 2(m >0),得(k 2+9)x 2+2kbx +b 2−m 2=0, 则判别式△=4k 2b 2−4(k 2+9)(b 2−m 2)>0, 则x 1+x 2=−2kb 9+k 2,则x M =x 1+x 22=−kb 9+k 2,y M =kx M +b =9b 9+k 2,于是直线OM 的斜率k OM =yM x M=−9k ,即k OM ⋅k =−9,∴ 直线OM 的斜率与l 的斜率的乘积为定值. 四边形OAPB 能为平行四边形. ∵ 直线l 过点(m3, m),∴ 由判别式△=4k 2b 2−4(k 2+9)(b 2−m 2)>0, 即k 2m 2>9b 2−9m 2, ∵ b =m −k3m ,∴ k 2m 2>9(m −k3m)2−9m 2,即k 2>k 2−6k , 即6k >0, 则k >0,∴ l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3, 由(1)知OM 的方程为y =−9k x ,设P 的横坐标为x P ,由{y =−9kx9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2,将点(m 3, m)的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9kx ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k 2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵ k i >0,k i ≠3,i =1,2,∴ 当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形. 【考点】直线的斜率直线与椭圆结合的最值问题【解析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】设直线l:y=kx+b,(k≠0, b≠0),A(x1, y1),B(x2, y2),M(x M, y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2−m2=0,则判别式△=4k2b2−4(k2+9)(b2−m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM⋅k=−9,∴直线OM的斜率与l的斜率的乘积为定值.四边形OAPB能为平行四边形.∵直线l过点(m3, m),∴由判别式△=4k2b2−4(k2+9)(b2−m2)>0,即k2m2>9b2−9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2−9m2,即k2>k2−6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=−9kx,设P的横坐标为x P,由{y=−9kx9x2+y2=m2得x P2=k2m29k2+81,即x P=3√9+k2,将点(m3, m)的坐标代入l的方程得b=m(3−k)3,即l的方程为y=kx+m(3−k)3,将y=−9k x,代入y=kx+m(3−k)3,得kx+m(3−k)3=−9kx解得x M=k(k−3)m3(9+k),四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是2=2×k(k−3)m3(9+k2),解得k1=4−√7或k2=4+√7,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4−√7或4+√7时,四边形OAPB能为平行四边形.21.【答案】(1)证明:f′(x)=m(e mx−1)+2x.①若m≥0,则当x∈(−∞, 0)时,e mx−1≤0,f′(x)<0;当x∈(0, +∞)时,e mx−1≥0,f′(x)>0.②若m<0,则当x∈(−∞, 0)时,e mx−1>0,f′(x)<0;当x∈(0, +∞)时,e mx−1<0,f′(x)>0.所以,f(x)在(−∞, 0)时单调递减,在(0, +∞)单调递增.(2)由(1)知,对任意的m,f(x)在[−1, 0]单调递减,在[0, 1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[−1, 1],|f(x1)−f(x2)|≤e−1的充要条件是{f(1)−f(0)≤e−1f(−1)−f(0)≤e−1,即{e m−m≤e−1e−m+m≤e−1①,设函数g(t)=e t−t−e+1,则g′(t)=e t−1.当t<0时,g′(t)<0;当t>0时,g′(t)>0,故g(t)在(−∞, 0)单调递减,在(0, +∞)单调递增.又g(1)=0,g(−1)=e−1+2−e<0,故当t∈[−1, 1]时,g(t)≤0,当m∈[−1, 1]时,g(m)≤0,g(−m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m−m>e−1.当m<−1时,g(−m)>0,即e−m+m>e−1.综上,m的取值范围是[−1, 1].【考点】利用导数研究函数的最值利用导数研究不等式恒成立问题利用导数研究函数的单调性【解析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[−1, 0]单调递减,在[0, 1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】(1)证明:f′(x)=m(e mx−1)+2x.①若m≥0,则当x∈(−∞, 0)时,e mx−1≤0,f′(x)<0;当x∈(0, +∞)时,e mx−1≥0,f′(x)>0.②若m<0,则当x∈(−∞, 0)时,e mx−1>0,f′(x)<0;当x∈(0, +∞)时,e mx−1<0,f′(x)>0.所以,f(x)在(−∞, 0)时单调递减,在(0, +∞)单调递增.(2)由(1)知,对任意的m,f(x)在[−1, 0]单调递减,在[0, 1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[−1, 1],|f(x1)−f(x2)|≤e−1的充要条件是{f(1)−f(0)≤e−1f(−1)−f(0)≤e−1,即{e m−m≤e−1e−m+m≤e−1①,设函数g(t)=e t−t−e+1,则g′(t)=e t−1.当t<0时,g′(t)<0;当t>0时,g′(t)>0,故g(t)在(−∞, 0)单调递减,在(0, +∞)单调递增.又g(1)=0,g(−1)=e−1+2−e<0,故当t∈[−1, 1]时,g(t)≤0,当m∈[−1, 1]时,g(m)≤0,g(−m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m−m>e−1.当m<−1时,g(−m)>0,即e−m+m>e−1.综上,m的取值范围是[−1, 1].四、选做题.选修4-1:几何证明选讲22.【答案】证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF // BC;由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30∘,∴△ABC与△AEF都是等边三角形,∵AE=2√3,∴AO=4,OE=2,∵OM=OE=2,DM=12MN=√3,∴OD=1,∴AD=5,AB=10√33,∴四边形EBCF的面积为12×(10√33)2×√32−12×(2√3)2×√32=16√33.【考点】相似三角形的判定【解析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC−S△AEF计算即可.【解答】证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF // BC;由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30∘,∴△ABC与△AEF都是等边三角形,∵AE=2√3,∴AO=4,OE=2,∵OM=OE=2,DM=12MN=√3,∴OD=1,∴AD=5,AB=10√33,∴四边形EBCF的面积为12×(10√33)2×√32−12×(2√3)2×√32=16√33.选修4-4:坐标系与参数方程23.【答案】曲线C1:{x=t cosαy=t sinα(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠π2;α=π2时,为x= 0(y≠0).其极坐标方程为:θ=α(ρ∈R, ρ≠0),∵A,B都在C1上,∴A(2sinα, α),B(2√3cosα,α).∴|AB|=|2sinα−2√3cosα|=4|sin(α−π3)|,当α=5π6时,|AB|取得最大值4.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】(I )由曲线C 2:ρ=2sin θ,化为ρ2=2ρsin θ,把{ρ2=x 2+y 2y =ρsin θ 代入可得直角坐标方程.同理由C 3:ρ=2√3cos θ.可得直角坐标方程,联立解出可得C 2与C 3交点的直角坐标.(2)由曲线C 1的参数方程,消去参数t ,化为普通方程:y =x tan α,其中0≤α≤π,α≠π2;α=π2时,为x =0(y ≠0).其极坐标方程为:θ=α(ρ∈R, ρ≠0),利用|AB|=|2sin α−2√3cos α|即可得出. 【解答】曲线C 1:{x =t cos αy =t sin α (t 为参数,t ≠0),化为普通方程:y =x tan α,其中0≤α≤π,α≠π2;α=π2时,为x =0(y ≠0).其极坐标方程为:θ=α(ρ∈R, ρ≠0), ∵ A ,B 都在C 1上,∴ A(2sin α, α),B(2√3cos α,α).∴ |AB|=|2sin α−2√3cos α|=4|sin (α−π3)|, 当α=5π6时,|AB|取得最大值4.选修4-5:不等式选讲 24.【答案】由于(√a +√b)2=a +b +2√ab , (√c +√d)2=c +d +2√cd ,由a ,b ,c ,d 均为正数,且a +b =c +d ,ab >cd , 则√ab >√cd ,即有(√a +√b)2>(√c +√d)2, 则√a +√b >√c +√d ;①若√a +√b >√c +√d ,则(√a +√b)2>(√c +√d)2, 即为a +b +2√ab >c +d +2√cd , 由a +b =c +d ,则ab >cd , 于是(a −b)2=(a +b)2−4ab , (c −d)2=(c +d)2−4cd ,即有(a −b)2<(c −d)2,即为|a −b|<|c −d|; ②若|a −b|<|c −d|,则(a −b)2<(c −d)2, 即有(a +b)2−4ab <(c +d)2−4cd , 由a +b =c +d ,则ab >cd ,则有(√a +√b)2>(√c +√d)2.综上可得,√a +√b >√c +√d 是|a −b|<|c −d|的充要条件.【考点】 不等式的证明 【解析】(1)运用不等式的性质,结合条件a ,b ,c ,d 均为正数,且a +b =c +d ,ab >cd ,即可得证; (2)从两方面证,①若√a +√b >√c +√d ,证得|a −b|<|c −d|,②若|a −b|<|c −d|,证得√a +√b >√c +√d ,注意运用不等式的性质,即可得证. 【解答】由于(√a +√b)2=a +b +2√ab , (√c +√d)2=c +d +2√cd ,由a ,b ,c ,d 均为正数,且a +b =c +d ,ab >cd , 则√ab >√cd ,即有(√a +√b)2>(√c +√d)2, 则√a +√b >√c +√d ;①若√a +√b >√c +√d ,则(√a +√b)2>(√c +√d)2, 即为a +b +2√ab >c +d +2√cd , 由a +b =c +d ,则ab >cd , 于是(a −b)2=(a +b)2−4ab , (c −d)2=(c +d)2−4cd ,即有(a −b)2<(c −d)2,即为|a −b|<|c −d|; ②若|a −b|<|c −d|,则(a −b)2<(c −d)2, 即有(a +b)2−4ab <(c +d)2−4cd , 由a +b =c +d ,则ab >cd ,则有(√a +√b)2>(√c +√d)2.综上可得,√a +√b >√c +√d 是|a −b|<|c −d|的充要条件.。
2015年高考理科数学押题密卷(全国新课标II卷)
2015年高考理科数学押题密卷(全国新课标II卷)D(A ){x |2≤x ≤3} (B ){x |2≤x<3}(C ){x |2<x ≤3} (D ){x |-1<x <3}(2)1-i (1+i)2+1+i(1-i)2= (A )-1 (B )1 (C )-i (D )i (3)若向量a 、b 满足|a |=|b |=2,a 与b 的夹角为60 ,a ·(a +b )等于(A )4 (B )6 (C )2+ 3 (D )4+2 3(4)等比数列}{na 的前321,2,4,a a a S n n且项和为成等差数列,若a 1=1,则S 4为 (A )7 (B )8 (C )16(D )15(5)空间几何体的三视图如图所示,则该几何体的表面积为正视图侧视图俯视图122(A )8+2 5 (B )6+2 5 (C )8+2 3 (D )6+2 3(6)(x 2- 1 x)6的展开式中的常数项为(A )15 (B )-15 (C )20(D )-20(7)执行右边的程序框图,则输出的S 是(A )5040 (B )4850 (C )2450 (D )2550 (8)已知函数f (x )=⎩⎨⎧x 2+4x +3,x ≤0,3-x ,x >0,则方程f (x )+1=0的实根个数为(A )3 (B )2 (C )1 (D )0(9)若双曲线x 2a 2-y2b2=1(a >0,b >0)一个焦点到一条渐近线的距离等于焦距的 14,则开始 否结束i ≥100? 输出S 是 i =0,S =0 S =S +ii =i +2双曲线的离心率为(A )52 (B )233 (C ) 5(D )32(10)偶函数f (x )的定义域为R ,若f (x +2)为奇函数,且f (1)=1,则f (89)+f (90) 为(A )-2 (B )-1 (C )0(D )1(11)某方便面厂为了促销,制作了3种不同的精美卡片,每袋方便面随机装入一张卡片, 集齐3种卡片可获奖,现购买该方便面5袋,能获奖的概率为(A )3181 (B )3381 (C )4881 (D )5081(12)给出下列命题: ○110.230.51log 32()3<<; ○2函数4()log 2sin f x x x=-有5个零点;○3函数4()612-+-=ln x x f x x 的图像以5(5,)12为对称中心; ○4已知a 、b 、m 、n 、x 、y 均为正数,且a ≠b ,若a 、m 、b 、x 成等差数列,a 、n 、b 、y 成等比数列,则有m > n ,x <y .其中正确命题的个数是(A )1个 (B )2个 (C )3个(D )4个第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)由直线x =1,y =1-x 及曲线y =e x围成的封闭图形的面积为_________. (14)数列{a n }的通项公式a n =n sinn π2+1,前n 项和为S n ,则S 2 015=__________.(15)已知x 、y 满足⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z=ax+y取最大值的点(x,y)有无数个,则a的值等于___________.(16)已知圆O: x2+y2=8,点A(2,0) ,动点M在圆上,则∠OMA的最大值为__________.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分))+2cos2x.已知f(x)=sin(2x-56(Ⅰ)写出f(x)的对称中心的坐标和单增区间;(Ⅱ)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)=0,b+c=2.求a的最小值.(18)(本小题满分12分)某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人. (Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系? (Ⅱ)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X ,求X的分布列和期望E (X ).附:K 2=错误! P (K 2≥k 0) 0.010 0.005 0.001 k 06.6357.879 10.828(19)(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥EACBC 1B 1A 1侧面BB 1C 1C ,BC =2 ,AB =BB 1=2,∠BCC 1= π4,点E 在棱BB 1上. (Ⅰ)求证:C 1B ⊥平面ABC ;(Ⅱ)若BE =λBB 1,试确定λ的值,使得二面角A -C 1E -C 的余弦值为55.(20)(本小题满分12分)设抛物线y 2=4m x (m >0)的准线与x 轴交于F 1,焦点为F 2;以F 1 、F 2为焦点,离心率e = 12的椭圆与抛物线的一个交点为226(3E ;自F 1引直线交抛物线于P 、Q 两个不同的点,点P 关于x轴的对称点记为M ,设11F P F Q λ=.(Ⅰ)求抛物线的方程和椭圆的方程;(Ⅱ)若1[,1)2λ∈,求|PQ |的取值范围. (21)(本小题满分12分)已知f (x )=e x(x -a -1)- x22+ax .(Ⅰ)讨论f (x )的单调性;(Ⅱ)若x ≥0时,f (x )+4a ≥0,求正整数a 的值.参考值:e 2≈7.389,e 3≈20.086 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在△ABC 中,∠C =90º,BC =8,AB =10,O 为BC 上一点,以O 为圆心,OB 为半径作半圆与BC 边、AB 边分别交于点D 、E ,连结DE .(Ⅰ)若BD =6,求线段DE 的长;(Ⅱ)过点E 作半圆O 的切线,切线与AC 相交于点F ,证明:AF =EF .(23)(本小题满分10分)选修4-4:坐标系与参数方程C A B EDOF已知椭圆C :x24+y23=1,直线l :⎩⎨⎧x =-3+3t y =23+t(t 为参数). (Ⅰ)写出椭圆C 的参数方程及直线l 的普通方程;(Ⅱ)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -1|.(Ⅰ)解不等式f (x )+f (x +4)≥8;(Ⅱ)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ( ba).理科数学参考答案2015年高考绝密押题,仅限VIP 会员学校使用,版权所有,严禁转载或商业传播,违者必究;一、选择题:CABDA A CBBD DC 二、填空题:(13) e - 32; (14)1007;(15)-1; (16)4π.三、解答题:(17)解:(Ⅰ)化简得:f (x )=cos (2x +π3)+1 ……………………3分 对称中心为:ππ∈+()(,1)212k z k单增区间为:ππππ∈--()2[,]36k z k k ………………………6分(Ⅱ)由(Ⅰ)知:ππ=++=+=-()cos(2)10cos(2)133f A A A 70,2.333A A ππππ<<∴<+<23A ππ∴+=于是:3A π=………………………9分 根据余弦定理:2222cos 3a b c bc π=+-=24343()12b cbc +-≥-= 当且仅当1b c ==时,a 取最小值1. ………………………12分 (18)(Ⅰ)由题意可得列联表:物理优秀 物理不优秀 总计 数学优秀 60 140 160 数学不优秀 100 500 640总计 200 600 800 因为k =800(60×500-140×100)2160×640×200×600=16.667>10.828. ……………………6分 所以能在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关.(Ⅱ)每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的频率0.375.将频率视为概率,即每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的概率为 38.由题意可知X~B(3, 38),从而X的分布列为X 0 1 2 3p 12551222551213551227512E(X)== 98.………………………12分(19)解:(Ⅰ)因为BC=2,CC1=BB1=2,∠BCC1=π4,在△BCC1中,由余弦定理,可求得C1B=2,……………………2分所以C1B2+BC2=CC21,C1B⊥BC.又AB ⊥侧面BCC 1B 1,故AB ⊥BC 1, 又CB ∩AB =B ,所以C 1B ⊥平面ABC . …………………5分(Ⅱ)由(Ⅰ)知,BC BA ,BC 1两两垂直,以B 为空间坐标系的原点,建立如图所示的坐标系, 则B (0,0,0),A (0,20),C (2 ,0,0), C 1A →=(0,2,-2 ),C 1E →=C 1B →+λBB 1→=C 1B →+λCC 1→=(-2 λ,0,2 λ-2 ), 设平面AC 1E 的一个法向量为m =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧m ·C 1A →=0,m ·C 1E →=0,即⎩⎨⎧2y -2 z =0,2 λx +(2 -2 λ)z =0,令z =2 ,取m =(2 (λ-1)λ,1,2 ),………9分又平面C 1EC 的一个法向量为n =(0,1,0),EACBC 11xyz所以cos 〈m ,n 〉=m ·n |m ||n |=1___________√__________2(λ-1)2λ2+3=5 5,解得λ= 12. 所以当λ= 12时,二面角A -C 1E -C 的余弦值为55. ………………………12分(20)解:(Ⅰ)由题设,得:22424199ab+=①a 2-b 2a = 12②由①、②解得a 2=4,b 2=3, 椭圆的方程为22143x y +=易得抛物线的方程是:y 2=4x . …………………………4分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2) 、M (x 1,-y 1) ,由11F P F Q λ=得:y 1=λy 2 ○3 设直线PQ 的方程为y =k (x +1),与抛物线的方程联立,得:2440ky y k -+= ○* y 1 y 2= 4 ○4 y 1+y 2=4k○5 …………………………7分 由○3○4○5消去y 1,y 2得:224(1)k λλ=+ …………………………8分2121||1||PQ y y k=+-由方程○*得:2211616||(1)||k PQ k k-=+化简为:4241616||k PQ k -=,代入λ:4222222(1)(21)||16161(2)16PQ λλλλλλλ+++=-=-=++-∵1[,1)2λ∈,∴15(2,]2λλ+∈ …………………………11分于是:2170||4PQ <≤那么:17||(0,2PQ∈…………………………12分(21)解:(Ⅰ)f'(x)=e x(x-a)-x+a=(x-a)(e x -1),由a>0,得:x∈(-∞,0)时,f'(x)>0,f(x)单增;x∈(0,a)时,f'(x)<0,f(x)单减;x∈(a,+∞)时,f'(x)>0,f(x)单增.所以,f(x)的增区间为(-∞,0),(a,+∞);减区间为(0,a).…………5分(Ⅱ)由(Ⅰ)可知,x≥0时,f min(x)=f(a)=-e a+a2 2,所以f(x)+4a≥0,得e a-a22-4a≤0.…………7分令g(a)=e a-a22-4a,则g'(a)=e a-a-4;令h(a)=e a-a-4,则h'(a)=e a-1>0,所以h(a)在(0,+∞)上是增函数,又h(1)=e-5<0,h(2)=e2-6>0,所以∃a0∈(1,2)使得h(a0)=0,即a∈(0,a0)时,h(a)<0,g'(a)<0;a∈(a0,+∞)时,h(a)>0,g'(a)>0,所以g(a)在(0,a0)上递减,在(a0,+∞)递增.又因为g(1)=e- 12-4<0,g(2)=e2-10<0,g(3)=e3- 92-12>0,所以:a=1或2.…………12分(22)解:(Ⅰ)∵BD是直径,∴∠DEB=90º,∴BEBD=BCAB=45,∵BD=6,∴BE=245,在Rt△BDE 中,DE =BD 2-BE 2= 18 5. …………5分(Ⅱ)连结OE ,∵EF 为切线,∴∠OEF =90º,∴∠AEF +∠OEB =90º,又∵∠C =90º,∴∠A +∠B =90º,又∵OE =OB ,∴∠OEB =∠B ,∴∠AEF =∠A ,∴AE =EF . …………10分(23)解:(Ⅰ)C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),l :x -3y +9=0. ……………4分(Ⅱ)设P (2cos θ,3sin θ), C ABED O F则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92. 由|AP |=d 得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ= 3 5,cos θ=- 4 5. 故P (- 8 5, 33 5). ……………10分(24)解:(Ⅰ)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x ≤-3,4,-3≤x ≤1,2x +2,x ≥1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,f (x )≤8不成立; 当x >1时,由2x +2≥8,解得x ≥3.…………4分所以不等式f(x)≤4的解集为{x|x≤-5,或x≥3}.…………5分(Ⅱ)f(ab)>|a|f(ba)即|ab-1|>|a-b|.…………6分因为|a|<1,|b|<1,所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,所以|ab-1|>|a-b|.故所证不等式成立.…………10分。
2015年高考理科数学全国卷(新课标II卷)含答案
1 2
3 . 2
y
B D
1 2 3 4
O
–1 –2 –3 –4
x
C
15. (a x)(1 x) 的展开式中 x 的奇数次幂项的系数之和为 32,则 a __________.
4
【答案】 3 【解析】 试题分析:由已知得 (1 x) 1 4 x 6 x 4 x x ,故 (a x)(1 x) 的展开式中 x 的奇数次幂项分别
x A O B
【答案】B 【解析】
考点:函数的图象和性质. 11.已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ABM 为等腰三角形,且顶角为 120° ,则 E 的离 心率为( ) A. 5 【答案】D 【解析】 B. 2 C. 3 D. 2
x2 y 2 2 1(a 0, b 0) ,如图所示, AB BM ,ABM 1200 ,过点 M 2 a b 作 MN x 轴,垂足为 N ,在 RtBMN 中, BN a , MN 3a ,故点 M 的坐标为 M (2a, 3a ) ,
4 2 3 4
4
为 4ax , 4ax3 , x , 6 x 3 , x 5 ,其系数之和为 4a 4a 1+6+1=32 ,解得 a 3 . 考点:二项式定理. 16.设 S n 是数列 an 的前 n 项和,且 a1 1 , an1 Sn Sn1 ,则 Sn ________. 【答案】 【解析】 试题分析:由已知得 an1 Sn1 Sn Sn1 Sn ,两边同时除以 Sn 1 Sn ,得 是以 1 为首项, 1 为公差的等差数列,则
1 1 2 1 R R R3 36 , 故 R 6 , 则 球 O 的 表 面 积 为 3 2 6
2015年高考新课标全国二卷数学理科及答案(word版)
2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}21012A =--,,,,,{}|(1)(2)0B x x x =-+<,则A B =(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}(2)若a 为实数,且(2+ai)(a-2i)=-4i ,则a=(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著(B )2007年我国治理二氧化硫排放量显现成效(C )2006年以来我国二氧化硫排放量呈减少趋势(D )2006年以来我国二氧化硫年排放量与年份正相关(4)已知等比数列{}n a 满足13a =,12321a a a ++=,则357a a a ++=(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1x x x f x x -+-<⎧=⎨≥⎩则2(2)(log 12)f f -+= (A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分之后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )18(B )17(C )16(D )15(7)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN|=(A ) (B )8 (C ) (D )10(8)右边程序框图的算法思路源于我国古代数学名著《九章算法》中德“更相减损术”,执行该程序框图,若输入的a ,b ,分别为14,18,则输出的a=(A )0(B )2(C )4(D )14(9)已知A ,B 是O 的球面上两点,90AOB ∠=,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π(10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=。
2015高考数学新课标全国2卷押题含答案卷
1.已知集合A ={x |x 2-5x +6≤0},B ={x ||2x -1|>3},则集合A ∩B =C(A ){x |2≤x ≤3} (B ){x |2≤x <3} (C ){x |2<x ≤3} (D ){x |-1<x <3}2.已知a ⊥b ,|a |=2,|b | =3,且向量3a + 2b 与k a -b 互相垂直,则k 的值为( B )A .32-B .32C .32± D .1 3.命题“2,x x x ∀∈≠R ”的否定是( d )A .2,x x x ∀∉≠RB .2,x x x ∀∈=RC .2,x x x ∃∉≠RD .2,x x x ∃∈=R4.设52)53(=a ,53)52(=b ,52)52(=c ,则a ,b ,c 的大小关系是 AA .a c b >>B .a b c >>C .c a b >>D .b c a >> 5.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( b ) A .若//,//,m n αα则//m n B .若,,,m m αββα⊥⊥⊄则//m αC .若,,m αβα⊥⊂则m β⊥D .若,,//,//,m n m n ααββ⊂⊂则//αβ6.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。
现从该小组中选出3位同学分别到,,A B C 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有( d )A .70种B .140种C .840种D .420种 7.等比数列}{n a 的前321,2,4,a a a S n n 且项和为成等差数列,若a 1=1,则S 4为D (A )7 (B )8 (C )16 (D )15 8.执行右边的程序框图,则输出的S 是 C (A )5040 (B )4850 (C )2450 (D )25509.已知ln ,0()2,0x x f x x x >⎧=⎨+<⎩则()1f x > 的解集为( C )A . (﹣1,0)∪(0,e )B . (﹣∞,﹣1)∪(e ,+∞)C . (﹣1,0)∪(e ,+∞)D . (﹣∞,1)∪(0,e ) 6.将函数cos(2)y x ϕ=+的图像沿x 轴向右平移6π后,得到的图像关于原点对称,则ϕ的一个可能取值为( d )A.3π- B.6πC.3πD.56π 11.在二项式(3)n x x+的展开式中,各项系数之和为M ,各项二项式系数之和为N ,且M+N=72,则展开式中常数项的值为CA .18B .12C .9D .612.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为CA .3B .5C .10D .1313.已知函数490,10,33x y x y x y z x y y +-≥⎧⎪--≤=-⎨⎪≤⎩满足则的最大值是 1- 。
2015年高考全国新课标2卷理科数学试题
2015年 普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名,准考证号填写在答题卡。
2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}(2) 若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )2(3) 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是. 2013年2012年2011年2010年2009年2008年2007年2006年2005年2004年2 5002 4002 3002 2002 1002 0001 900(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著. (B ) 2007年我国治理二氧化硫排放显现成效. (C ) 2006年以来我国二氧化硫年排放量呈减少趋势. (D ) 2006年以来我国二氧化硫年排放量与年份正相关. (4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =(A )21 (B )42 (C )63 (D )84(5)设函数{a n }=,则(-2)+=(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 (A )81 (B )71 (C )61 (D )51 (7)过三点(1,3),(4,2),(1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =(A )0 (B )2 (C )4 (D )14(9)已知A ,B 是球O 的球面上两点,∠AOB =,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π XPODCBA(10).如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP =x 。
2015年高考新课标卷2理科数学(含解析)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2015年全国统一高考数学试卷(理科)(新课标ⅱ)
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2 B.8 C.4 D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2 B.8 C.4 D.10【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣===36,故R=6,则球O的表面积为4πR2=144π,AOB故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年高考数学押题试卷 新课标 2
试卷第1页,总16页绝密★启用前2015年高考数学押题试卷 新课标考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.已知集合U ={1,2,3,4,5,6},A ={1,,4,5},B ={2,3,4},则()U A C B =A. {4},B. U ={1,5},C. U ={1,5,6},D. U ={1,4,5,6}2.复数12ii +的共轭复数是a + bi(a ,b R),i 是虛数单位,则点(a ,b)为A. (1,2)B. (2,-i)C.(2,1)D.(1,-2) 3. “|x |<1”是“2ln x <0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知函数0,0(),0xx f x e x ≤⎧=⎨>⎩,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是A.[0,1)B.(,1)-∞ C 、(,1](2,)-∞⋃+∞ D. (,0](1,)-∞⋃+∞ 5.设n S 为等差数列{n a }的前n 项和,若1321,5,36k k a a S S +==-=,则k 的值为A.8B. 7C. 6D.56.函数()2sin()(0,0)f x x ωϕωϕπ=+>≤≤的部分图象如图所示,其 中A ,B 两点之间的距离为5,则f(x)的递增区间是试卷第2页,总16页…○………A.[6k -1,6k +2](k ∈Z )B.[6k -4,6k -1](k ∈Z )C.[3k -1,4k +2](k ∈Z )D.[3k -4,3k -1](k ∈Z )7.执行右边的程序框图,若输出的S 是127,则条件①可以为A 、n≤5B 、n≤6C 、n≤7D 、n≤88.如图,正方体ABCD-A 1B 1C 1D 1中,E 、F 是AB 的三等分点,G 、H 是 CD 的三等分点,M 、N 分别是BC 、EH 的中点,则四棱锥A 1 -FMGN 的 侧视图为9.设平面区域D 是由双曲线2214x y -=的两条渐近线和抛物线y 2=-8x 的准线所围成的三角形(含边界与内部).若点(x ,y) ∈ D ,则x + y 的最小值为A. -1B.0C. 1D.310.如图,椭圆的中心在坐标原点0,顶点分别是A 1, A 2, B 1, B 2,焦点分别为F 1 ,F 2,延长B 1F 2 与A 2B 2交于P 点,若为钝角,则此椭圆的离心率的取值范围为A.(0) B 、,1) C.(0) D 、1)试卷第3页,总16页11.中,若,则tan tanAB 的值为12.已知数列{}n a 是等比数列,其前n 项和为n S ,若 ) A.9 B.18 C.64 D.6513.已知等比数列{}n a 的公比2=q ,前n 项和为n S ,若14=S ,则=8S ( ) A .15 B .17 C .19 D .2114.在已知数列{}n a 的前n 项和=21n n S -,则此数列的奇数项的前n 项和是 ( )A15.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2015S 的值为( ).A .2015B .2013C .1008D .100716.等差数列{}n a的通项公式21,n an =+其前n 项和为n S ,则数列10项的和为( )A. 120B.70C.75D.17.等差数列{}n a 的前n 项和为n S ,若,则2015S 的值是( ) A .2015 D .2016 18.设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则 =++987a a a ( )19.已知数列}{n a 满足211,*,n n n n a a a a n N +++-=-∈且函数o s ,记()n n y f a =则数列}{n y 的前9项和为( )A .0 B.-9 C.9 D.120.设n S 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项的和,则下列命题错误的是( ) A.若0d <,则数列{}n a 有最大项 B.若数列{}n a 有最大项,则0d <C.若数列{}n a 是递增数列,则对任意n N *∈,均有0n S >试卷第4页,总16页D.若对任意n N *∈,均有0n S >,则数列{}n a 是递增数列21.用n a 表示正整数n 的最大奇因数(如33=a 、510=a ),记数列}{n a 的前n 项的和为n S ,则64S 值为( )A . 342B .1366C .2014D .546222.已知数列{}n a ,定直线():324)90(l m x m y m +-+--=,若(),n n a 在直线l 上,则数列{}n a 的前13项和为( )A .10B .21C .39D .78 23,数列}{n a 的前项和为n S ,则使0>n S 的n 最小值:( )A .99B .100C .101D .10224.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .13 25.数列n {a }中,对任意*N n ∈,n 12n a +a ++a =21⋅⋅⋅-,则22212na +a ++a ⋅⋅⋅等于( )A .()2n2-1B C.14-nD 26.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46 D .1327.已知n S 是等差数列}{n a 的前n 项和, 11=a,255=S ,设n T 为数列})1{(1n n a +-的前n 项和,则=2015T ( )A .2014B .2014-C .2015D .-201528.已知等差数列{}n a 的前13项之和为39,则=++876a a a ( ) A .6 B .9 C .12 D .1829.函数f 1(x )=x 3,f 2(x f 3(x f 4(x (2πx )|,等差数列{a n }中,a 1=0,a 2015=1,b n =|f k (a n +1)-f k (a n )|(k =1,2,3,4),用P k 表示数列{b n }的前2014项的和,则( )试卷第5页,总16页A.P 4<1=P 1=P 2<P 3=2B.P 4<1=P 1=P 2<P 3<2C.P 4=1=P 1=P 2<P 3=2D.P 4<1=P 1<P 2<P 3=230.等差数列{a n }的前n 项和为S n ,若a 1<0,且S 2015=0,则当S n 取得最小值时,n 的取值为( )A.1009B.1008C.1007或1008D.1008或100931.已知数列{}n a 是等差数列,若91130a a +<,10110a a ⋅<,且数列{}n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A .20 B .17 C .19 D .2132.记数列{}n a 的前n 项和为n S ,若不等式对任意等差数列{}n a 及任意正整数n 都成立,则实数 ) A 33.己知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线l 与直线3x- y+2=0平行,n 项和为n S ,则2014S 的值为( ) A试卷第6页,总16页第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)34.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据 收集到的数据(如下表),由最小二乘法求得回归直线方程表中有一个数据模糊不清,请你推断出该数据的值为______ . 35.如图,单位正方体ABCD-A 1B 1C 1D 1中,点P 在平面A 1BC 1上,则三棱锥P-ACD 1的体积 为______36.点A(x,y)在单位圆上从出发,沿逆时针方向做匀速圆周运动,每12秒运动一周.则经过时间t 后,y 关于t 的函数解析式 为______37.设A 、B 为在双曲线2212y x -=上两点,O 为坐标原点.若OA OB ∙=0,则ΔAOB面积的最小值为______38.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 .39.在等差数列289{},10,n a a a S +=中则的值为_____________.40.已知数列{}n a 的前n 项和为n S .设{}n S 的前n 项和为n T ,则2014T =___________. 41的前n 项的和 42.数列{}n a 的通项公式前n 项和为n S ,则2014s =___________.43.在等差数列{}n a 中, 12014a =-,其前n 项的和为n S ,则试卷第7页,总16页2014_______S =.44.等差数列{}n a 中,266a a +=,则45.设等差数列{}n a 的前n 项和为n S ,若91111,9S S ==,则46.已知定义在R 上的函数()x f 、()x g 满足,且()()()()x g x f x g x f '<', 的前n 项和等于,则n =47.数列{a n }的前n 项和为S n ,且满足a n +2=a n +1-a n (n ∈N *),a 1=1,a 2=2,则S 2014=_________. 三、解答题(题型注释)48.(本小题满分12分)已知数列{a n }、{b n }分别是首项均为2的各项均为正数的等比数列和等差数列,且(I) 求数列{a n }、{b n }的通项公式; (II )求使nb a <0.001成立的最小的n 值.49.(本小题满分12分) PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;(II) 以这9天的PM2. 5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级. 50.(本小题满分12分) 在正四棱锥V - ABCD 中,P ,Q 分别为棱VB ,VD 的中点, 点 M 在边 BC 上,且 BM: BC = 1 : 3,VA = 6.试卷第8页,总16页(I )求证CQ ∥平面PAN; (II)求证:CQ ⊥AP .51.(本小题满分12分) 已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M 与及y 轴都相切. (I )求点M的轨迹C 的方程;(II)过点F 任作直线l ,交曲线C 于A ,B 两点,由点A ,B 分别向各引一条切线,切点 分别为P ,Q ,记.求证sin sin αβ+是定值.52.(本小题满分12分)已知函数32()(0f x ax bx cx d a =+++>的零点的集合为{0,1},且13x =是f (x )的一个极值点。
2015年高考数学理科押题卷及答案
2015年江西省高考押题精粹数学理科本卷共60题,三种题型:选择题、填空题和解答题。
选择题36小题,填空题8小题,解答题18小题。
一、选择题(36个小题)1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为( ) A .MN B .()U M N ðC .()U M N ðD .()()U U M N 痧 答案:B解析:有元素1,2的是,U M N ð,分析选项则只有B 符合。
2. 集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为( )A .3B .4C .11D .12 答案:C解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C 。
3. 设集合{}1,0,1,2,3A =-,{}220B x x x =->,则A B ⋂=( )A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 答案:C解析:集合{}{}22020B x x x x x x =->=><或,{}1,3A B ⋂=-。
4. 若(1)z i i +=(其中i 为虚数单位),则||z 等于( )A .1 B. 32 C. 22D. 12答案:C 解析:化简得i z 2121+=,则||z =22,故选C 。
5. 若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为( ) A. 6- B. 2- C. 4 D. 6解析:3(3)(12)63212(12)(12)55a i a i i a a i i i i ++-+-==+++-,所以6320,0,655a aa +-=≠∴=-。
6. 复数21ii -在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限答案:D解析:根据复数的运算可知()()22121215521i i i i i i +==---,所以复数的坐标为21,55⎛⎫- ⎪⎝⎭,所以正确选项为D 。
2015年新课标高考数学(理)押题卷及答案
2015年新课标高考模拟试卷(理科数学)---命题人:毋晓迪第I 卷一、选择题:本大题共1 2小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合A={1,2,3,4,5},B={|2x x ³},下图中阴影部分所表示的集合为阴影部分所表示的集合为 A .{0,1,2} B .{1,2} C .{1} C .{0,1} 2.复数321iz i i=-+,在复平面上对应的点位于,在复平面上对应的点位于A .第一象限.第一象限B .第二象限.第二象限C .第二象限.第二象限D .第四象限.第四象限3.若13sin cos ,(0,)2a a a p -+=Î,则tan a = ( ) A .3 B .3- C .33 D .33-4.已知命题:,p x R $Î使得12,x x+<命题2:,10q x R x x "Î++>,下列命题为真的是,下列命题为真的是A .p Ù q B .()p q ØÙC .()p q ÙØ D .()()p q ØÙØ5.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为A .43B .83C .123D .2436.已知△ABC 中,C=45°,则sin 2A=sin 2B 一2sinAsinB=( ) A .14 B .12 C .22D .34 7.如图是计算函数ln(),2,0,23,2,3x x x y x x ì-£-ï=-<£íï>î的值的程序框图,在①、②、③ 处分别应填入的是处分别应填入的是A .y=ln (一x ),y=0,y=2x B .y=0,y=2x ,y=In (一x )C .y=ln (一x ),y=2z,y=0 D .y=0,y=ln (一x ),y=2x 8.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足满足 (a-c )·(b 一c )=0,则|c|的最大值是的最大值是A .1 B .22C .2 D .29.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的表面积为(表面积为( )A .16p B .24p C .323p D .48p10.在二项式(3)n x x+的展开式中,各项系数之和为M ,各项二项式系数之和为N ,且M+N=72,则展开式中常数项的值为( ) A .18 B .12 C .9 D .6 11.已知函数()s i n c o s (0)f x x x w ww =+>,如果存在实数x 1,使得对任意的实数x ,都有11()()(2012)f x f x f x ££+成立,则w 的最小值为(的最小值为( )A .12012B .2012pC .14024D .4024p12.过双曲线22221(0,0)x ya b a b -=>>的右顶点A 作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为三点的横坐标成等比数列,则双曲线的离心率为A .3B .5C .10D .13第II 卷二、填空题(每道题5分,共20分)分)13.已知函数490,10,33x y x y x y z x y y +-³ìï--£=-íï£î满足则的最大值是的最大值是。
2015高考数学真题精准预测密卷(理科)全套 含解析 (5)
绝密★启封并使用完毕前2015高考数学真题精准预测密卷(理科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:棱锥的体积公式:13V Sh=.其中S 表示棱锥的底面积,h 表示棱锥的高.一 、选择题(本大题共10题,每小题5分) 1.设全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,则()U C A B =( ▲ )A .{}4B .{}3,4C .{}2,3,4D .{}3 2.“0<x ”是“0)1ln(<+x ”的( ▲ )A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3.若有直线m 、n 和平面α、β,下列四个命题中,正确的是( ▲ )A .若//m α,//n α,则//m nB .若m α⊂,n α⊂,//m β,//n β,则//αβC .若αβ⊥,m α⊂,则m β⊥D .若αβ⊥,m β⊥,m α⊄,则//m α4. 设数列{}n a 为等差数列,其前n 项和为n S ,已知14725899,93a a a a a a ++=++=,若对任意*n N ∈都有n k S S ≤成立,则k 的值为( ▲ )A .22B .21C .20D .195.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( ▲ )A.①②③B. ①③④C. ②④D. ①③ 6.已知θ是锐角,当θθ22cos 4sin 1+取最小值时,=θsin ( ▲ ) A.33 B. 36 C. 55D.5527.已知向量≠1=,对任意R t ∈-≥-,则( ▲ ) A. ⊥ B. ()-⊥ C.()-⊥ D. ()()-⊥+8.过双曲线22221(0,0)x y a b a b -=>>的左焦点222(,0),(0),4a F c c y ->+=作圆x 的切线,切点为E ,延长FE 交双曲线右支于点P ,若1(),2OE OF OP =+则双曲线的离心率为( ▲ )A.2B.59.椭圆134:22=+y x C 的左右顶点分别为21,A A ,点P 在C 上直线2PA 斜率的取值范围是[]1,2--,那么直线1PA 斜率的取值范围是( ▲ )A . 1324⎡⎤⎢⎥⎣⎦, B. 3384⎡⎤⎢⎥⎣⎦, C. 112⎡⎤⎢⎥⎣⎦, D.314⎡⎤⎢⎥⎣⎦, 10.已知函数()⎪⎩⎪⎨⎧≤+->=0,40,2x x x x x x f ,若()1-≥ax x f 恒成立,则实数a 的取值范围是( ▲ )A. (]6,-∞-B. []0,6-C. (]1,-∞-D. []0,1-二、填空题(本大题共7题每小题4分)11. 已知某个几何体的三视图如下(主视图的弧线是半圆), 根据图中标出的尺寸(单位:cm ),可得这个几何体的 体积是 ▲ cm 3.左视图主视图12.若实数y x ,满足⎪⎩⎪⎨⎧≥≤--≤-+101042x y x y x ,则y x +的取值范围是 ▲ .13. 已知,A B 是抛物线C :x y 42=上的两点,O 为坐标原点, 若△OAB 的垂心恰好是抛物线C 的焦点F ,则直线AB 的方程 为 ▲ .14.已知函数()⎪⎩⎪⎨⎧≥-<≤+=1,21210,1x x x x f x ,设0≥>b a ,若()()b f a f =则()a f b ⋅的取值范围是▲ .15.如图,DEF DBC ∆∆,为边长为2的等边三角形,若2=AB ,且321,,P P P 是线段EF 上的四等分点,则321AP AC AP AC AP AC ⋅+⋅+⋅的值是 ▲ .16.已知ABC ∆中,︒=∠90C ,1==AC BC ,将A B C ∆绕BC 旋转得PBC ∆,当直线PC 与平面PAB 所成角为︒30时,A P 、两点间的距离是 ▲ .17.设函数()196531965322+-++-=x x x x x f ,求())50()1(0f f f +++ = ▲ .第15题2015高考数学真题精准预测密卷(理科)二、填空题(本大题共7题每小题4分)11._____________________________. 12._______________________________. 13._____________________________. 14.________________________________. 15._____________________________. 16.________________________________. 17.______________________________.三、解答题(本大题共5小题,最后两题15分其余每题14分) 18.如图所示,曲线OAB 是()()0,0sin >>=ωωA xA x f , []4,0∈x 的图像,且图象的最高点()32,3A ,B 点横坐标为4,折线BCD ,其中D 点坐标为()0,8,︒=∠60BCD .(Ⅰ)求()x f 的解析式和BD 两点之间的距离; (Ⅱ)求折线段BCD 的最大值.19..如图所示,在四棱锥P ABCD 中,PA ⊥底面AB =1,点E 为棱PC 的中点.(Ⅰ)证明:BE ⊥DC ;(Ⅱ)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F AB P 的余弦值.20.已知函数23()3x f x x+=,数列{}n a 满足*1111,()(N )n na a f n a +==∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令1211,n n n n n b S b b b a a +==+++,若20132n m S -<对一切*N n ∈成立,求最小正整数m .21.已知椭圆C :()1013222>=+a y ax 右焦点F 在圆D :()1222=+-y x 上,直线3:+=my x l ()0≠m 交椭圆与M ,N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点N 关于x 轴的对称点为1N (1N 与M 不重合),且直线M N 1与x 轴交于点P ,试问PMN ∆的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.22.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈. (Ⅰ)讨论)(x f 的奇偶性; (Ⅱ)求)(x f 的最小值参考答案11. π27216+ 12. []3,1 13. x=5 14.⎪⎭⎫⎢⎣⎡2,43 15. 54 16. 362 17. 1052 18.(1)()⎪⎭⎫⎝⎛=x x f 6sin 32π []4,0∈x BD=5 (2)|BC|+|CD|最大值10,(利用基本不等式或函数均给分)19.解:方法一:依题意,以点A 为原点建立空间直角坐标系(如图所示),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).C 由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE =(0,1,1),DC =(2,0,0), 故BE ·DC =0, 所以BE ⊥DC .(3) 向量BC =(1,2,0),CP =(-2,-2,2),AC =(2,2,0),AB =(1,0,0).由点F 在棱PC 上,设CF =λCP →,0≤λ≤1.故BF =BC +CF =BC +λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF ·AC =0,因此2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF =⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB =0,n 1·BF =0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈,〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知二面角F AB P 是锐角,所以其余弦值为31010.20.解:(1)由题知,11232133n n n na a a a +⋅+==+⋅ 故,数列{}n a 是以1为首项,23为公差的等差数列, 所以2211(1)333n a n n =+-=+.……………7分 (2)111911()21222123()(1)333n n n b a a n n n n +===-++++所以,9111111911()()2355721232323n S n n n =-+-++-=-+++ 所以,20132n m S -<,即:9112013()23232m n --<+对一切*N n ∈成立又911()2323n -+随着n 单调递增,且9113()23232n -<+, 所以3201322m -≤,故2016m ≥所以m 的最小值为2016.……………14分(22)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a 当21>a 时,函数)(x f 的最小值为a +43.。
2015新课标II高考压轴卷 理科数学 Word版含答案
2015年高考考前押题试卷 (全国新课标II 卷)理 科 数 学第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.设全集{}1,2,3,4,5U =,集合{1,2,4}A =,{4,5}B =,则图中的阴影部分表示的集合为A .{}5B .{}4C .{}1,2D .{}3,52.已知非零向量a 、b 满足a b =,那么向量a b +与向量a b -的夹角为A .6π B .3π C .2π D .23π 3.61()2x x-的展开式中第三项的系数是 A .154-B .154C .15D .52-4.圆22420x y x +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为A .250x y --=B .210x y --=C .20x y --=D .40x y +-=5.某单位员工按年龄分为A ,B ,C 三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是1,45则该单位员工总数为A .110B .100C .90D .806.右边程序框图的程序执行后输出的结果是A .24B .25C .34D .357.设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y += 8.直线cos140sin 400x y ︒+︒=的倾斜角是A .40°B .50°C .130°D .140°9. 若n S 为等差数列{}n a 的前n 项和,369-=S ,10413-=S ,则5a 与7a 的等比中项为A .24B .22±C .24±D .3210.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确命题的序号是 A .①②③ B .②③④ C .①③ D .②④11. 已知函数()f x =(3)5, 1.2,13a x x a x -+≤⎧⎪⎨>⎪⎩是(,)-∞+∞上的减函数。
2015高考理科数学新课标Ⅱ卷
2015高考理科数学新课标Ⅱ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .512004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年7.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .108.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值 为36,则球O 的表面积为( )A .36π B.64π C.144π D.256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点, 点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )DPCBOA x11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A 5B .2C 3D 212.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10)偶函数 f(x)的定义域为 R,若 f(x+2)为奇函数,且 f(1)=1,则 f(89)+f(90) 为 (A)-2 (B)-1 (C)0 (D)1
(11)某方便面厂为了促销,制作了 3 种不同的精美卡片,每袋方便面随机装入一张卡片, 集齐 3 种卡片可获奖,现购买该方便面 5 袋,能获奖的概率为 (A)
31 81
(B)
33 81
(C)
48 81
(D)
50 81
(12)给出下列命题: 1 log 0.5 3 2 ( ) 0.2 ; ○ 3 函数 f ( x) = ln ○
1 3
1 3
2 函数 f ( x) log4 x 2sin x 有 5 个零点; ○
x4 x 5 的图像以 (5, ) 为对称中心; x 6 12 12
1 1 1 1 1
„„„„„„„5 分
B1 z C1 A1
E λ → CC1 =(- 2 λ ,0, 2 λ - 2 ), 设平面 AC1E 的一个法向量为 m=(x,y,z),则有 B m·→ 2y- 2 z=0, C1A =0, 即 → 2 λ x+( 2 - 2 λ )z=0, m· C1E =0, C x 2 (λ -1) 令 z= 2 ,取 m=( ,1, 2 ),„„„9 λ 分 又平面 C1EC 的一个法向量为 n=(0,1,0), 1 m·n 5 1 ___________ 所以 cos m,n= = __________ = ,解得 λ = . 2 |m||n| 2(λ -1) 5 2 +3 2 λ
x
nπ
2
+1,前 n 项和为 Sn,则 S2 015=__________.
x-y+5≥0, (15)已知 x、y 满足x+y≥0, 若使得 z=ax+y 取最大值的点(x,y)有无数个,则 a x≤3,
的值等于___________. (16)已知圆 O: x +y =8,点 A(2,0) ,动点 M 在圆上,则∠OMA 的最大值为__________. 三、解答题:本大题共 70 分,其中(17)—(21)题为必考题, (22) , (23) , (24)题为 选考题.解答应写出文字说明、证明过程或演算步骤. (17) (本小题满分 12 分) 已知 f(x)=sin(2x-
3
) 1
0 A ,
3
2A
3
7 . 3
„„„„„„„„„9 分
2A
3
2
于是: A
3
根据余弦定理: a
b 2 c 2 2bc cos
3
( = 4 3bc 4 3
b c
2
)2 1
当且仅当 b c 1 时,a 取最小值 1. (18) (Ⅰ)由题意可得列联表: 物理优秀 数学优秀 60 数学不优秀 100 总计 200
2 2
5 2 )+2cos x. 6
(Ⅰ)写出 f(x)的对称中心的坐标和单增区间; (Ⅱ)△ABC 三个内角 A、B、C 所对的边为 a、b、c,若 f(A)=0,b+c=2.求 a 的 最小值. (18) (本小题满分 12 分) 某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年 级 800 名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都 优秀的有 60 人,数学成绩优秀但物理不优秀的有 140 人,物理成绩优秀但数学不优秀的 有 100 人. (Ⅰ)能否在犯错概率不超过 0.001 的前提下认为该校学生的数学成绩与物理成绩有关 系? (Ⅱ)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机 抽取 3 名学生的成绩,记抽取的 3 个成绩中数学、物理两科成绩至少有一科优秀的次数 为 X,求 X 的分布列和期望 E (X). 附: n(ad-bc)2 P(K2≥k0) 0.010 0.005 0.001 2 K= (a+b)(c+d)(a+c)(b+d) k0 6.635 7.879 10.828
2
(C)2450
(D)2550
i=0,S=0 S=S+i i=i+2 i≥100? 是 输出 S 结束
x +4x+3,x≤0, (8)已知函数 f (x)= 则方程 f (x)+1=0 x>0, 3-x, 的实根个数为
(A)3
(B)2
(C)1
(D)0
否
x2 y2 (9)若双曲线 2- 2=1(a>0,b>0)一个焦点到一条渐近线 a b
(19) (本小题满分 12 分) 如图,在三棱柱 ABC -A1B1C1 中,已知 AB⊥侧面
BB1C1C,BC= 2 ,AB=BB1=2,∠BCC1=
在棱 BB1 上. (Ⅰ)求证:C1B⊥平面 ABC;
,点 E 4
C1 E
B1
A1
(Ⅱ)若 BE=λ BB1,试确定 λ 的值,使得二面角 5 A-C1E -C 的余弦值为 . 5 (20) (本小题满分 12 分) 设抛物线 y =4mx(m >0)的准线与 x 轴交于 F1, 焦点为 F2;以 F1 、F2 为焦点,离心率 e=
(Ⅱ)每次抽取 1 名学生成绩,其中数学物理两科成绩至少一科是优秀的频率 0.375.将 频率视为概率,即每次抽取 1 名学生成绩,其中数学物理两科成绩至少一科是优秀的概率 3 3 为 .由题意可知 XB(3, ),从而 X 的分布列为 8 8 X 0 1 2 3 125 225 135 27 p 512 512 512 512 9 E (X)=np= . „„„„„„„„„12 分 8 (19)解: (Ⅰ)因为 BC= 2 ,CC1=BB1=2,∠BCC1= , 4 „„„„„„„„2 分
1 正视图 侧视图
(5)空间几何体的三视图如图所示,则该几何体 的表面积为 (A)8+2 5 (C)8+2 3 (B)6+2 5 (D)6+2 3
2
2 俯视图
(6)(x -
2
1
6
x
) 的展开式中的常数项为 (B)-15 (C)20 (D)-20
开始
(A)15
(7)执行右边的程序框图,则输出的 S 是 (A)5040 (B)4850
A
y
所以当 λ = 分 (20)解:
1 5 时,二面角 A-C1E-C 的余弦值为 . 2 5
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中, 有且只有一项符合题目要求. (1)已知集合 A={x|x -5x+6≤0},B={x||2x-1|>3},则集合 A∩B= (A){x|2≤x≤3} (C){x|2<x≤3} 1-i 1+i ( 2) 2+ 2= (1+i) (1-i) (A)-1 (B)1 (C)-i (D)i (B){x|2≤x<3} (D){x|-1<x<3}
4 已知 a、b、m、n、x、y 均为正数,且 a≠b,若 a、m、b、x 成等差数列,a、n、b、 ○
y 成等比数列,则有 m> n,x<y.
其中正确命题的个数是
(A)1 个
(B)2 个
(C)3 个
(D)4 个
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填写在题中横线上. (13)由直线 x=1,y=1-x 及曲线 y=e 围成的封闭图形的面积为_________. (14)数列{an}的通项公式 an=nsin
1 2
(21) (本小题满分 12 分) 已知 f (x)=e (x-a-1)-
x
x2
2
+ax.
(Ⅰ)讨论 f (x)的单调性; (Ⅱ)若 x≥0 时,f (x)+4a≥0,求正整数 a 的值. 2 3 参考值:e ≈7.389,e ≈20.086 请考生在第(22) , (23) , (24)三题中任选一题作答,如果多做,则按所做的第一 题记分.作答时用 2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22) (本小题满分 10 分)选修 4-1:几何证明选讲 如图,在△ABC 中,∠C=90º,BC=8,AB=10,O 为 BC 上一点,以 O 为圆心,OB 为半径作半圆与 BC 边、AB 边分别交于点 D、E,连结 DE. (Ⅰ)若 BD=6,求线段 DE 的长;
在△BCC1 中,由余弦定理,可求得 C1B= 2 , 2 2 2 所以 C1B +BC =CC1,C1B⊥BC. 又 AB⊥侧面 BCC1B1,故 AB⊥BC1, 又 CB∩AB=B,所以 C1B⊥平面 ABC. (Ⅱ)由(Ⅰ)知,BC,BA,BC1 两两垂直, 以 B 为空间坐标系的原点, 建立如图所示的坐标系, 则 B (0,00), → C A = (0 , 2 ,- 2 ) , → C E =→ C B +λ → BB = → C B+
2
B C
A
1 2 2 6 的椭圆与抛物线的一个交点为 E( , ); 2 3 3
自 F1 引直线交抛物线于 P、 Q 两个不同的点, 点 P 关于 x 轴的对称点记为 M, 设 F1P (Ⅰ)求抛物线的方程和椭圆的方程; (Ⅱ)若 [ ,1) ,求|PQ|的取值范围.
F1Q .
2
„„„„„„„„„12 分
物理不优秀 140 500 600
总计 160 640 800
800(60×500-140×100) 因为 k= =16.667>10.828. 160×640×200×600
„„„„„„„„6 分
所以能在犯错概率不超过 0.001 的前提下认为该校学生的数学成绩与物理成绩有关.
A
E F
C
D