第十章_电荷和静电场课后习题答案
新版必修3第10章 静电场中的能量练习与应用(解析版)
第10章 静电场中的能量 练习与应用(解析版)—2019版新教科书《物理》选修第三册第01节 电势能和电势 练习与应用(教科书第29/30页)1.如图10.1-5,在电场强度为60 N/C 的匀强电场中有A 、B 、C 三个点,AB 为5 cm ,BC 为12 cm ,其中AB 沿电场方向,BC 和电场方向的夹角为60°。
将电荷量为4×10-8 C 的正电荷从A 点移到B 点,再从B 点移到C 点,静电力做了多少功?若将该电荷沿直线由A 点移到C 点,静电力做的功又是多少?【解析】从A 点移到B 点,静电力做的功J J Eqx W AB AB 728102.110510460---⨯=⨯⨯⨯⨯==从B 点移到C 点,静电力做的功J J Eqx W BC BC 72801044.121101210460cos60---⨯=⨯⨯⨯⨯⨯==. J W W W 71064.2-⨯=+=沿直线由A 点移到C 点,静电力做的功J J Eqx W AC BC 7281064.221102112510460cosCAB ---⨯=⨯⨯⨯+⨯⨯⨯==)( 因为,如图所示,060cos s BC AB CAB ACco +=。
2.电荷量q 1为4×10-9 C 的试探电荷放在电场中的A 点,具有6×10-8 J 的电势能。
A 点的电势是多少?若把q 2为-2×10-10 C 的试探电荷放在电场中的A 点,q 2所具有的电势能是多少?【解析】A 点的电势是V V q E PA A 15104106981=⨯⨯==--ϕ q 2所具有的电势能是J J q E A P 91022103)102(15--⨯-=⨯-⨯==ϕ.3.回答下列题目后小结:如何根据试探电荷的电势能来判断电场中两点电势的高低?(1)q 在A 点的电势能比在B 点的大,A 、B 两点哪点电势高?(2)-q 在C 点的电势能比在D 点的大,C 、D 两点哪点电势高?(3)q 在E 点的电势能为负值,-q 在F 点的电势能是负值,E 、F 两点哪点电势高? 【解析】根据q E P =ϕ, (1)q 在A 点的电势能比在B 点的大,A 点电势高;(2)-q 在C 点的电势能比在D 点的大,D 点电势高;(3)q 在E 点的电势能为负值,则电势为负,-q 在F 点的电势能是负值,则电势为正,E 、F 两点F 点电势高。
大学物理标准答案第10章
第十章 静电场中的导体与电介质10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A )升高 (B )降低(C )不会发生变化 (D )无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地题 10-2 图分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0==(B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( )(A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1)由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2)计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1)电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2)两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0.求此系统的电势和电场的分布. 分析若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E rr E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时,()01=r E R 1<r <R 2时,()202π4rεqr E =r >R 2时,()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2)2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1=6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10两线输电线,其导线半径为3.26mm ,两线中心相距0.50m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C题 10-10 图10-11电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0mm 2,两金属片之间的距离是0.600mm .如果电路能检测出的电容变化量是0.250pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12一片二氧化钛晶片,其面积为1.0cm 2,厚度为0.10mm .把平行平板电容器的两极板紧贴在晶片两侧.(1)求电容器的电容;(2)当在电容器的两极间加上12V 电压时,极板上的电荷为多少?此时自由电荷和极化电荷的面密度各为多少?(3)求电容器内的电场强度. 解 (1)查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2)电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3)晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13如图所示,半径R =0.10m 的导体球带有电荷Q =1.0×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1)离球心为r =5cm 、15cm 、25cm 处的D 和E ;(2)离球心为r =5cm 、15cm 、25cm 处的V ;(3)极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1)取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r= r >R +d Q r D =⋅23π423π4r QD =;203π4r Q E ε= 将不同的r 值代入上述关系式,可得r =5cm 、15cm 和25cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1=5cm ,该点在导体球内,则01=r D ;01=r Er 2=15cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r QD r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3=25cm ,该点在空气层内,空气中ε≈ε0,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2)取无穷远处电势为零,由电势与电场强度的积分关系得 r 3=25cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2=15cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1=5cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3)均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2×10-9m ,两表面所带面电荷密度为±5.2×10-3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1)细胞壁内的电场强度;(2)细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2)细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15如图(a )所示,有两块相距为0.50的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K内,金属盒上、下两壁与A 、B 分别相距0.25mm ,金属板面积为30mm ×40mm .求(1)被屏蔽后电容器的电容变为原来的几倍;(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容. 解 (1)由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C ==,因此A 、B 间的总电容12C C =(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16在A 点和B 点之间有5个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U A C 、U CD 和U D B .题 10-16 图解 (1)由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4μF .(2)由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1)充足电后;(2)然后平行插入一块面积相同、厚度为δ(δ<d )、相对电容率为εr的电介质板;(3)将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1)空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2)插入电介质后,电容器的电容C 1为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3)插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度02='E 空气中电场强度δd UE -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17的分析. 解由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19有一电容为0.50μF 的平行平板电容器,两极板间被厚度为0.01mm 的聚四氟乙烯薄膜所隔开,(1)求该电容器的额定电压;(2)求电容器存贮的最大能量.分析通过查表可知聚四氟乙烯的击穿电场强度E b =1.9×107V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1)电容器两极板间的电势差V 190b max ==d E U(2)电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20半径为0.10cm 的长直导线,外面套有内半径为1.0cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1)导线表面最大电荷面密度;(2)沿轴线单位长度的最大电场能量.分析如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1)导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2)由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21一空气平板电容器,空气层厚1.5cm ,两极间电压为40k V ,该电容器会被击穿吗?现将一厚度为0.30cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10MV· m -1.则此时电容器会被击穿吗?分析在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6-26可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E >,空气层被击穿,击穿后40k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '>,故玻璃也将相继被击穿,电容器完全被击穿.10-22某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大.解介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1)电容器能量的改变;(2)此过程中外力所作的功,并讨论此过程中的功能转换关系.分析在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1)极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221S εQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2)两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。
人教版2020-2021学年高二物理必修第三册第10章 静电场中的能量练习含答案
新教材人教版2020—2021学年高中物理必修第三册第10章静电场中的能量练习含答案(新教材)必修第三册第10章静电场中的能量1、如图所示,带正电的导体球A置于原来不带电的空腔导体球B内,a、c分别为导体A、B内的点,b为导体A和B之间的一点,下列说法正确的是() A.a、b、c三点的电势都相等B.a点的电场强度为0,但电势最高C.b点的电场强度为0,但电势大于0D.a、b、c三点的电场强度均为02、两带电小球,电荷量分别为+q和-q,固定在一长度为l的绝缘细杆的两端,置于电场强度为E的匀强电场中,杆与场强方向平行,其位置如图所示。
若此杆绕过O点垂直于杆的轴线转过180°,则在此转动过程中电场力做的功为()A.0 B.qElC.2qEl D.πqEl3、如图所示,在处于O点的点电荷+Q形成的电场中,试探电荷+q由A点移到B点静电力做的功为W1,以OA为半径画弧交OB于C,再把试探电荷由A 点移到C点静电力做的功为W2;由C点移到B点静电力做的功为W3。
则三次静电力做功的大小关系为()A.W1=W2=W3<0 B.W1>W2=W3>0C.W1=W3>W2=0 D.W3>W1=W2=04、如图所示的匀强电场的电场强度为1.0×103 N/C,ab平行于电场线,ab=cd =4 cm,ac=bd=3 cm。
则下述计算结果正确的是()A.a、b之间的电势差为40 VB.a、c之间的电势差为50 VC.将q=-5×10-3 C的点电荷沿矩形路径abdca移动一周,电场力做的功是-0.25 JD.将q=-5×10-3C的点电荷沿abd从a移到d,电场力做的功是0.25 J 5、平行板电容器保持与直流电源两极连接,充电结束后,电容器的电压为U,电荷量为Q,电容为C,极板间的电场强度为E。
现将两极板间距离减小,则引起的变化是()A.Q变大B.C变小C.E变小D.U变小6、如图所示,质子(11H)和α粒子(24He),以相同的初动能垂直射入偏转电场(不计粒子重力),则这两个粒子射出电场时的偏转位移y之比为()A.1∶1 B.1∶2C.2∶1 D.1∶47、如图所示,P、Q是等量的正点电荷,O是它们连线的中点,A、B是中垂线上的两点,OA<OB,用E A、E B和φA、φB分别表示A、B两点的电场强度和电势,则()A.E A一定大于E B,φA一定大于φBB.E A不一定大于E B,φA一定大于φBC.E A一定大于E B,φA不一定大于φBD.E A不一定大于E B,φA不一定大于φB8、如图所示,A、B是同一条电场线上的两点,将一点电荷q从A点移动到B 点,静电力做功W,且知A、B间的距离为d,下列说法中正确的是()A.由公式W=qU可得,A、B两点间的电势差为W qB.由公式W=Eqd可得,A点的电场强度为E=WqdC.由公式W=Eqd可得,B点的电场强度为E=W qdD.A点的电势为W q9、a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点,电场线与矩形所在平面平行。
第十章 静电场中的导体和电介质习题解答
10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。
试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。
习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。
试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。
习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。
川师大学物理第十章 静电场中的导体和电介质习题解
第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。
解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。
10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。
解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。
P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。
因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。
大学物理第十章课后习题答案
题库
第十章 静电场中的导体和电介质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大
大学物理第10章 电荷和静电场-2
例如 孤立的导体球的电容
Q
Q C V
地球
Q Q 4π 0 R
4π 0 R
6
R
4
RE 6.4 10 m, CE 7 10 F
二 电容器
导体组合,使之不受周 围导体的影响 ——电容器
电容器的电容:
当电容器的两极板分
别带有等值异号电荷Q时 ,电量Q与两极板间相应 的电势差VA-VB的比值。
详细说明如下
二、导体表面的电荷和电场 导体表面电荷的分布与导体本身的形状以及附近 带电体的状况等多种因素有关。
孤立导体的电荷面密度与其表面的曲率有关,曲率越大 电荷面密度越大。 表面突出尖锐部分曲率大, 电荷面密度大;
表面比较平坦部分曲率小, 电荷面密度小; 表面凹进部分曲率为负, 电荷面密度最小。
S
–q'
说明空腔内表面所带总电量与空腔内带电体的电量 相等、符号相反。导体空腔是等势体,腔内场强不 为零,不是等电势区间。
四、导体静电平衡性质的应用
1. 静电屏蔽 (electrostatic shielding)
+q +q +q
-q
-q
利用导体静电平衡的性质,使导体空腔内部空 间不受腔外电荷和电场的影响,或者将导体空腔 接地,使腔外空间免受腔内电荷和电场影响,这 类操作都称为静电屏蔽。无线电技术中有广泛应 用,例如,常把测量仪器或整个实验室用金属壳 或金属网罩起来,使测量免受外部电场的影响。
Cn
VB
等效
VA
C
VB
令 U VA VB
q1 C1U
q2 C2U
•导导体表面外附近的场强 E 0
★ 注意:
E 仅由 S 处电荷产生而与其它电荷无关吗?为什么?
人教版高中物理必修第3册课后习题 第十章 静电场中的能量 5.带电粒子在电场中的运动
5.带电粒子在电场中的运动合格考达标练1.(湖南娄底一中高二上学期期中)如图所示,两平行金属板相距为d,电势差为U,一电子质量为m,电荷量为e,从O点沿垂直于极板的方向射出,最远到达A点,然后返回,OA=h,此电子具有的初动能是( )A.edhUhC.eUdh D.eUhdO点运动到A点,因受静电力作用,速度逐渐减小。
电子仅受静电力,根据动能定理得12mv02=eU OA。
因E=Ud,U OA=Eh=Uhd,故12mv02=eUhd。
所以D正确。
2.如图所示,a、b两个带正电的粒子,以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a粒子打在B板的a'点,b粒子打在B 板的b'点,若不计重力,则( )A.a的电荷量一定大于b的电荷量B.b的质量一定大于a的质量C.a的比荷一定大于b的比荷D.b的比荷一定大于a的比荷,由h=12·qEm(xv0)2得x=v0√2hmqE。
由v0√2hm aEq a <v0√2hm bEq b得q am a>q bm b,故选项C正确。
3.(江西九江修水一中高二月考)如图所示,一价氢离子和二价氦离子的混合体,经同一加速电场由静止加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点qU1=12mv02,在偏转电场中的偏转距离y=12·U2qmd·L2v02=U2L24U1d,故两离子运动轨迹相同,打在屏上同一点;一价氢离子和二价氦离子的比荷不同,经过加速电场后的末速度不同,因此两离子运动的时间不同。
故选B。
4.(多选)如图所示,平行板电容器的两个极板与水平地面成一定角度,两极板与一直流电源相连。
若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )A.所受重力与静电力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动,其重力和静电力的合力应与速度共线,如图所示。
大学物理课后习题详解(第十章)中国石油大学
根据高斯定理可得 方向由的正负确定
10-22 如图所示,在xOy平面内有与y轴平行、位于和处的两条无限长平 行均匀带电直线,电荷线密度分别为和。求z轴上任一点的电场强度。
[解] 无限长带电直线在线外任一点的电场强度 所以 P点的场强 由对称性知合场强的z方向分量为零,x方向分量 而
所以 方向指向x轴负方向 10-23 如图所示,在半径为R,体电荷密度为的均匀带电球体内点处放
所以 证毕。
10-27 电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离 为a的点P的电势(以无穷远为零电势点)。 [解] 取如图所示的电荷元dq,,它在P点产生的电势为
则整个带电直线在P点产生的电势为
10-28 如图所示,在点电荷+q的电场中,若取图中点P处为电势零点, 则点M的电势为多少? [解] 取P点为电势零点,则M点电势为
10-10 如图所示,一厚度为b的无限大带电平板,其体电荷密度为 (0≤x≤b),式中k为正常量。求:(1)平板外两侧任一点和处的场强大小; (2)平板内任一点P处的电场强度; (3)场强为零的点在何处? [解] (1)过点作一圆柱体穿过无限大带电平板,由高斯定理
即 所以 因此平板外一点的场强与距平板的距离无关, (2)板内(即0≤x≤b区域) (3)若电场强度为0,则 此时,此即为场强为0的点。
10-1l 一半无限长的均匀带电直线,线电荷密度为。试证明:在通过带 电直线端点与直线垂直的平面上,任一点的电场强度 E的方向都与这直 线成45°角。 [解] 如图选择直角坐标系,在棒上取电荷元
它在过棒端的垂直面上任意点贡献场强为
由于
且
所以
总场强的分量为 它与负y方向的夹角是
10-12 一带电细线弯成半径为R的半圆形,线电荷密度,式中为一常 量,为半径R与x轴所成的夹角,如图所示。试求环心O处的电场强度。 [解] 取电荷元
第10章 电荷和静电场习题课
(3) 积分值与零势点选取有关 . 选取原则:
电荷有限分布选 U 0 电荷无限分布选 U有限处 0
8
零势点 零势点
Ua E dl Ecosdl
a
a
注意:
• 选取零势点的原则:使场中电势分布有确定值
一般,场源电荷有限分布:选 场源电荷无限分布:不选 许多实际问题中选:
4r2dr
Q2 80r R
18
(1101B)
两个点电荷 q1 40 10-9 C 和 q2 -70 10-9 C ,相距10 cm。
设点A是它们连线的中点,点B 的位置离q1为8.0 cm,离q2为
6.0 cm,求 (1)点A 的电势;(2)点B 的电势。 (设无穷远处电势为0,已知真空中的介电常数)
rr
Ò S
D
dS
r
rS内
q0
D 4πr2 Q
r E
D
D
r0
Q
4π r 0r 2
rˆ
Q
D
r
4πr 2
D 方向:沿径向向外
we
1
2
E2
1 2
r
0
Q
4π r 0r 2
Q2
32π2 r 0r 4
22
如图所示,一半径为R,总电量为q的均匀 带电圆环。
√A. Q
4πε0a
B. Q 2πε0a
C.
Q 4πε0a
2
D. Q 2πε0a2
12
已知厚度为d 的无限大带电导体板,两表面上 σ
静电场中的导体和电介质习题解答
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qaR a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。
所以选(A )2. 已知厚度为d的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))R d (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D.r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )o R d +q . 选择题3图选择题2图d5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
第10章 静电场-1作业答案
§10.2 电场 电场强度一.选择题和填空题1. 下列几个说法中哪一个是正确的?(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B )在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F为 试验电荷所受的电场力.(D) 以上说法都不正确. [ C ]2. 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为: (A)x q 04επ. (B) 30xqaεπ. (C) 302x qa επ. (D) 204x q επ. [ B ]3. 两个平行的“无限大”均匀带电平面, 其电荷面密度分别为+σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =-3σ / (2ε0)_,E B =_-σ / (2ε0) ,E C =_3σ / (2ε0)_ (设方向向右为正).4. d (d<<R)q ,如图所示.则圆心O 处的场强大小E =()30220824R qdd R R qd εεπ≈-ππ,场强方向为_____从O 点指向缺口中心点_________________.二.计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d的P 点的电场强度.1、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q =λd x = q d x / L ,它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.+σ +2σA B CLO2.一环形薄片由细绳悬吊着,环的外半径为R ,内半径为R /2,并有电荷Q 均匀分布在环面上.细绳长3R ,也有电荷Q 均匀分布在绳上,如图所示,试求圆环中心O 处的电场强度(圆环中心在细绳延长线上).解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元d q = λd x = Q d x /(3R ) 它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 整个细绳上的电荷在环心处的场强()203020116412R Qx R dx R Q E R εεπ=-π=⎰圆环上的电荷分布对环心对称,它在环心处的场强E 2=0由此,合场强 i R Qi E E20116επ==方向竖直向下.三.理论推导与证明题一半径为R 的均匀带电圆环,总电荷为Q . 选x 轴沿圆环轴线, 原点在环心. 证明其轴线上任一点的场强为:()2/32204xR QxE +=πε 并说明在什么条件下, 带电圆环可作为点电荷处理.证:选环心作原点,x 轴沿圆环轴线方向,y 、z 轴如图所示.在环上任取一电荷元d q =(Q d θ) / (2π),设P 点位于x 处,从电荷元d q 到P 点的矢径为r,它在P 点产生的场强为r r Q r r q E ˆ8d ˆ4d d 20220εθεπ=π=r ˆ为矢径r 方向上的单位矢量.d E 沿x 轴的分量为 d E x =d E cos φ (φ为矢径r 与x 轴正向夹角) 由对称性容易证明 E y =0 E z =0 因而有 E =E x 20202024cos d 8cos r Q r Q εφθεθππ=π=⎰()2/32204x R Qx+π=ε 当x >>R 时,可得 E ≈Q / (4πε0x 2)这相当于一个位于原点O 的带电量为Q 的点电荷在P 点产生的场强.R3x x§10.3 电通量 高斯定理一. 选择题和填空题1.一电场强度为E 的均匀电场,E的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR 2E . (D) 0. [ D ]2. 两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ), 所带电荷分别为Q a 和Q b .设某点与球心相距r ,当R a <r <R b 时,该点的电场强度的大小为: (A) 2041r Q Q b a +⋅πε. (B) 2041r Q Q ba -⋅πε. (C)⎪⎪⎭⎫ ⎝⎛+⋅π22041b b a R Q r Q ε. (D) 2041r Q a⋅πε. [ D ] 3. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ C ]4. 图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的. (A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. (C) 半径为R 的、电荷体密度为ρ=A r (A 为常数)的非均匀带电球体. (D) 半径为R 的、电荷体密度为ρ=A/r (A 为常数)的非均匀带电球体 . [ B ]5. 如图所示,在边长为a 的正方形平面的中垂线上,距中心O点a /2处,有一电荷为q 的正点电荷,则通过该平面的电场强度通量为 q/(6ε0) .6. 一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):()r E = 0 (r <R ), ()r E =0202302ˆr rR r r R εσεσ= (r >R ). 7. 有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r ),其电场强度的大小将由204r q επ变为__0.xOEO R rE E ∝1/r 2a q a/2O二. 计算题1.一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅ 得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.2. 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为1R 和2R (21R R <),单位长度上的电荷为λ。
大学物理下册第10章课后题答案
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。
高中物理第十章静电场中的能量习题课带电粒子在电场中运动的四种题型课后习题含解析3
习题课:带电粒子在电场中运动的四种题型课后篇巩固提升基础巩固1.如图,两平行的带电金属板水平放置。
若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将()A.保持静止状态B。
向左上方做匀加速运动C。
向正下方做匀加速运动D.向左下方做匀加速运动,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,静电力方向也逆时针旋转45°,但大小不变,此时静电力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.2.(多选)两个共轴的半圆柱形电极间存在一沿半径方向的电场,如图所示.带正电的粒子流由电场区域的一端M射入电场,沿图中所示的半圆形轨道通过电场并从另一端N射出,由此可知()A.若入射粒子的电荷量相等,则出射粒子的质量一定相等B.若入射粒子的电荷量相等,则出射粒子的动能一定相等C。
若入射粒子的电荷量与质量之比相等,则出射粒子的速率一定相等D。
若入射粒子的电荷量与质量之比相等,则出射粒子的动能一定相等,该粒子流在电场中做匀速圆周运动,静电力提供向心力qE=m v2v ,解得r=vv2vv,r、E为定值,若q相等则12mv2一定相等;若vv相等,则速率v一定相等,故B、C正确.3。
如图所示,一个平行板电容器充电后与电源断开,从负极板处释放一个电子(不计重力),设其到达正极板时的速度为v1,加速度为a1.若将两极板间的距离增大为原来的2倍,再从负极板处释放一个电子,设其到达正极板时的速度为v2,加速度为a2,则() A。
a1∶a2=1∶1,v1∶v2=1∶2B.a 1∶a 2=2∶1,v 1∶v 2=1∶2 C 。
a 1∶a 2=2∶1,v 1∶v 2=√2∶1 D 。
a 1∶a 2=1∶1,v 1∶v 2=1∶√2,再增大两极板间的距离时,电场强度不变,电子在电场中受到的静电力不变,故a 1∶a 2=1∶1.由动能定理Ue=12mv 2得v=√2vv v,因两极板间的距离增大为原来的2倍,由U=Ed 知,电势差U 增大为原来的2倍,故v 1∶v 2=1∶√2.4。
大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十章 习题10答案
习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。
[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。
[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。
第十章静电场中的导体与电介质(标准答案)
一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。
已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。
金属球接地,球心电势为零。
球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。
2023人教版带答案高中物理必修三第十章静电场中的能量微公式版解题技巧总结
2023人教版带答案高中物理必修三第十章静电场中的能量微公式版解题技巧总结单选题1、关于电荷守恒定律,下列叙述不正确的是()A.一个物体所带的电荷量总是守恒的B.在与外界没有电荷交换的情况下,一个系统所带的电荷量总是守恒的C.在一定的条件下,一个系统内的等量的正、负电荷即使同时消失,也并不违背电荷守恒定律D.电荷守恒定律并不意味着带电系统一定和外界没有电荷交换答案:AA.根据电荷守恒定律,单个物体所带的电荷量是可以改变的,A错误;B.在与外界没有电荷交换的情况下,一个系统所带的电荷量总是守恒的,B正确;C.一个系统内的等量的正、负电荷同时消失,并不违背电荷守恒定律,C正确;D.电荷守恒定律并不意味着带电系统一定和外界没有电荷交换,D正确。
本题选不正确项,故选A。
2、有一接地的导体球壳,如图所示,球心处放一点电荷q,达到静电平衡时,则()A.点电荷q的电荷量变化时,球壳外电场随之改变B.点电荷q在球壳外产生的电场强度为零C.球壳内空腔中各点的电场强度都为零D.点电荷q与球壳内表面的电荷在壳外的合场强为零答案:DA.由于球壳接地,在静电平衡后,球壳与大地是等势体,所以球壳外的电场为0,不随q的变化发生变化,A 错误;B.平衡状态后,q与球壳内表面的电荷在壳外的合场强为零,q单独在球壳外产生的电场强度不为零,B错误;CD.金属球壳外表面接地,所以球壳外表面不带电,内表面带与q相反电性的电荷,当到达静电平衡状态后,q 与球壳内表面的电荷在壳外的合场强为零,故C错误,D正确。
故选D。
3、小明同学用自制的验电器进行了一些探究实验。
如图所示,小明使验电器带了负电荷,经过一段时间后,他发现该验电器的金属箔片(用包装巧克力的锡箔纸制作)几乎闭合了。
关于此问题,他跟学习小组讨论后形成了下列观点,你认为正确的是()A.小球上原有的负电荷逐渐消失了B.在此现象中,正电荷从金属球转移到金属箔中,中和了负电荷C.小球上负电荷减少的主要原因是潮湿的空气将电子导走了D.该现象是由于电子的转移引起的,不再遵循电荷守恒定律答案:C带负电的验电器在潮湿的空气中,经过一段时间后,小球上的负电荷(电子)被潮湿的空气导走了,但电荷在转移的过程中仍然守恒,故C正确,ABD错误。
2023人教版带答案高中物理必修三第十章静电场中的能量微公式版重点知识点大全
2023人教版带答案高中物理必修三第十章静电场中的能量微公式版重点知识点大全单选题1、如图所示,在三角形ABC的A点和C点分别固定两个点电荷,已知B点的电场强度方向垂直于BC边向上,那么()A.两点电荷都带正电B.两点电荷都带负电C.A点的点电荷带正电,C点的点电荷带负电D.A点的点电荷带负电,C点的点电荷带正电答案:DB点的电场强度方向垂直于BC边向上,则A点的点电荷在B处的电场强度方向是沿AB指向A,C点的点电荷在B 处的电场强度方向是沿BC指向B,这样二者矢量和才能垂直于BC边向上,如图所示,则分析可知A点的点电荷带负电,C点的点电荷带正电,故D正确,ABC错误。
故选D。
2、如图所示,正电荷Q置于一匀强电场中(图中水平直线为匀强电场的电场线),在以正电荷Q为圆心、半径为r 的圆周上有a、b、c三点,其中a点的电场强度Ea=0,则下列判断正确的是()A.匀强电场电场强度E=kQ2r2,方向水平向右B.匀强电场电场强度E=kQr2,方向水平向左C.c点电场强度Ec=0D.b点的电场强度Eb=√2kQr2,与匀强电场方向成45°角答案:DAB.因a点的电场强度Ea=0,所以正电荷在a点的电场强度与匀强电场的电场强度等大反向,即匀强电场的电场强度为E=kQ r2方向水平向右,故AB错误;C.由电场叠加原理知c点电场强度E c=2kQ r2方向水平向右,故C错误;D.同理可得b点的电场强度E b=√2kQ r2与匀强电场方向成45°角斜向上,故D正确。
故选D。
3、下列说法正确的是()A.库仑定律适用于任何电场的计算B.置于均匀带电空心球球心处的点电荷所受静电力为零C.当两个半径均为r、带电荷量均为Q的金属球中心相距为3r时,它们之间的静电力大小为kQ29r2D.若点电荷Q1的电荷量小于Q2的电荷量,则Q1对Q2的静电力小于Q2对Q1的静电力答案:BA.库仑定律的适用范围是真空中两个点电荷间的相互作用,故A错误;B.带电空心金属球的电荷均匀分布在金属球的外表面,球内各点的电场强度均为零,所以置于带电空心球球心处的点电荷所受静电力为零,故B正确;C.当两个半径均为r、带电荷量均为Q的金属球中心相距为3r时,两者不能看作点电荷,库仑定律不再适用,故C错误;D.两点电荷间的静电力是相互作用力,大小相等,方向相反,故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证:由库仑定律得 :
而:
∵ 角很小
∴
故:
即得: 证毕
10-4 在上题中, 如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小
球所带的电量q为多大?
解:由上题得:
10-5 氢原子由一个质子和一个电子组成。根据经典模型,在正常状态
下,电子绕核作圆周运动,轨道半径是。质子的质量,电子的质量,
∴
10-16 一个半径为R的半球面均匀带电,面电荷密度为s。求球心的电 场强度。
解:由题9-14知:圆环的电场强度为: 10-17 回答下列问题: (1)处于高斯面内的任何位置上的电荷对该高斯面的电通量是否都有贡 献?是否只要电量相同,贡献就相等? (2)处于高斯面外的任何位置上的电荷对该高斯面的电通量是否都无贡 献? (3)假设一个点电荷正好处于高斯面上,那么这个点电荷对该高斯面的 电通量是否有贡献? 答:(1)是的。高斯面内的任何位置上电荷对高斯面的电通量都有贡 献。只要电量相同,电性相同,贡献就相同。
∴ 方向沿轴线方向
故:
∴
(2) ∴
∴
∴ 10-14 一个半径为R的圆环均匀带电,线电荷密度为l。求过环心并垂 直于环面的轴线上与环心相距a的一点的电场强度。 解:如图:圆环上一线元上产生的电场强度为:
与其对称的一线元产生的电场强度为 : ,
两个电场强度的合成为: ∴ 故:
10-15 一个半径为R的圆盘均匀带电,面电荷密度为。求过盘心并垂直 于盘面的轴线上与盘心相距的P点电场强度。 解:由上题知,圆环上电场强度
∴ 10-11 有两个点电荷,电量分别为5.0´10-7C和2.8´10-8C,相距15 cm。求:
(1)一个电荷在另一个电荷处产生的电场强度; (2)作用在每个电荷上的力 已知:点电荷 求: 解: (方向沿两电荷联线向外)
(同上) (方向沿两电荷联线相互排斥)
10-12 求由相距l的 ±q电荷所组成的电偶极子,在下面的两个特殊空
可)。而高斯面上的处处为零,则必有:。
10-19如果把电场中的所有电荷分为两类,一类是处于高斯面S内的电
荷,其量用q表示,它们共同在高斯面上产生的电场强度为,另一类是
处于高斯面S外的电荷,它们共同在高斯面上产生的电场强度为,显然
高斯面上任一点的电场强度试证明:
(1) ;
(2)
解:高斯面的电通量可以表示为:
它们的电量为 。 (1)求电子所受的库仑力; (2)电子所受库仑力是质子对它的万有引力的多少倍? (3)求电子绕核运动的速率。 解:⑴
⑵
⑶ ∴
10-6 边长为a的立方体,每一个顶角上放一个电荷q。 解: 由对称性可知,任一顶角的电荷所受合力的大小是相等的。
如图示,求其中任一顶点A上电荷所受的力。建立直角坐标系
因为: 于是可以把高斯定理写为:
将式(1)代入上式,即得: (2)
10-20 一个半径为R的球面均匀带电,面电荷密度为s。求球面内、外
任意一点的电场强度。
解: 如图示.
(1) 取高斯面 () (半球为) 由高斯定理: 故
(2) 取高斯面为 () 由高斯定理: 的方向沿半径向外.(垂直于球面)
9-21 一个半径为R的无限长圆柱体均匀带电,体电荷密度为。求圆柱 体内、外任意一点的电场强度。
解:(1)B带+q 则导体B是一个等势体内部的电场强度为零。
(2)A带+q 则导体B产生静电感应静电平衡时:
(3)A带+q B带 B球壳电荷全部部分布在内表面,则
(4)A带 B的外表面接地 即: 10-31 两平行的金属平板和,相距,两板面积都是 ,带有等量异号电 荷,正极板接地,如图所示。忽略边缘效应,问: (1) 板的电势为多大? (2)在、之间且距板1.0 mm处的电势为多大?
第十章 电荷和静电场
10-1当用带电玻璃棒吸引干燥软木屑时,会发现软木屑一接触到玻璃 棒后又很快跳离。试解释之。 答:先极化接触后电荷一部分转移至软木屑,后同性电荷相斥。 10-2当带正电的玻璃棒吸引一个悬挂的干燥软木小球时,我们是否可 以断定软木小球带有负电荷?当带正电的玻璃棒排斥一个悬挂的干燥 软木小球时,我们是否可以断定软木小球带有正电荷? 答:不能。①软木小球可能带电荷为零,也可能带有负电荷。②可以 10-3两个相同的小球质量都是,并带有等量同号电荷,各用长为的丝 线悬挂于同一点。由于电荷的斥力作用,使小球处于题图所示的位 置。如果角很小,试证明两个小球的间距可近似地表示为:
方向沿往向向外 当r>R时: ; 当r<R时:
。 9-25 点电荷+q和-3q相距d = 1.0 m,求在它们的连线上电势为零和 电场强度为零的位置。
解:据题意,如图示:
; 当V=0时, (即:与连线上当距为处,电势为零);
如图示,电场强度为零的位置:
故:; (即:在+q左侧 m处电场强度为零)。 10-26 两个点电荷和,相距10 cm。设点A是它们连线的中点,点B的位 置离 为8.0 cm,离 为6.0 cm。求: (1)点A的电势;(2)点B的电势;(3)将电量为的点电荷由点B移到点A 所需要作的功。 如图示。
性相斥,
则由于试探电荷的引入,则该点的电场强度比要大。即, 在没有引入时,小球内的电荷分布是均匀的。
10-9 根据点电荷的电场强度公式当所考查的点到该点电荷的距离r接近 零时,则电场强度趋于无限大,这显然是没有意义的。对此应作何解 释? 答:这里是将电荷当作点电荷来处理,而实际情况当r接近零时电荷就 不能认为是点电荷了。因此此时公式 不成立。 10-10 离点电荷50 cm处的电场强度的大小为。求此点电荷的电量。 解:
解 将电容器AB放入盒中,在A、K间形成电容;B、K间形成电容
而、成串联关系,然后再与并联(如图示) 可见,放入金属盒中后,电容增大到原来的2倍。
10-34 一块长为、半径为R的圆柱形电介质,沿轴线方向均匀极化,极 化强度为P,求轴线上任意一点由极化电荷产生的电势。 解:建立如图示的坐标系,极化电荷密度为:
显然,上式中的第一项是高斯面内部电荷对高斯面电通量的贡献,第二
项是高斯面外部电荷对高斯面电通量的贡献。
高斯定理表述为“通过任意闭合曲面S的电通量,等于该闭合曲面
所包围的电量除以0,而与S以外的电荷无关。”可见,高斯面S以外的 电荷对高斯面的电通量无贡献。这句话在数学上应表示为:
(1)
所以,关系式的成立是高斯定理的直接结果。
∴ 与x轴夹角为 与y轴夹角为 与z轴夹角为 即:合力的方向为立方体的对角先方向=54.73°=54°44′= 10-7 计算一个直径为1.56 cm的铜球所包含的正电荷电量。 解:
(注:铜的密度 , 原子序数为29,原子量) 10-8 一个带正电的小球用长丝线悬挂着。如果要测量与该电荷处于同 一水平面内某点的电场强度E,我们就把一个带正电的试探电荷 引入 该点,测定F/q0。问是小于、等于还是大于该点的电场强度E? 答:若考虑电荷在电场力的作用下会在小球内产生移动(如图所示)同
已知:
求: (如图示) 解:
10-32 三块相互平行的金属平板a、b和c,面积都是 ,a、b相距4.0 mm,a、c相距2.0 mm,b、c两板都接地,如图所示。若使a板带正 电,电量为,略去边缘效应,求: (1) b、c两板上感应电荷的电量; (2) a板的电势。 已知:
求:、、 解:板上电量分布于它的两个侧面上,设右侧面电量为,左侧面的电 量,则用高斯定理可证,板上感应电量为,板上感应电量为,均匀分布 于与板相对的侧面上,因此、两板间场强及、两板间场强分别为:
(2)处于高斯面外的任何位置上的电荷对该高斯面的电通量无贡 献。
(3)点电荷正好处于高斯面上,则这个点电荷对高斯面的电通量是 有贡献的。
10-18 在高斯定理 中,高斯面上的E是否完全由式中的q所产生?
如果q = 0,是否必定有?反之,如果在高斯面上E处处为零,是否必
定有?
答:否,高斯面上的不完全由式中的所产生. 不一定(只需垂直,即
至电压, 然后将电源断开。现将一块厚度为、相对电容率为的电介
质,平行地插入电容器中,求:
(1)未插入电介质时电容器的电容 ;
(2)电容器极板上
所带的自由电荷;
当r<R时: 当r>R时: 当r<R时: 10-29 什么是导体的静电平衡?金属导体处于静电平衡时具有哪些性 质? 答:在金属导体中,自由电子没有定向运动的状态称为静电平衡。金属导
体处于静电平衡时具有以下性质: (1)整个导体是等势体,导体的表面是等势面。 (2)导体表面附近的电场强度处处与表面垂直。
半径为R的圆面,电荷面密度为的面电荷产生的电势为: 对于均匀极化,极化电荷只出现在电介质的表面上
10-35 厚度为2.00 mm的云母片,用作平行板电容器的绝缘介质,其相 对电容率为2。求当电容器充电至电压为400 V时,云母片表面的极化 电荷密度。 解:
故:
10-36 平行板电容器两极板的面积都是,相距。用电源对电容器充电
求:、 、
故: (电场力做功) 外力做功为。
10-27 一个半径为R的圆盘均匀带电,面电荷密度为。求过盘心并垂直 于盘面的轴线上与盘心相距的一点的电势,再由电势求该点的电场强 度。
10-28 一个半径为R的球面均匀带电,球面所带总电量为Q。求空间任 意一点的电势,并由电势求电场强度。 解:如图,设面密度为 当r>R时:
解:据题意.电场分布具有轴对称,以对称轴为x轴(如图示) ⑴取高斯面半径为r.轴为x轴的柱面 (柱长为) () 则,由高斯定理:
方向垂直于x轴沿径向向外. ⑵当r>R时.取高斯面为(如图)
则,由高斯面定理: 方向垂直x轴沿径向向外.
10-22 两个带有等量异号电荷的平行平板,面电荷密度为 ±s,两板 相距d。当d比平板自身线度小得多时,可以认为两平行板之间的电场 是匀强电场,并且电荷是均匀分布在两板相对的平面上。 (1)求两板之间的电场强度;