最新小学六年级数学:定义新运算
小学数学定义新运算
小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。
在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。
见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。
例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。
如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。
二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。
需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。
(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。
符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。
三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。
分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。
那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。
(完整版)定义新运算(最新整理)
例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9 的值?
练习:(1)对定义运算※为 a※b=(a+b)×2。 求 5※7 和 17※5 的结果?
(2)对于任意的两个数 a 和 b,规定 a b= 3a-b÷3。求 6 9 和 9 6 的值。
1
例题延伸:若 A * B 表示(A+3×B)×B,求 5 * 7 的值。
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为 数学语言,能够根据题意列出新符号代表的数学算式。
PQ
例 4:P、Q 表示两个数,P△Q=
,求 4△(6△9)的值是多少?
3
2
练习:(1)如果 a b= a b ,那么 1998 2000 的值是多少? 2
a 1
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值? (体现对应思想和解题的三
个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运 算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义 的算式含义,能够将新定义的运算方法转化为旧的运算规则。 一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与 定义算式中字母的对应;(3)将对应数字代入算式计算 (二)例题引导: 第一类:(直接运算型) 例题引导: ①表示求两个平均数的运算,则 a①b=(a+b)÷2,当 a=5,b=15 时,求 a①b?
(完整)小学六年级数学:定义新运算.doc
第三讲定义新运算学生姓名年级小学 6 年级学科数学授课教师日期时段核心内容新运算课型教学目标重、难点1、能理解运算定义及熟练解决新运算2、培养学生整体思想和转换思想;3、会灵活运用这些方法解决实际问题新运算解答方程;【精准诊查】【课首小测】1、一个长为 20 厘米、宽为 16 厘米的长方形纸片,沿它的边剪去一个长为8 厘米、宽为 4 厘米的小长方形。
求;剩余部分的周长。
2、几个连续自然数相加,和能等于56 吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。
【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。
1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
1【例题精讲】【例 1】定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
a 1【例 2】定义新运算为a e bb( 1)求2 e 3 e 4 的值;(2)若 x e 4 1.25 ,则x的值为多少?【例 3】如果:1※2=1+112 ※ 3= 2+22+2223※ 4= 3+33+333+3333计算:(3※2)× 5【例 4】对于任意的自然数a和b,规定新运算:a b a ( a 1) (a 2) L( a b1) ( 1)求 1 100 的值(2)已知x1075,求x为多少?【我爱展示】1. P 、 Q 表示数, P * Q 表示P Q,求 3 * (6 * 8)。
22. 如果 a △ b 表示 ( a 2) b ,例如 3△ 43 24 4 ,那么,当 a △ 5=30时 ,a=3. 定义: 6 ※2=6+66=722※3=2+22+222=246, 1 ※4=1+11+111+1111=1234. 7 ※5=。
(完整)小学六年级数学:定义新运算
第三讲定义新运算【课首小测】1、一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为4厘米的小长方形。
求;剩余部分的周长。
2、几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。
【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。
1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
【例题精讲】【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值。
【例2】定义新运算为1a ab b+=(1)求()234的值; (2)若4 1.25x=,则x 的值为多少?【例3】如果:1※2=1+112※3=2+22+222 3※4=3+33+333+3333计算:(3※2)×5【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++++-(1)求1*100的值 (2)已知x *10=75,求x 为多少?【我爱展示】1.P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)。
2.如果a △b 表示(2)a b -⨯,例如3△4()3244=-⨯=,那么,当a △5=30时,a=3.定义: 6※2=6+66=722※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5= 。
4.定义新运算”⊗“,使下列算式成立:248⊗=,5313⊗=,3511⊗=,9725⊗=,求73⊗= 。
5.对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-,如果(3)23660x **=,那么x 等于几?【能力展示】【知识技巧回顾】1、学习到哪些知识:2、解答新运算的步骤:【巩固练习】1.如果规定a b *=5×a-12b ,其中a 、b 是自然数,那么106*= 。
(完整)小学六年级奥数——新定义运算
第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。
【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、^、与四则运算中“ +、一、X、+ ”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a + b) + (a-b),求13*5 和13* ( 5*4)。
【举一反三】1、设a*b=(a+b) x (a-b),求27*9华罗庚等,这是2、设a*b=a2+2b,求10*6 和5*(2*8)。
3、设a*b=3a —b x -,求(25*12 ) * (10*5 )。
2求3 △( 4 △ 6)例2、设p、q是两个数,规定:p△q=4 Xq—(p + q)【举一反三】求5 △( 6 △ 4 )。
1、设p、q是两个数,规定: p A q=4 Xq—(p +q)2、设p、q是两个数,规定: p A q=p2+ (p —q) X2求30 △( 5 △ 3 )。
3、设M、N是两个数,规定:M * N10 * 20--4例3、如果1 *3 * 3 13311 111 11114 * 2333,11111,2 * 4 2 22 222 2222,4 44,那么7 * 4 ______ ;210 * 2【举一反三】1、如果1 * 53 * 31133111333,1111…那么11111, 2 * 44 * 42、规定a * b aa aaa aa a,那么8 *(b-1 )个a3、如果2 * 113334L,那么(64442 22 222 2222,* 3) (2*6)例4、规定② 3 4,④ 3 4 5 ,⑤ 4 5 6,…如果那么,A是几?三】1、规定:②11 1⑧⑨2 3,③ 23 4,④ 34 5,⑤ 45 6,…如果】A,那么A=⑨2、规定:③21 1⑩石3 4,④ 34 5,⑤ 4 56,⑥1石W,那么口= ----------------5 6 7,…如果3、如果 1 2=1+2 ,2 3=2+3+4,…,5 6=5+6+7+8+9+10,那么,在X 3=54 中, X = ______ 例5、设a e b 2b 护,求X e(4 e 1)34中的未知数x三】1、设a e b 3a 2b,已知x e (4 e 1) 7,求x。
小学六年级奥数——新定义运算
第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、?等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a*b=(a+b)×(a-b),求27*9。
2、设a*b=a 2+2b,求10*6和5*(2*8)。
3、设a*b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
小学六年级奥数——新定义运算
小学六年级奥数——新定义运算第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。
——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a*b=(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++,那么8*5= 。
小学六年级奥数——新定义运算()
第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、 等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a *b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a *b =(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*51111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
小学六年级奥数——新定义运算
第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a *b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a *b =(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
定义新运算完整版
定义新运算知识要点:定义新运算就是以加减乘除四则运算为基础,用某种新的符号来表示新运算。
见到这种新的运算符号所定义的运算后,就按照它所规定的“运算程序”进行运算,直到得出最后的结果。
运算时要严格按照新运算的定义要求进行计算,不得随意改变运算顺序,这是最关键的一点。
运算时,有括号的先算出括号里的值,再算出括号外的值,在没有确定新定义运算具有交换律,结合律之前,不能运用运算定律解题。
运算的符号可以是※,也可以是○,□。
§。
等,符号的种类是次要的,符号定义的运算运算程序才是主要的。
例1:设a、b是两个自然数,定义a*b=2a+4b,计算4*5是多少?开心一练:1设a、b是两个自然数,定义a*b=3a+5b,计算6*3是多少?2 对于自然数,定义a*b=3a+2b,求(1)10*11(2)11*10例2:定义新运算“*”对任何数a和b,有a*b=a×b-a+b,计算(1)8*10(2)(3*4)*5开心一练:1 定义新运算“*”对任何数a和b,有a*b=a×b+a-b,计算(1)4*6 (2)(4*6)*52对于整数a、b,设a*b=3a+b-1,求(1)4*(3*5)(2)(4*3)*53规定a△b=3a-b,求10△(2△5)。
例3:设a*b=4a-3b,求(1)5*(3*2)(2)x*(2*x)=15,求x。
开心一练:1已知a*b=a×b+a,如果(3*x)*2=18求x。
2设a*b=5a+4b,求(1)4*(3*2)(2)已知x*(4*x)=122,求x。
例4:对整数a*b,规定a*b=ax+b,如果4*5=23,求3*2的值。
开心一练:1 对整数a*b,规定a*b=a÷b×2+ab+x,如果6*3=28,求5*2的值。
2 对于整数a、b,设a*b=3a-bx,已知5*4=7,求x。
例5:设a、b都表示数,规定a♦b=3×a-2×b (1)求3♦2,2♦3。
小学数学专题 定义新运算 例题+练习
定义新运算一、知识点总结:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、例题讲解:【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
解答:13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
解答:3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学数学人教新版六年级的上册奥数系列讲座:定义新运算(含答案解析)
小学数学人教新版六年级上册适用资料定义新运算一、知识重点定义新运算是指运用某种特别符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,重点是要正确地理解新定义的算式含义,而后严格依据新定义的计算程序,将数值代入,转变成惯例的四则运算算式进行计算。
定义新运算是一种人为的、暂时性的运算形式,它使用的是一些特别的运算符号,如: *、△、⊙等,这是与四则运算中的“+、-、×、÷”不一样的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转变前,是不合适于各种运算定律的。
二、精讲精练【例题 1 】假设 a*b=(a+b)+(a-b) ,求 13*5 和 13* (5*4 )。
【思路导航】这题的新运算被定义为: a*b 等于 a 和 b 两数之和加上两数之差。
这里的“ * ”就代表一种新运算。
在定义新运算中相同规定了要先算小括号里的。
所以,在 13*( 5*4 )13*5= (13+5 ) + (13-5 )=18+8=26中,就要先算小括号里的5*4= (5+4 )+ (5-4 )=10( 5*4 )。
13* (5*4 ) =13*10= ( 13+10 )+ (13-10 )练习 1:=261.将新运算“ * ”定义为: a*b=(a+b)×(a-b).。
求27*9。
2.设 a*b=a2+2b,那么求10*6和5*(2*8)。
3.设 a*b=3a - b×1/2 ,求( 25*12 )* (10*5 )。
【例题 2 】设 p 、q 是两个数,规定: p △q=4 ×q-(p+q)÷2。
求3△(4△6)。
1【思路导航】依据定义先算 4△6 。
在这里“△”是新的运算符号。
3△(4 △6)=3 △【4×6 -( 4+6 )÷2】=3 △19=4 ×19 -( 3+19 )÷2=76-11=65练习 2:1.设 p、 q 是两个数,规定p △q =4×q -( p+q )÷2,求 5△(6 △4)。
(完整版)六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
完整)小学六年级数学:定义新运算
完整)小学六年级数学:定义新运算一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为4厘米的小长方形。
求剩余部分的周长。
2.几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能,说明理由。
导学】定义新运算新运算指的是具有新的运算符号和运算法则的运算。
要解答这类题目,需要理解“新”的含义。
解答新运算题目的方法有以下三种:1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
例题精讲】例1:定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
解:先计算3△4,3△4=(3+1)÷4=1.再代入6△1,6△1=(6+1)÷1=7.所以,6△(3△4)=7.例2:定义新运算为ab=(a+1)÷b,已知4=1.25,则x的值为多少?(1)求2(34)的值;(2)若xab=75,求x 的值。
解:(1) 2(34)=2×(3+1)÷4=2.(2) xab=x×(x+1)÷4=75.化简得x²+x=300,解得x=15或x=-20.因为x是自然数,所以x=15.例3:如果:1※2=1+11、2※3=2+22+222、3※4=3+33+333+3333,计算:(3※2)×5.解:3※2=3+33+333=369,所以(3※2)×5=1845.例4:对于任意的自然数a和b,规定新运算:a b a(a1)(a2)(a b1)。
(1)求1100的值(2)已知x1075,求x的值?解:(1) 1100=1+2+3+…+100=5050.(2) x10=x +(x+1)+…+(x+9)=10x+45,化简得x=3.能力展示】知识技巧回顾】1.研究到了新运算的定义及解题方法。
小学六年级数学:定义新运算
小学六年级数学:定义新运算【课首小测】小学六年级数学:定义新运算2.几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能.说明理由.【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义.1.按照新定义的运算准确计算,常见的如△.◎.※等.(特殊的运算符号,表示特定的意义,是人为设定的.)2.理解新定义,严格按照新定义的式子代入数值计算.3.把定义的新运算转化成我们所熟悉的四则运算或方程.【例题精讲】【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值.【例2】定义新运算为1a ab b+=(1)求()234的值; (2)若4 1.25x=,则x 的值为多少?【例3】如果:1※2=1+112※3=2+22+222 3※4=3+33+333+3333计算:(3※2)×5【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++++-(1)求1*100的值 (2)已知x *10=75,求x 为多少?【我爱展示】1.P .Q 表示数,*P Q 表示2P Q+,求3*(6*8).2.如果a △b 表示(2)a b -⨯,例如3△4()3244=-⨯=,那么,当a △5=30时,a=3.定义: 6※2=6+66=722※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5= .4.定义新运算”⊗“,使下列算式成立:248⊗=,5313⊗=,3511⊗=,9725⊗=,求73⊗= .5.对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-,如果(3)23660x **=,那么x 等于几?【能力展示】【知识技巧回顾】1.学习到哪些知识:2.解答新运算的步骤:【巩固练习】1.如果规定a b *=5×a-12b ,其中a.b 是自然数,那么106*= . (2011实外)2.对于自然数a.b.c.d ,符号a b d c ⎛⎫⎪⎝⎭表示运算a ×c-b ×d ,已知1<14b d ⎛⎫⎪⎝⎭<3,则b+d 的值是 . (2010实外)3.定义新运算:aba b a b∆=+,求2△10△10= . (2012成外)4.对任意两数a 和b ,都有a ※b=23a b +,若6※x=223,则x= . (2009实外)5.如果规定:3=2×3×4,4=3×4×5,12=11×12×13,…,111=252626-⨯ ,那么 = . (七中嘉祥)6.设a.b 分别表示两个数,如果a b *=342a b +,如4*3=3443122⨯+⨯=,则 (1)()267** = .(2)如果()67109x **=,那么x = .(七中嘉祥)8.规定:对于大于1的自然数n ,“”表示如下运算:=()11n n ⨯+如: =134⨯,那么当n=49时,计算 + + + … + (2013西川)【课后作业】1.现定义一种新运算“*”,对于任意两个整数,a*b=a ×b-1,则8*(2*3)的结果是 .2.定义新运算:对任意实数a.b ,都有a ☆b=2a b -,那么2☆1= .3 23 4 n n3.若a.b是有理数,我们定义新运算“※”,使得a※b=2a-b,则(5※3)※1= . 4.定义一种新运算a▼b=2a-b,a▲b=b-a,求(2▼3)▲(3▼2)= .5.定义新运算“♂”,对任意a,b有a♂b=32a b,若4♂x=5,求x的值.。
六年级数学 定义新运算
第4讲定义新运算例1“◎”表示一种新的运算,它是这样定义的:a ◎b=a×b-(a+b) 求:(1) 3◎5;(2) (3◎4)◎5例2将新运算“*”定义为:a *b= (a 1×b 1)÷(a 1÷b1)(a 、b 非0)。
求3*(4*5).例3如果2△3=2+3+4=9,5△4=5+6+7+8=26, 那么:(1)求9△5; (2)解方程:x △3=15。
例4规定“□”的运算法则如下,对于任何整数a ,b :2a+b-1 (a+b≥10)a□b=2ab (a+b<10) 求:1□2+3□+3□4+4□5+5□6+6□7+7□8+8□9+9□10例5定义运算“#”,它的意义是a#b=a+aa +aaa +aaaa …+aa aaa (a ,b 都是非0自然数)。
求: (1)2#3,3#2;(2)1#x=123456789,求x ;(3)5678×(5677#2)-5677×(5678#2)。
1.设a ☆b=a 2-b 2,求15☆13=( )。
2.设a*b=4×a -5×b ,求: (1)5*4=( ):(2)(6*4)*2=( ):(3)x*(2*x)=18,x=( )。
3.如果o :l :6的含义表示o×b 一口+6,那么2半(4牢 6)水8=( )。
4.规定A∆ b=b a -a b,则5∆3+158=( )5.对于整数a,b ,规定运算#的含义为: a#6=a× b+a+1,又知(2#x)#2=10, 则x= ( )。
6.对于任意非零自然数a,b ,规定 a*b=a÷b×2+3且256*x=19, 则x = ( )。
7.规定o ※b= ba ba +⨯,则2※2※10 = ( )。
8.对于任意非零自然数x 、y ,定义新运算口如下:若x 、y 奇偶性相同, 则x □y=(x+y)÷2;若x 、y 奇偶性不同, 则x □y=(x+y+1)÷2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲定义新运算
1
2
【精准诊查】
3
【课首小测】
4
1、一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为5
4厘米的小长方形。
求;剩余部分的周长。
6
7
8
9
10
2、几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;
11
如果不能、说明理由。
12
13
14
15
【互动导学】
16 【导学】: 定义新运算
17 新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。
18
1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意19
义,是人为设定的。
) 20
2.理解新定义,严格按照新定义的式子代入数值计算。
21
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
22
23
24 【例题精讲】
25 【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值。
26
27
28
29
30
31 【例2】定义新运算为1a a b b
+= 32 (1)求()234的值; (2)若4 1.25x =,则x 的值为多少? 33
34
35 36
【例3】如果:1※2=1+11
37 2※3=2+22+222 38
3※4=3+33+333+3333 39
计算:(3※2)×5
40
41
42
43
44 【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++
++- 45 (1)求1*100的值 (2)已知x *10=75,求x 为多少? 46
47
48
49
50
51
52
53
54
55 【我爱展示】
56 1.P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8)。
57
58
59
60
61
62
2.如果a△b表示(2)
a b
-⨯,例如3△4()
=-⨯=,那么,当a△5=30时,a=
3244
63
64
65
66
3.定义: 6※2=6+66=72
2※3=2+22+222=246,
67
68
1※4=1+11+111+1111=1234.
69
7※5= 。
70
71
72
73
74
4.定义新运算”⊗“,使下列算式成立:
75
⊗=,求73
⊗=。
⊗=,3511
248
⊗=,5313
⊗=,9725
76
77
78
79
5.对于任意的两个自然数a和b,规定新运算*:(1)(2)(1)
a b a a a a b
*=+++-,如果80
(3)23660
x**=,那么x等于几?
81
82
83
84
85 【能力展示】 86
【知识技巧回顾】 87
1、学习到哪些知识: 88
2、解答新运算的步骤: 89
【巩固练习】 90
1.如果规定a b *=5×a-12b ,其中a 、b 是自然数,那么106*= 。
(2011实外) 91
92
93
2.对于自然数a 、b 、c 、d ,符号a b d c ⎛⎫ ⎪⎝⎭
表示运算a ×c-b ×d , 94 已知1<14b d ⎛⎫ ⎪⎝⎭
<3,则b+d 的值是 。
(2010实外) 95
96
97 3.定义新运算:ab a b a b ∆=
+,求2△10△10= 。
(2012成外) 98
99
100
101 4.对任意两数a 和b ,都有a ※b=23a b +,若6※x=223,则x= 。
(2009实外) 102
103
104
5.如果规定:3=2×3×4,4=3×4×5,12=11×12×13,…,
105 111=252626
-⨯ ,那么 = 。
(七中嘉祥) 106
107
108 6.设a 、b 分别表示两个数,如果a b *=342a b +,如4*3=3443122⨯+⨯=,则 109
(1)()267** = 。
110 (2)如果()67109x **=,那么x = 。
(七中嘉祥)
111
112
113 7.定义某种新运算⊙:s=a ⊙b 的运算原理如图流程图所示,则5⊙4-3⊙4= 。
114
115
116
117
118
119
120
121
122
123
124
125
126 127
8.规定:对于大于1的自然数n ,
“ ”表示如下运算: 128
129
=()
11n n ⨯+ 130 如: =134
⨯,那么当n=49时,计算 + + + … + (2013西川) 131 132
133
134
135
136
137
【课后作业】
138 1.现定义一种新运算“*”,对于任意两个整数,a*b=a ×b-1,则8*(2*3)的结果是 。
139
140
141
142
143
2.定义新运算:对任意实数a 、b ,都有a ☆b=2a b -,那么2☆1= 。
144
145
146
147
3.若a 、b 是有理数,我们定义新运算“※”,使得a ※b=2a-b ,则(5※3)※1= 。
148
149
150
151
152
153
4.定义一种新运算a▼b=2a-b,a▲b=b-a,求(2▼3)▲(3▼2)= 。
154
155
156
157
158
159
5.定义新运算“♂”,对任意a,b有a♂b=
3
2
a b
,若4♂x=5,求x的值。
160 161 162。