BP神经网络的基本原理+很清楚
bp网络原理
![bp网络原理](https://img.taocdn.com/s3/m/b7d93cb1951ea76e58fafab069dc5022aaea4638.png)
bp网络原理BP网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的前馈神经网络。
它是一种常用的人工神经网络模型,被广泛应用于模式识别、预测和分类等任务中。
BP网络的基本原理是建立一个多层的神经网络结构,包括输入层、隐藏层和输出层。
每个神经元都与下一层的所有神经元连接,并通过权重连接进行信息传递。
输入信号从输入层经过权重连接传递到隐藏层,再经过隐藏层的激活函数作用后传递到输出层。
BP网络的训练过程主要分为前向传播和反向传播两个阶段。
在前向传播阶段,输入样本经过网络的各层神经元,得到输出结果。
每个神经元将输入信号与权重相乘并累加,然后经过激活函数进行非线性转换,得到该神经元的输出。
在反向传播阶段,通过计算输出层和期望输出之间的误差,按照梯度下降的方法不断调整每个神经元的权重,以最小化误差。
误差通过链式法则从输出层回传到隐藏层和输入层,根据权重的梯度进行更新。
反复迭代上述的前向传播和反向传播过程,直到网络的输出误差满足要求或训练次数达到指定值为止。
BP网络具有较好的非线性拟合能力和学习能力。
它的优点在于能够通过训练样本自动调整权重,从而对输入样本进行分类和预测。
然而,BP网络也存在一些问题,如容易陷入局部最小值、训练速度慢等。
为了克服BP网络的局限性,研究者们提出了一些改进方法,如改进的激活函数、正则化技术、自适应学习率等。
这些方法在提高网络性能和加速训练过程方面起到了积极的作用。
总结起来,BP网络是一种基于梯度下降算法的前馈神经网络,通过前向传播和反向传播的方式不断调整神经元的权重,以实现输入样本的分类和预测。
虽然存在一些问题,但通过改进方法可以提高其性能和训练速度。
BP神经网络的基本原理_一看就懂
![BP神经网络的基本原理_一看就懂](https://img.taocdn.com/s3/m/84c3c0c482d049649b6648d7c1c708a1294a0a42.png)
BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络原理
![bp神经网络原理](https://img.taocdn.com/s3/m/6b6604610622192e453610661ed9ad51f01d54e6.png)
bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。
BP神经网络主要由输入层、隐藏层
和输出层构成。
在BP神经网络中,每个神经元都有自己的权重和偏置值。
数
据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。
神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。
然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。
这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。
具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。
首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。
最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。
这个过程反复进行,直到达到停止条件。
BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。
同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。
然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。
总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。
它
可以应用于分类、回归等任务,并具有较强的自适应能力。
但同时也有一些问题需要注意。
BP神经网络原理与应用实习论文
![BP神经网络原理与应用实习论文](https://img.taocdn.com/s3/m/c94ab4349ec3d5bbfc0a7444.png)
学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。
神经网络原理及BP网络应用实例
![神经网络原理及BP网络应用实例](https://img.taocdn.com/s3/m/4dec207027d3240c8447efaa.png)
神经网络原理及BP网络应用实例摘要:本文主要对神经网络原理进行系统地概述,再列举BP网络在曲线逼近中的应用。
神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
随着计算机的发展,目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
本文将介绍人工神经网络的基本概念、基本原理、BP神经网络、自适应竞争神经网络以及神经网络的应用改进方法。
关键字:神经网络;收敛速度;BP网络;改进方法The principle of neural network and the applicationexamples of BP networkAbstract:Neural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. This paper will introduces the basic concepts, basic principles, BP neural network, adaptive competitive neural network and the application of artificial neural network.Keywords:neural network,convergence speed,BP neural network,improving method1 神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
BP神经网络模型的基本原理
![BP神经网络模型的基本原理](https://img.taocdn.com/s3/m/be74ed5f32687e21af45b307e87101f69e31fb02.png)
BP神经网络模型的基本原理
1. 神经网络的定义简介:
神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测. 基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP网络), 是目前应用最成功和广泛的人工神经网络.
2. BP模型的基本原理:
学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型. BP网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间.。
BP神经网络基本原理与应用PPT
![BP神经网络基本原理与应用PPT](https://img.taocdn.com/s3/m/e6873146e53a580217fcfe67.png)
BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:
bp神经网络基本原理
![bp神经网络基本原理](https://img.taocdn.com/s3/m/2c17834c1fd9ad51f01dc281e53a580216fc501a.png)
bp神经网络基本原理
BP神经网络,指的是反向传播算法(Back Propagation),它是深度学习里面几乎用最多
的算法,也是机器学习里最重要的一种算法之一。
BP神经网络可以看成是一个节点网络,由复杂的连接层组成。
每个节点的输入是一系列的数据,
这些数据会被权重(Weight)乘法处理,得到一个有着一定函数关系的节点输出。
这个输出会激
活其它节点,以此形成一个层与层之间连接,最
后输出我们制定的标准输出。
正如人类的大脑一样,BP神经网络通过积极学习来逐步改善对外界变化做出更加合理的反应,
从而更长久的记忆。
在机器学习里,它就是通过
反复训练调整神经元之间的权重,来使得神经网路得到更好的调整,以便学习效果最佳的状态。
由此可见,BP神经网络是互联网领域中一种极其重要的算法,对于一些比较繁杂的业务运行场景,通过分层的处理,不但能提高计算效率,同时也能较好的处理复杂的数据训练,从而给用户带来更加可靠准确的服务体验。
BP神经网络
![BP神经网络](https://img.taocdn.com/s3/m/9fd6d4d1951ea76e58fafab069dc5022aaea4609.png)
BP神经网络BP神经网络今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据挖掘等领域。
接下来介绍BP神经网络的原理及实现。
Contents1. BP神经网络的认识2. 隐含层的选取3. 正向传递子过程4. 反向传递子过程5. BP神经网络的注意点6. BP神经网络的C 实现1. BP神经网络的认识BP(Back Propagation)神经网络分为两个过程(1)工作信号正向传递子过程(2)误差信号反向传递子过程在BP神经网络中,单个样本有个输入,有个输出,在输入层和输出层之间通常还有若干个隐含层。
实际上,1989年Robert Hecht-Nielsen证明了对于任何闭区间内的一个连续函数都可以用一个隐含层的BP网络来逼近,这就是万能逼近定理。
所以一个三层的BP网络就可以完成任意的维到维的映射。
即这三层分别是输入层(I),隐含层(H),输出层(O)。
如下图示2. 隐含层的选取在BP神经网络中,输入层和输出层的节点个数都是确定的,而隐含层节点个数不确定,那么应该设置为多少才合适呢?实际上,隐含层节点个数的多少对神经网络的性能是有影响的,有一个经验公式可以确定隐含层节点数目,如下其中为隐含层节点数目,为输入层节点数目,为输出层节点数目,为之间的调节常数。
3. 正向传递子过程现在设节点和节点之间的权值为,节点的阀值为,每个节点的输出值为,而每个节点的输出值是根据上层所有节点的输出值、当前节点与上一层所有节点的权值和当前节点的阀值还有激活函数来实现的。
具体计算方法如下其中为激活函数,一般选取S型函数或者线性函数。
正向传递的过程比较简单,按照上述公式计算即可。
在BP神经网络中,输入层节点没有阀值。
4. 反向传递子过程在BP神经网络中,误差信号反向传递子过程比较复杂,它是基于Widrow-Hoff学习规则的。
假设输出层的所有结果为,误差函数如下而BP神经网络的主要目的是反复修正权值和阀值,使得误差函数值达到最小。
bp神经网络3篇
![bp神经网络3篇](https://img.taocdn.com/s3/m/22c720e229ea81c758f5f61fb7360b4c2e3f2a2a.png)
bp神经网络第一篇:BP神经网络的基本原理BP神经网络是一种最为经典的人工神经网络之一,它在模拟神经元之间的信息传输和处理过程上有很高的效率,可以被应用于多种领域,如图像处理、模式识别、预测分析等。
BP神经网络的核心思想是通过将神经元之间的权值调整来达到优化网络结构的目的,从而提高网络的准确率和泛化能力。
BP神经网络包含三个基本部分:输入层、隐层和输出层。
其中,输入层用于接收原始数据,隐层是神经元之间信号处理的地方,而输出层则用于输出最终的结果。
与其他的神经网络不同,BP神经网络使用了反向传播算法来调整神经元之间的权值。
这个算法是一种基于梯度下降的优化方法,通过最小化目标函数来优化权值,从而获得最小的误差。
具体来说,反向传播算法分为两个步骤:前向传播和反向传播。
前向传播是指从输入层开始,将数据经过神经元的传递和处理,一直到输出层,在这个过程中会计算每一层的输出值。
这一步完成后,就会得到预测值和实际值之间的误差。
接着,反向传播将会计算每个神经元的误差,并将误差通过链式法则向后传播,以更新每个神经元的权值。
这一步也被称为误差反向传播,它通过计算每个神经元对误差的贡献来更新神经元之间的权值。
总的来说,BP神经网络的优点在于其具有灵活性和较高的准确率。
但同时也存在着过拟合和运算时间过长等问题,因此在实际应用中需要根据实际情况加以取舍。
第二篇:BP神经网络的应用BP神经网络作为一种人工智能算法,其应用范围非常广泛。
以下是BP神经网络在不同领域的应用案例。
1. 图像处理BP神经网络在图像处理方面的应用主要有两个方面:图像分类和图像增强。
在图像分类方面,BP神经网络可以通过对不同特征之间的关系进行学习,从而对图像进行分类。
在图像增强方面,BP神经网络可以根据图像的特征进行修复和增强,从而提高图像的质量。
2. 股票预测BP神经网络可以通过对历史数据的学习来预测未来股市趋势和股票价格变化,对投资者提供参考依据。
3. 语音识别BP神经网络可以对人声进行测量和分析,从而识别出人说的话,实现语音识别的功能。
机器学习-BP(back propagation)神经网络介绍
![机器学习-BP(back propagation)神经网络介绍](https://img.taocdn.com/s3/m/4c0e8b55ae1ffc4ffe4733687e21af45b307fe24.png)
BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。
它是一种监督学习算法,用于解决分类和回归问题。
以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。
输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。
权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。
这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。
激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。
常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。
前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。
数据经过一系列线性和非线性变换,最终产生网络的预测输出。
反向传播(Backpropagation):反向传播是BP神经网络的核心。
它用于计算网络预测的误差,并根据误差调整网络中的权重。
这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。
2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。
3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。
训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。
目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。
超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。
这些参数的选择对网络的性能和训练速度具有重要影响。
BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。
BP神经网络的基本原理+很清楚
![BP神经网络的基本原理+很清楚](https://img.taocdn.com/s3/m/e93cbe7b32687e21af45b307e87101f69e31fbfe.png)
BP神经网络的基本原理简介BP神经网络是一种前馈式的人工神经网络,也是最常用的人工神经网络之一。
由于其强大的非线性处理能力和适应性,BP神经网络在许多领域中都具有广泛的应用,如模式识别、预测、分类等。
BP神经网络的基本原理是通过一次或多次前向传输和反向传输的过程,来训练神经网络的权值和偏置,从而使神经网络的输出误差最小化。
在训练过程中,利用误差反向传播算法将误差从输出层向输入层进行传递,并根据误差大小对网络的权值和偏差进行调整,直到误差小于设定的阈值为止。
BP神经网络的结构BP神经网络由多个神经元组成,通常分为输入层、输出层和至少一个隐藏层。
隐藏层的数量可以根据应用需求进行设置。
每个神经元都与其他神经元相连,权值和阈值决定了神经元之间的连接强度。
输入层接收输入信号,输出层输出网络的输出结果,隐藏层则负责处理和转换输入层到输出层之间的信息传递。
每个神经元都有一个激活函数,用于将输入信号转化为输出信号。
BP神经网络的训练过程BP神经网络的训练过程包含以下几个步骤:1.初始化权值和偏置,通常使用随机数进行初始化。
2.将训练数据集输入神经网络,网络输出结果和期望结果进行比较,计算误差。
3.根据误差反向传播算法,计算每个神经元的误差,并更新权值和偏置。
4.计算整个训练集的平均误差,直到误差小于设定的阈值为止。
反向传播算法是BP神经网络训练中的关键步骤,其基本原理是将误差从输出层反向传播到输入层,并根据误差大小训练每个神经元的权值和偏置。
该算法通过链式法则计算每个神经元的输出、误差和权值的梯度,并利用梯度下降法来更新权值和偏置。
BP神经网络的优缺点BP神经网络具有以下优点:1.具有强大的非线性处理能力。
2.可以对任意复杂的输入输出关系进行建模和预测。
3.训练过程不需要先验知识,具有较高的自适应性。
BP神经网络的不足之处:1.训练过程需要大量的计算资源和时间。
2.容易受到局部最优解的影响。
3.容易出现过拟合的问题。
阐述bp神经网络的原理
![阐述bp神经网络的原理](https://img.taocdn.com/s3/m/e0bc3d15bc64783e0912a21614791711cc79790b.png)
阐述bp神经网络的原理
BP神经网络全称为反向传播神经网络,是一种常用的人工神经网络模型。
其原理基于两个基本思想:前向传播和反向误差传播。
前向传播:BP神经网络是一个多层感知器,由输入层、隐藏层和输出层组成。
输入层接收外部输入的数据,隐藏层负责处理输入,并传递给输出层,输出层根据处理结果生成输出。
隐藏层和输出层的每个神经元都有一个权重向量,用于对输入数据进行线性组合。
然后,通过激活函数对线性组合结果进行非线性变换,得到该神经元的输出。
隐藏层和输出层的每个神经元的输出都会作为下一层神经元的输入。
反向误差传播:当神经网络的输出与期望输出之间存在差异时,需要通过反向传播算法来调整权重,以减小这个误差。
算法的基本思想是将误差从输出层向隐藏层逐层传递,通过调整每个神经元的权重,最终使得网络的输出与期望输出尽可能接近。
具体实现时,首先计算输出层的误差,然后根据误差调整输出层的权重。
接下来,将误差反向传播到隐藏层,再根据误差调整隐藏层的权重。
这个过程会不断迭代,直到网络的输出与期望输出的误差足够小。
通过反向误差传播算法,BP神经网络可以学习到输入-输出的映射关系,从而能
够对未知输入进行预测或分类。
然而,BP神经网络也存在一些问题,例如容易陷入局部极小值、对初始权重较敏感等,因此在实际应用中需要进行一定的调优和训练策略。
bp神经网络的基本原理
![bp神经网络的基本原理](https://img.taocdn.com/s3/m/a41e268dba4cf7ec4afe04a1b0717fd5360cb226.png)
bp神经网络的基本原理
BP神经网络是一种常用的人工神经网络模型,用于解决分类和回归问题。
它的基本原理是通过反向传播算法来调整网络的权重和偏置,从而使网络能够学习和逼近输入输出之间的非线性关系。
BP神经网络由输入层、隐藏层和输出层组成。
输入层接收外部输入的数据,隐藏层是网络中间的处理层,输出层给出最终的结果。
每个神经元都与前一层的神经元以及后一层的神经元相连接,每个连接都有一个权重值。
BP神经网络的学习过程首先需要给定一个训练数据集,并设置好网络的结构和参数。
然后,通过前向传播将输入数据从输入层传递到隐藏层和输出层,计算网络的输出结果。
接着,根据输出结果与实际输出之间的差异,使用误差函数来评估网络的性能。
在反向传播阶段,根据误差函数的值,利用链式法则计算每个连接的权重和偏置的梯度。
然后,根据梯度下降法更新连接的权重和偏置,使误差不断减小。
这个过程反复进行,直到网络输出的误差达到了可接受的范围或者训练次数达到了预设的最大值。
通过不断地调整权重和偏置,BP神经网络可以逐渐学习到输入输出之间的映射关系,从而在面对新的输入数据时能够给出合理的输出。
同时,BP神经网络还具有一定的容错性和鲁棒性,可以处理一些噪声和不完整的数据。
总的来说,BP神经网络的基本原理是通过反向传播算法来训练网络,将输入数据从输入层传递到输出层,并且根据实际输出与期望输出之间的差异来优化网络的权重和偏置,以达到学习和逼近输入输出之间关系的目的。
bp网络的基本原理
![bp网络的基本原理](https://img.taocdn.com/s3/m/7c6c0ca2162ded630b1c59eef8c75fbfc77d94a4.png)
bp网络的基本原理bp网络是一种常用的人工神经网络模型,用于模拟和解决复杂问题。
它是一种前馈型神经网络,通过前向传播和反向传播的过程来实现信息的传递和参数的更新。
在bp网络中,首先需要定义输入层、隐藏层和输出层的神经元。
输入层接收外部输入的数据,隐藏层用于处理和提取数据的特征,输出层用于输出最终的结果。
每个神经元都有一个对应的权重和偏置,用于调节输入信号的强弱和偏移。
前向传播是bp网络中的第一步,它从输入层开始,将输入的数据通过每个神经元的加权和激活函数的运算,逐层传递到输出层。
加权和的计算公式为:S = Σ(w * x) + b其中,w是权重,x是输入,b是偏置。
激活函数则负责将加权和的结果转换为神经元的输出。
常用的激活函数有sigmoid 函数、ReLU函数等。
反向传播是bp网络的第二步,它通过比较输出层的输出与实际值之间的误差,反向计算每个神经元的误差,并根据误差调整权重和偏置。
反向传播的目标是不断减小误差,使神经网络的输出与实际值更加接近。
具体的反向传播算法是通过梯度下降法实现的,它通过计算每个神经元的误差梯度,按照梯度的方向更新权重和偏置。
误差梯度表示误差对权重和偏置的变化率,通过链式法则可以计算得到。
在更新权重和偏置时,一般使用学习率来调节更新的步长,避免权重和偏置的变化过大。
通过多次迭代的前向传播和反向传播过程,bp网络不断优化和调整参数,最终使得输出与实际值的误差达到最小。
这样的训练过程可以使bp网络逐渐学习到输入数据之间的关联性和规律性,从而达到对问题进行分类、回归等任务的目的。
总结起来,bp网络的基本原理是通过前向传播将输入的数据逐层传递并计算每个神经元的输出,然后通过反向传播根据实际输出与目标输出之间的误差来调整权重和偏置,最终达到训练和优化神经网络的目标。
BP神经网络的基本原理_一看就懂
![BP神经网络的基本原理_一看就懂](https://img.taocdn.com/s3/m/086f6460492fb4daa58da0116c175f0e7cd11928.png)
BP神经网络的基本原理_一看就懂BP神经网络(Back propagation neural network)是一种常用的人工神经网络模型,也是一种有监督的学习算法。
它基于错误的反向传播来调整网络权重,以逐渐减小输出误差,从而实现对模型的训练和优化。
1.初始化网络参数首先,需要设置网络的结构和连接权重。
BP神经网络通常由输入层、隐藏层和输出层组成。
每个神经元与上下层之间的节点通过连接权重相互连接。
2.传递信号3.计算误差实际输出值与期望输出值之间存在误差。
BP神经网络通过计算误差来评估模型的性能。
常用的误差计算方法是均方误差(Mean Squared Error,MSE),即将输出误差的平方求和后取平均。
4.反向传播误差通过误差反向传播算法,将误差从输出层向隐藏层传播,并根据误差调整连接权重。
具体来说,根据误差对权重的偏导数进行计算,然后通过梯度下降法来更新权重值。
5.权重更新在反向传播过程中,通过梯度下降法来更新权重值,以最小化误差。
梯度下降法的基本思想是沿着误差曲面的负梯度方向逐步调整权重值,使误差不断减小。
6.迭代训练重复上述步骤,反复迭代更新权重值,直到达到一定的停止条件,如达到预设的训练轮数、误差小于一些阈值等。
迭代训练的目的是不断优化模型,使其能够更好地拟合训练数据。
7.模型应用经过训练后的BP神经网络可以应用于新数据的预测和分类。
将新的输入数据经过前向传播,可以得到相应的输出结果。
需要注意的是,BP神经网络对于大规模、复杂的问题,容易陷入局部最优解,并且容易出现过拟合的情况。
针对这些问题,可以采用各种改进的方法,如加入正则化项、使用更复杂的网络结构等。
综上所述,BP神经网络通过前向传播和反向传播的方式,不断调整权重值来最小化误差,实现对模型的训练和优化。
它是一种灵活、强大的机器学习算法,具有广泛的应用领域,包括图像识别、语音识别、自然语言处理等。
BP神经网络理论
![BP神经网络理论](https://img.taocdn.com/s3/m/e785afbff121dd36a32d82a4.png)
神经网络简介:神经网络是大脑的一个组成部分。
James在1890年的《心理学》一书中这样描述神经网络的基本原理:大脑皮层每一点的活力是由其它点势能释放的综合效能产生的,这些势能与如下因素有关:(1)相关点的兴奋次数;(2)兴奋的强度;(3)与其不相连的其它点所接受的能量。
他的这一原理一直沿用至今。
到目前为止,神经网络的研究主要分为两个派别:一派主要包括生物学家、物理学家和心理学家等,他们研究的主要目的是给出大脑活动的描述和精细模型;另一派主要包括工程技术人员等,他们关心的是怎样利用神经网络的基本原理,来构造解决实际问题的算法,使得这些算法具有有效的计算能力,我们称之为神经网络的工程应用研究,或称为人工神经网络(artificial neural network, ANN),简称为神经网络。
人工神经网络可以分为前向型和反馈型两类:前向型神经网络的特点是信息传递由后层神经元向前层神经元传递,同一层内的神经元之间没有信息交流;反馈型神经网络中的神经元之间不但相互作用,而且自身也有信息内耗。
BP神经网络是一种多层前向神经网络,名字源于网络权值的调整规则采用的是后向传播学习算法(也称为反推学习规则),即BP学习算法(back-propagation,BP)。
BP学习算法是Rumelhart等在1986年提出的。
至此以后,BP神经网络得到了广泛的实际应用,据统计,80%~90%的神经网络模型都采用了BP网络或者它的变形。
BP神经网络理论BP神经网络是一种单向传播的多层前向型网络,其结构如图所示。
由图可见,BP网络是一种具有三层或三层以上的神经网络,包括输入层、中间层(隐层)和输出层。
上下层之间实现全连接,而每层神经元之间无连接。
当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,12在输出层的各神经元获得网络的输入响应。
接下来,按照减少目标输出与误差的方向,从输出层经过各中间层逐步修正各连接权值,最后回到输入层,这种算法称为“误差逆传播算法”,即BP 算法,随着这种误差逆的传播修正不断进行,网络对输入模式响应的正确率也不断上升。
BP人工神经网络的基本原理、模型与实例
![BP人工神经网络的基本原理、模型与实例](https://img.taocdn.com/s3/m/f9dccb740a4c2e3f5727a5e9856a561253d32154.png)
BP人工神经网络的实例
BP人工神经网络可以应用于多个领域,如图像识别、语音处理、预测分析等,为解决复杂问题提供了有效的神经网络的输入是具体问题的相关数据,比如图像数据、声音数据等。 输出是经过神经网络计算后得出的结果。
神经元和连接权重
神经元是BP人工神经网络的基本单元,通过调整连接权重来不断优化神经网 络的表现和学习能力。
前向传播和反向传播
前向传播是指输入数据从输入层经过隐藏层到达输出层的过程。反向传播是指根据误差计算,通过调整连接权 重来优化神经网络的过程。
训练和优化算法
BP人工神经网络的训练过程是通过不断调整连接权重使得神经网络的输出结 果接近于期望结果的过程。优化算法如梯度下降算法等可以加速训练的过程。
BP人工神经网络的基本 原理、模型与实例
人工神经网络(Artificial Neural Network)以人类大脑神经网络的的运作方式 为模型,用于模拟智能行为和解决复杂问题。
BP人工神经网络的基本原理
BP人工神经网络通过多层神经元和连接权重的组合,实现输入数据到输出结 果的计算和转换过程。
BP人工神经网络的模型
BP神经网络的基本原理+很清楚
![BP神经网络的基本原理+很清楚](https://img.taocdn.com/s3/m/66869b7271fe910ef02df8da.png)
5.4 BP神经收集的基来源根基理之杨若古兰创作BP(Back Propagation)收集是1986年由Rinehart和McClelland为首的科学家小组提出,是一种按误差逆传播算法练习的多层前馈收集,是目前利用最广泛的神经收集模型之一.BP收集能进修和存贮大量的输入-输出模式映照关系,而无需事前揭示描述这类映照关系的数学方程.它的进修规则是使用最速降低法,通过反向传播来不竭调整收集的权值和阈值,使收集的误差平方和最小.BP神经收集模型拓扑结构包含输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示).5.4.1 BP神经元图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最次要的功能:加权、求和与转移.其中x1、x2…x i…x n分别代表来自神经元1、2…i…n的输入;w j1、w j2…w ji…w jn则分别暗示神经元1、2…i…n与第j个神经元的连接强度,即权值;b j为阈值;f(·)为传递函数;y j为第j个神经元的输出.第j个神经元的净输入值为:(5.12)其中:若视,,即令及包含及,则因而节点j的净输入可暗示为:(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j 个神经元的输出:(5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的旌旗灯号不成能无穷添加,必有一最大值.5.4.2 BP收集BP算法由数据流的前向计算(正向传播)和误差旌旗灯号的反向传播两个过程构成.正向传播时,传播方向为输入层→隐层→输出层,每层神经元的形态只影响下一层神经元.若在输出层得不到期望的输出,则转向误差旌旗灯号的反向传播流程.通过这两个过程的交替进行,在权向量空间履行误差函数梯度降低计谋,动态迭代搜索一组权向量,使收集误差函数达到最小值,从而完成信息提取和记忆过程.5.4.2.1 正向传播设 BP收集的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示.隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中):k=1,2,……q (5.15)输出层节点的输出为:j=1,2,……m (5.16)至此B-P收集就完成了n维空间向量对m维空间的近似映照.5.4.2.2 反向传播1) 定义误差函数输入个进修样本,用来暗示.第个样本输入到收集后得到输出(j=1,2,…m).采取平方型误差函数,因而得到第p个样本的误差E p:(5.17)式中:为期望输出.对于个样本,全局误差为:(5.18)2)输出层权值的变更采取累计误差BP算法调整,使全局误差变小,即(5.19)式中:—进修率定义误差旌旗灯号为:(5.20)其中第一项:(5.21)第二项:(5.22)是输出层传递函数的偏微分.因而:(5.23)由链定理得:(5.24)因而输出层各神经元的权值调整公式为:(5.25)3)隐层权值的变更(5.26)定义误差旌旗灯号为:(5.27)其中第一项:(5.28)依链定理有:(5.29)第二项:(5.30)是隐层传递函数的偏微分.因而:(5.31)由链定理得:(5.32)从而得到隐层各神经元的权值调整公式为:(5.33)5.4.3 BP算法的改进BP算法理论具有根据可靠、推导过程严谨、精度较高、通用性较好等长处,但尺度BP算法存在以下缺点:收敛速度缓慢;容易堕入局部极小值;难以确定隐层数和隐层节点个数.在实际利用中,BP算法很难胜任,是以出现了很多改进算法.1)利用动量法改进BP算法尺度BP算法实质上是一种简单的最速降低静态寻优方法,在批改W(K)时,只按照第K步的负梯度方向进行批改,而没有考虑到之前积累的经验,即之前时刻的梯度方向,从而经常使进修过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:()其中:α为动量系数,通常0<α<0.9;η—进修率,范围在0.001~10之间.这类方法所加的动量因籽实际上相当于阻尼项,它减小了进修过程中的振荡趋势,从而改善了收敛性.动量法降低了收集对于误差曲面局部细节的敏感性,无效的按捺了收集堕入局部极小.2)自适应调整进修速率尺度BP算法收敛速度缓慢的一个次要缘由是进修率选择不当,进修率选得太小,收敛太慢;进修率选得太大,则有可能批改过头,导致振荡甚至发散.可采取图5.5所示的自适应方法调整进修率.调整的基本指点思想是:在进修收敛的情况下,增大η,以缩短进修时间;当η偏大导致不克不及收敛时,要及时减小η,直到收敛为止.3)动量-自适应进修速率调整算法采取动量法时,BP算法可以找到更优的解;采取自适应进修速率法时,BP算法可以缩短练习时间.将以上两种方法结合起来,就得到动量-自适应进修速率调整算法.4) L-M进修规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度降低法的BP 算法要快得多,但对于复杂成绩,这类方法须要相当大的存储空间.L-M(Levenberg-Marquardt)优化方法的权值调整率选为:(5.35)其中:e—误差向量;J—收集误差对权值导数的雅可比(Jacobian)矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式酿成了Gauss-Newton法,在这类方法中,μ也是自适应调整的.综合考虑,拟采取L-M进修规则和动量法分别作为神经收集的练习函数和进修函数.5.5 BP神经收集的练习计谋及结果本文借助于MATLAB神经收集工具箱来实现多层前馈BP收集(Multi-layer feed-forward backpropagation network)的色彩空间转换,免去了很多编写计算机程序的烦恼.神经收集的实际输出值与输入值和各权值和阈值有关,为了使实际输出值与收集期望输出值相吻合,可用含有必定数量进修样本的样本集和响应期望输出值的集合来练习收集.练习时仍然使用本章5.2节中所述的实测样本数据.另外,目前尚未找到较好的收集构造方法.确定神经收集的结构和权系数来描述给定的映照或迫近一个未知的映照,只能通过进修方式得到满足请求的收集模型.神经收集的进修可以理解为:对确定的收集结构,寻觅一组满足请求的权系数,使给定的误差函数最小.设计多层前馈收集时,次要偏重试验、探讨多种模型方案,在实验中改进,直到拔取一个满意方案为止,可按以下步调进行:对任何实际成绩先都只选用一个隐层;使用很少的隐层节点数;不竭添加隐层节点数,直到获得满意功能为止;否则再采取两个隐层反复上述过程.练习过程实际上是根据目标值与收集输出值之间误差的大小反复调整权值和阈值,直到此误差达到预定值为止.5.5.1 确定BP收集的结构确定了收集层数、每层节点数、传递函数、初始权系数、进修算法等也就确定了BP收集.确定这些选项时有必定的指点准绳,但更多的是靠经验和试凑.1)隐层数的确定:1998年Robert Hecht-Nielson证实了对任何在闭区间内的连续函数,都可以用一个隐层的BP收集来迫近,因此一个三层的BP收集可以完成任意的n维到m维的映照.是以我们从含有一个隐层的收集开始进行练习.2) BP收集经常使用传递函数:BP收集的传递函数有多种.Log-sigmoid型函数的输入值可取任意值,输出值在0和1之间;tan-sigmod型传递函数tansig的输入值可取任意值,输出值在-1到+1之间;线性传递函数purelin的输入与输出值可取任意值.BP收集通常有一个或多个隐层,该层中的神经元均采取sigmoid型传递函数,输出层的神经元则采取线性传递函数,全部收集的输出可以取任意值.各种传递函数如图5.6所示.只改变传递函数而其余参数均固定,用本章5.2节所述的样本集练习BP收集时发现,传递函数使用tansig函数时要比logsig函数的误差小.因而在当前的练习中隐层传递函数改用tansig函数,输出层传递函数仍选用purelin函数.3)每层节点数的确定:使用神经收集的目的是实现摄像机输出RGB色彩空间与CIE-XYZ 色空间转换,是以BP收集的输入层和输出层的节点个数分别为3.上面次要介绍隐层节点数量的确定.对于多层前馈收集来说,隐层节点数的确定是成败的关键.若数量太少,则收集所能获取的用以解决成绩的信息太少;若数量太多,不但添加练习时间,更次要的是隐层节点过多还可能出现所谓“过渡吻合”(Overfitting)成绩,即测试误差增大导致泛化能力降低,是以合理选择隐层节点数非常次要.关于隐层数及其节点数的选择比较复杂,普通准绳是:在能准确反映输入输出关系的基础上,应选用较少的隐层节点数,以使收集结构尽量简单.本论文中采取收集结构增加型方法,即先设置较少的节点数,对收集进行练习,并测试进修误差,然后逐步添加节点数,直到进修误差不再有明显减少为止.5.5.2 误差的拔取在神经收集练习过程当选择均方误差MSE较为合理,缘由如下:①尺度BP算法中,误差定义为:(5.36)每个样本感化时,都对权矩阵进行了一次点窜.因为每次权矩阵的点窜都没有考虑权值点窜后其它样本感化的输出误差是否也减小,是以将导致迭代次数添加.②累计误差BP算法的全局误差定义为:(5.37)这类算法是为了减小全部练习集的全局误差,而不针对某一特定样本,是以如果作某种点窜能使全局误差减小,其实不等于说每一个特定样本的误差也都能同时减小.它不克不及用来比较P和m分歧的收集功能.因为对于同一收集来说,P越大,E也越大; P值不异,m越大E也越大.③均方误差MSE:(5.38)其中:—输出节点的个数,—练习样本数目,—收集期望输出值,—收集实际输出值.均方误差克服了上述两种算法的缺点,所以选用均方误差算法较合理.5.5.3 练习结果练习一个单隐层的三层BP收集,根据如下经验公式选择隐层节点数[125]:(5.39)式中:n为输入节点个数,m为输出节点个数,a为1到10之间的常数.针对本论文n1取值范围为3~13.练习结果如表5.1所示.隐层节点数与误差的关系隐层神经元个数练习误差测试误差345678910111213由上表可以看出:①添加隐层节点数可以减少练习误差,但超出10当前测试误差发生动摇,即泛化能力发生变更.综合比较隐层节点数为10与12的练习误差和测试误差,决定隐层节点数选用12.②练习误差和测试误差都很大,而且收敛速度极慢(练习过程如图5.7所示),这个成绩可以通过对输出量进行归一化来解决.根据Sigmoid型传递函数输入和输出的范围,对输入变量不进行归一化处理,只对输出变量进行归一化,这是因为在输出数据请求归一化的同时,对输入数据也进行归一化的话,权值的可解释性就更差了.目标值按下式进行变更:(5.40)使目标值落在~之间,如许靠近数据变更区间端点的收集输出值就有一动摇范围,收集的功能较好.用重生成的练习样本与测试样本对隐层节点数为12的收集进行练习,得到的练习误差为×10-5,测试误差为×10-4,达到了预定的目标(练习过程如图所示).5.6 终极练习后的神经收集结构采取三层BP收集实现摄像机输出RGB色彩空间与CIEXYZ色空间转换,其中隐层含有12个节点,传递函数采取tansig函数;输出层传递函数选用purelin函数.经过测试后结果满意,可以认为该神经收集可以用来实现这个关系映照.收集的结构如图所示:得到的BP神经收集的权值和阈值为:5.7 本章小结1) 定量地分析了用线性关系转换摄像机RGB空间到CIE-XYZ空间数据后发生的均方误差,标明CCD摄像机与尺度观察者之间有比较明显的不同,也就是说RGB与CIE-XYZ间的转换是非线性的.2) 采取MATLAB 中神经收集工具箱实现多层前馈BP收集的RGB到CIEXYZ色彩空间转换,用经过归一化的练习样本与测试样本对隐层节点数为12的三层收集进行练习,得到的练习误差为×10-5,测试误差为×10-4,结果标明经过练习的多层前馈BP收集可以满足RGB空间向CIEXYZ色彩空间转换请求,达到了预定目标.3) 确定了用于RGB和XYZ色彩空间转换的BP收集结构,并求出了该神经收集的权值和阈值.使用该收集可以定量表达食品色彩,定量比较高压加工食品色彩的变更,可以使食品色彩测定和控制实现定量化,而不再是客观性很强的模糊描述.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4 BP神经网络的基本原理
BP(Back Propagation)网络是1986年由Rinehart和
McClelland为首的科学家小组提出,是一种按误差逆传播算
法训练的多层前馈网络,是目前应用最广泛的神经网络模型
之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,
而无需事前揭示描述这种映射关系的数学方程。
它的学习规
则是使用最速下降法,通过反向传播来不断调整网络的权值
和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结
构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。
5.4.1 BP神经元
图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本
也是最重要的功能:加权、求和与转移。
其中x
1、x
2
…x
i
…x
n
分别代表来自神经元1、2…i…n
的输入;w
j1、w
j2
…w
ji
…w
jn
则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权
值;b
j 为阈值;f(·)为传递函数;y
j
为第j个神经元的输出。
第j个神经元的净输入值为:
(5.12)
其中:
若视,,即令及包括及,则
于是节点j的净输入可表示为:
(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出:
(5.14)
式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。
5.4.2 BP网络
BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。
正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。
若在输出层得不到期望的输出,则转向误差信号的反向传播流程。
通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。
5.4.2.1 正向传播
设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间
(·),的权值为,隐层与输出层之间的权值为,如图5.4所示。
隐层的传递函数为f
1
(·),则隐层节点的输出为(将阈值写入求和项中):
输出层的传递函数为f
2
k=1,2,……q (5.15)输出层节点的输出为:
j=1,2,……m (5.16)至此B-P网络就完成了n维空间向量对m维空间的近似映射。
5.4.2.2 反向传播
1)定义误差函数
输入个学习样本,用来表示。
第个样本输入到网络后得到输出
(j=1,2,…m)。
采用平方型误差函数,于是得到第p个样本的误差E p:
(5.17)式中:为期望输出。
对于个样本,全局误差为:
(5.18)2)输出层权值的变化
采用累计误差BP算法调整,使全局误差变小,即
(5.19)式中:—学习率
定义误差信号为:
其中第一项:
(5.21)第二项:
(5.22)是输出层传递函数的偏微分。
于是:
(5.23)由链定理得:
(5.24)于是输出层各神经元的权值调整公式为:
(5.25)3)隐层权值的变化
(5.26)定义误差信号为:
其中第一项:
(5.28)依链定理有:
(5.29)第二项:
(5.30)是隐层传递函数的偏微分。
于是:
(5.31)由链定理得:
(5.32)从而得到隐层各神经元的权值调整公式为:
(5.33)5.4.3 BP算法的改进。