4近三年高考模拟精选天体运动
备战2023高考2020-2022年高考物理天体运动真题汇编(原卷版)
备战2023高考2020-2022年高考物理天体运动真题汇编天体运动高考真题一、单选题1.(2023·浙江选考)太阳系各行星几平在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,称为“行星冲日”,已知地球及各地外行星绕太阳运动的轨道半径如下表:则相邻两次“冲日”时间间隔约为()A.火星365天 B.火星800天 C.天王星365天D.天王星800天2.(2022·河北)2008年,我国天文学家利用国家天文台兴隆观测基地的2.16米望远镜,发现了一颗绕恒星HD173416运动的系外行星HD173416b,2019年,该恒星和行星被国际天文学联合会分别命名为“羲和”和“和“望舒”,天文观测得到恒星羲和的质量是太阳质量的2倍,若将望舒与地球的公转均视为匀速圆周运动,且公转的轨道半径相等。
则望舒与地球公转速度大小的比值为()A.2√2B.2 C.√2D.√223.(2022·湖北)2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。
下列说法正确的是()A.组合体中的货物处于超重状态B.组合体的速度大小略大于第一宇宙速度C.组合体的角速度大小比地球同步卫星的大D.组合体的加速度大小比地球同步卫星的小4.(2022·浙江)神州十三号飞船采用“快速返回技术”,在近地轨道上,返回舱脱离天和核心舱,在圆轨道环绕并择机返回地面。
则()A.天和核心舱所处的圆轨道距地面高度越高,环绕速度越大B.返回舱中的宇航员处于失重状态,不受地球的引力C .质量不同的返回舱与天和核心舱可以在同一轨道运行D .返回舱穿越大气层返回地面过程中,机械能守恒5.(2022·山东)“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动,轨道平面与赤道平面接近垂直。
高考物理专题练习:天体运动(含答案)
高三总复习天体运动专项训练1.2018年5月9日2时28分,我国在太原卫星发射中心成功发射了高分五号卫星.该卫星绕地球作圆周运动,质量为m ,轨道半径约为地球半径R 的4倍.已知地球表面的重力加速度为g ,忽略地球自转的影响,则( )A .卫星的绕行速率大于7.9 km/sB .卫星的动能大小约为mgR 8C .卫星所在高度的重力加速度大小约为14g D .卫星的绕行周期约为4πRg2.2018年4月10日,中国北斗卫星导航系统首个海外中心举行揭牌仪式,目前北斗卫星导航系统由29颗在不同轨道上运行的卫星组成.关于北斗系统内的卫星以下说法正确的是( )A .轨道高的卫星周期短B .质量大的卫星机械能就大C .轨道高的卫星受到的万有引力小D .卫星的线速度都小于第一宇宙速度3.嫦娥三号月球探测卫星先贴近地球表面绕地球做匀速圆周运动,此时其动能为E k1,周期为T 1;再控制它进行一系列变轨,最终进入贴近月球表面的圆轨道做匀速圆周运动,此时其动能为E k2,周期为T 2,已知地球的质量为M 1,月球的质量为M 2,则动能之比为( )A. 3⎝⎛⎭⎫M 1T 2M 2T 12 B. ⎝⎛⎭⎫M 1T 2M 2T 13 C. 3⎝⎛⎭⎫M 1T 1M 2T 22 D. 3⎝⎛⎭⎫M 1T 1M 2T 2 4.冥王星绕太阳的公转轨道是个椭圆,公转周期为T 0,质量为m ,其近日点A 到太阳的距离为a ,远日点C 到太阳的距离为b ,半短轴的长度为c ,A 、C 两点的曲率半径均为ka (通过该点和曲线上紧邻该点两侧的两点作一圆,在极限情况下,这个圆就叫作该点的曲率圆,其半径叫作该点的曲率半径),如图所示.若太阳的质量为M ,万有引力常量为G ,忽略其他行星对它的影响及太阳半径的大小,则( )A .冥王星从A →B 所用的时间等于T 04B .冥王星从C →D →A 的过程中,万有引力对它做的功为12GMmk ⎝⎛⎭⎫2a -a b 2 C .冥王星从C →D →A 的过程中,万有引力对它做的功为12GMmk ⎝⎛⎭⎫1a -a b 2 D .冥王星在B 点的加速度为4GM (b +a )2+4c 25.“网易直播”播出了在国际空间站观看地球的视频,让广大网友大饱眼福.国际空间站(International Space Station)是一艘围绕地球运转的载人宇宙飞船,轨道近地点距离地球表面379.7 km ,远地点距离地球表面403.8 km.运行轨道近似圆周.网络直播画面显示了国际空间站上的摄像机拍摄到的地球实时画面.如果画面处于黑屏状态,那么说明国际空间站正处于夜晚,请问,大约最多经过多长时间后,国际空间站就会迎来日出?(已知地球半径约为R =6.4×106 m)( )A .24小时B.12小时 C .1小时 D.45分钟6.北京航天飞行控制中心对“嫦娥二号”卫星实施多次变轨控制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施.“嫦娥二号”卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图为“嫦娥二号”某次在近地点A 由轨道1变轨为轨道2的示意图,下列说法中正确的是( )A .“嫦娥二号”在轨道1的A 点处应点火加速B .“嫦娥二号”在轨道1的A 点处的速度比在轨道2的A 点处的速度大C .“嫦娥二号”在轨道1的A 点处的加速度比在轨道2的A 点处的加速度大D .“嫦娥二号”在轨道1的B 点处的机械能比在轨道2的C 点处的机械能大7.如图所示,某极地轨道卫星的运行轨道平面通过地球的南北两极,已知该卫星从北纬60°的正上方,按图示方向第一次运行到南纬60°的正上方时所用时间为1 h ,则下列说法正确的是( )A .该卫星与同步卫星的运行半径之比为1∶4B .该卫星与同步卫星的运行速度之比为1∶2C .该卫星的运行速度一定大于7.9 km/sD .该卫星的机械能一定大于同步卫星的机械能8.如图所示是“嫦娥五号”的飞行轨道示意图,其中弧形轨道为地月转移轨道,轨道Ⅰ是“嫦娥五号”绕月运行的圆形轨道.已知轨道Ⅰ到月球表面的高度为H ,月球半径为R ,月球表面的重力加速度为g ,则下列说法中正确的是( )A .“嫦娥五号”在地球表面的发射速度应大于11.2 km/sB .“嫦娥五号”在P 点被月球捕获后沿轨道Ⅲ无动力飞行运动到Q 点的过程中,月球与“嫦娥五号”所组成的系统机械能不断增大C .“嫦娥五号”在轨道Ⅰ上绕月运行的速度大小为R g (R +H )R +HD .“嫦娥五号”在从月球表面返回时的发射速度要小于gR9.1772年,法籍意大利数学家拉格朗日在论文《三体问题》中指出:两个质量相差悬殊的天体(如太阳和地球)所在的同一平面上有5个特殊点,如图中的L 1、L 2、L 3、L 4、L 5所示,人们称为拉格朗日点.若飞行器位于这些点上,会在太阳与地球共同引力作用下,可以几乎不消耗燃料而保持与地球同步绕太阳做圆周运动.若发射一颗卫星定位于拉格朗日点L 2,下列说法正确的是( )A .该卫星绕太阳运动周期和地球自转周期相等B .该卫星在点L 2处于平衡状态C .该卫星绕太阳运动的向心加速度大于地球绕太阳运动的向心加速度D .该卫星在L 2处所受太阳和地球引力的合力比在L 1处大10.假设宇宙中有一质量为M ,半径为R 的星球,由于自转角速度较大,赤道上的物体恰好处于“漂浮”状态,如图所示.为测定该星球自转的角速度ω0和自转周期T 0,某宇航员在该星球的“极点”A 测量出一质量为m的物体的“重力”为G 0,关于该星球的描述正确的是( )A .该星球的自转角速度为ω0=G 0MRB .该星球的自转角速度为ω0=G 0mRC .该星球的自转周期为T 0=2πMR G 0D .该星球的自转周期为T 0=2πmR G 0 11.近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T ,引力常量为G .下列说法正确的是( )A .如果该星体的自转周期T <2π R 3Gm,会解体 B .如果该星体的自转周期T >2πR 3Gm ,会解体 C .该星体表面的引力加速度为Gm RD .如果有卫星靠近该星体表面飞行,其速度大小为Gm R12.我国计划在2019年发射“嫦娥五号”探测器,实现月球软着陆以及采样返回,这意味着我国探月工程“绕、落、回”三步走的最后一步即将完成.“嫦娥五号”探测器在月球表面着陆的过程可以简化如下,探测器从圆轨道1上A 点减速后变轨到椭圆轨道2,之后又在轨道2上的B 点变轨到近月圆轨道3.已知探测器在1轨道上周期为T 1,O 为月球球心,C 为轨道3上的一点,AC 与AO 最大夹角为θ,则下列说法正确的是( )A .探测器要从轨道2变轨到轨道3需要在B 点点火加速B .探测器在轨道1的速度小于在轨道2经过B 点时的速度C .探测器在轨道2上经过A 点时速度最小,加速度最大D .探测器在轨道3上运行的周期为sin 3θT 113.某行星的一颗同步卫星绕行星中心做圆周运动的周期为T ,假设该同步卫星下方行星表面站立一个观察者,在观察该同步卫星的过程中,发现有16T 时间看不到该卫星.已知当太阳光照射到该卫星表面时才可能被观察者观察到,该行星的半径为R .则下列说法中正确的是( )A .该同步卫星的轨道半径为6.6RB .该同步卫星的轨道半径为2RC .行星表面上两点与该同步卫星连线的夹角最大值为60°D .行星表面上两点与该同步卫星连线的夹角最大值为120°14.如图所示,在某行星表面上有一倾斜的匀质圆盘,盘面与水平面的夹角为30°,圆盘绕垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离L 处有一小物体与圆盘保持相对静止,当圆盘的角速度为ω时,小物块刚要滑动.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),该星球的半径为R ,引力常量为G ,下列说法正确的是( )A .这个行星的质量M =ω2R 2L GB .这个行星的第一宇宙速度v 1=2ωLRC .这个行星的同步卫星的周期是πωR LD .离行星表面距离为R 的地方的重力加速度为ω2L15、(多选)如图所示,Gliese581g 行星距离地球约20亿光年(189.21万亿公里),公转周期约为37年,该行星位于天秤座星群,它的半径大约是地球的2倍,重力加速度与地球相近.则下列说法正确的是( )A .飞船在Gliese581g 表面附近运行时的速度小于9 km/sB .该行星的平均密度约是地球平均密度的12C .该行星的质量约为地球质量的2倍D .在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度16、某行星外围有一圈厚度为d 的发光带(发光的物质),简化为如图甲所示模型,R 为该行星除发光带以外的半径.现不知发光带是该行星的组成部分还是环绕该行星的卫星群,某科学家做了精确地观测,发现发光带绕行星中心的运行速度v 与到行星中心的距离r 的关系如图乙所示(图中所标为已知),则下列说法正确的是( )A .发光带是该行星的组成部分B .该行星的质量M =v 20R GC .行星表面的重力加速度g =v 20RD .该行星的平均密度为ρ=3v 20R 4πG (R +d )317由于行星自转的影响,行星表面的重力加速度会随纬度的变化而有所不同.宇航员在某行星的北极处从高h 处自由释放一重物,测得经过时间t 1重物下落到行星的表面,而在该行星赤道处从高h 处自由释放一重物,测得经过时间t 2重物下落到行星的表面,已知行星的半径为R ,引力常量为G ,则这个行星的平均密度是( )A .ρ=3h 2πGRt 21B.ρ=3h 4πGRt 21 C .ρ=3h 2πGRt 22 D.ρ=3h 4πGRt 2218如图所示,a 为静止在地球赤道上的物体,b 为近地卫星,c 为同步卫星,d 为高空探测卫星.a 为它们的向心加速度大小,r 为它们到地心的距离,T 为周期,l 、θ分别为它们在相同时间内转过的弧长和转过的圆心角,g 为地面重力加速度,则下列图象正确的是( )19、2018年1月19号,以周总理命名的“淮安号”恩来星在甘肃酒泉卫星发射中心,搭乘长征-11号火箭顺利发射升空.“淮安号”恩来星在距离地面高度为535 km 的极地轨道上运行.已知地球同步卫星轨道高度约36 000 km ,地球半径约6 400 km.下列说法正确的是( )A .“淮安号”恩来星的运行速度小于7.9 km/sB .“淮安号”恩来星的运行角速度小于地球自转角速度C .经估算,“淮安号”恩来星的运行周期约为1.6 hD .经估算,“淮安号”恩来星的加速度约为地球表面重力加速度的三分之二20、如图所示,卫星在半径为r1的圆轨道上运行时速度为v 1,当其运动经过A 点时点火加速,使卫星进入椭圆轨道运行,椭圆轨道的远地点B 与地心的距离为r 2,卫星经过B 点的速度为v B ,若规定无穷远处引力势能为0,则引力势能的表达式E p =-G Mm r,其中G 为引力常量,M 为中心天体质量,m 为卫星的质量,r 为两者质心间距,若卫星运动过程中仅受万有引力作用,则下列说法正确的是( )A .vB <v 1B .卫星在椭圆轨道上A 点的加速度小于B 点的加速度C .卫星在A 点加速后的速度v A =2GM ⎝⎛⎭⎫1r 1-1r 2+v 2B D .卫星从A 点运动至B 点的最短时间为πv 1(r 1+r 2)32r 1高三总复习天体运动专项训练答案1解析:选B.7.9 km/s 是第一宇宙速度,是卫星最大的环绕速度,所以该卫星的速度小于7.9 km/s.故A 错误;由万有引力提供向心力:G Mm (4R )2=m v 24R ,解得:v =GM 4R,由以上可得动能为:E k =12m v 2=18mgR ,故B 正确;卫星所在高度的重力加速度大小约为:G Mm (4R )2=ma ,根据万有引力等于重力:G Mm R 2=mg ,联立以上解得:a =g 16,故C 错误;卫星的绕行周期约为:G Mm (4R )2=m 4π2T 2×4R ,根据万有引力等于重力:G Mm R 2=mg ,联立以上解得:T =16πR g,故D 错误.所以B 正确,A 、C 、D 错误. 2、解析:选D.轨道高的卫星轨道半径大、运行的周期大,选项A 错.质量大的卫星运行轨道高度不一定大,其机械能也不一定大.选项B 错.轨道高的卫星离地心远,但其质量可能较大,受到地球的引力也不一定小,选项C 错.第一宇宙速度是发射卫星的最小速度,也等于卫星在轨运行时的最大速度,故D 对.3、解析:选A.探测卫星绕地球或者月球做匀速圆周运动,由m v 2r =4π2mr T2可知,动能表达式E k =12m v 2=2m π2r 2T 2,由GMm r 2=4π2mr T 2可知E k =2π2m T2⎝⎛⎭⎫GMT 2223,因此动能之比为3⎝⎛⎭⎫M 1T 2M 2T 12,因此A 正确. 4、解析:选C.冥王星绕太阳做变速曲线运动,选项A 错;冥王星运动到A 、C 两点可看作半径均为ka ,速度为v A 、v C 的圆周运动,则有GMm a 2=m v 2A ka ,GMm b 2=m v 2C ka,从C →D →A 由动能定理得W =12m v 2A -12m v 2C ,解以上三式得W =12GMmk ⎝⎛⎭⎫1a -a b 2,选项B 错、C 正确;在B 点时,设行星到太阳的距离为r ,由几何关系得:r 2=c 2+(b -a )24,则加速度a =GMmr 2m =4GM 4c 2+(b -a )2,选项D 错. 5、解析:选D.飞船轨道近似正圆,围绕地球做匀速圆周运动,设其周期为T ,G Mm r2=m 4π2T 2r ,得T =2πr 3GM,由于飞船距离地面大约是400 km ,属于近地卫星,轨道半径近似等于地球半径R ,又因为GM =R 2g ,T =2πR g,代入数据可得T =90分钟,由于最多经过半个周期后,国际空间站就会迎来日出,所以D 正确.6、解析:选A.卫星要由轨道1变轨为轨道2需在A 处做离心运动,应加速使其做圆周运动所需向心力m v 2r 大于地球所能提供的万有引力G Mm r 2,故A 项正确,B 项错误;由G Mm r2=ma 可知,卫星在不同轨道运行到同一点处的加速度大小相等,C 项错误;卫星由轨道1变轨到轨道2,反冲发动机的推力对卫星做正功,卫星的机械能增加,所以卫星在轨道1的B 点处的机械能比在轨道2的C 点处的机械能小,D 项错误.7、解析:选A.卫星从北纬60°的正上方,按图示方向第一次运行到南纬60°的正上方时,偏转的角度是120°,刚好为运动周期的13,所以卫星运行的周期为3 h ,同步卫星的周期是24 h ,由GMm r 2=m ·4π2r T 2得:r 31r 32=T 21T 22=32242=164,所以:r 1r 2=14,故A 正确;由GMm r 2=m v 2r 得:v 1v 2=r 2r 1=41=21,故B 错误;7.9 km/s 是卫星环绕地球做匀速圆周运动的最大速度,所以该卫星的运行速度一定小于7.9 km/s ,故C 错误;由于不知道卫星的质量关系,故D 错误.8、解析:选C.在地球表面发射“嫦娥五号”的速度大于11.2 km/s 时,“嫦娥五号”将脱离地球束缚,A 错误;“嫦娥五号”在轨道Ⅲ由P 点运动到Q 点的过程中,只有月球引力做功,将引力势能转化成动能,机械能不变,B 错误;由题中信息知“嫦娥五号”在轨道Ⅰ上运行时引力提供向心力G Mm (R +H )2=m v 2R +H ,又g =GM R 2,故有v =R g (R +H )R +H ,C 正确;当“嫦娥五号”在月球表面绕行时由G Mm R 2=m v 20R 和g =GM R2知v 0=gR ,此速度是月球的第一宇宙速度,是发射的最小速度,是绕行的最大速度,只有“嫦娥五号”的速度比v 0=gR 大,才能上高轨,D 错误.9、解析:选CD.该卫星保持与地球同步绕太阳做圆周运动,绕太阳运动周期和地球公转周期相等,选项A 错误;由于该卫星绕太阳做匀速圆周运动,合力提供向心力,选项B 错误;该卫星绕太阳运动的角速度与地球绕太阳运动的角速度相同,但运动半径较大,由a =ω2r 知该卫星的向心加速度较大,选项C 正确;该卫星在L 1点与L 2点均能与地球同步绕太阳运动,即运动的角速度相同,但在L 2处的运动半径较大,由F 合=F 向=mω2r 知该卫星在L 2处受到的合力较大,选项D 正确.10解析:选BD.赤道上的物体恰好处于“漂浮”状态,则有:G Mm R 2=mω2R ,“极点”上的物体满足:G 0=G MmR 2,联立可得:ω0=G 0mR ,该星球的自转周期:T 0=2πω0=2πmRG 0,选项A 、C 错误,B 、D 正确.11、解析:选AD.如果在该星体表面有一物质,质量为m ′,当它受到的万有引力大于跟随星体自转所需要的向心力时呈稳定状态,即G mm ′R 2>m ′R 4π2T 2,化简得T >2πR 3Gm,即T >2πR 3Gm时,星体不会解体,而该星体的自转周期T <2π R 3Gm时,会解体,A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ,所以g =GmR 2,C 错误;如果有卫星靠近该星体表面飞行,有G mm ″R 2=m ″v 2R,解得v =GmR,D 正确. 12、解析:选BD.探测器要从轨道2变轨到轨道3需要在B 点减速,A 错误;探测器在轨道1的速度小于在轨道3的速度,探测器在轨道2经过B 点的速度大于在轨道3的速度,故探测器在轨道1的速度小于在轨道2经过B 点时的速度,B 正确;探测器在轨道2上经过A 点时速度最小,A 点是轨道2上距离月球最远的点,故由万有引力产生的加速度最小,C错误;由开普勒第三定律T 21r 31=T 23r 33,其中AC 与AO 的最大夹角为θ,则有r 3r 1=sin θ,解得T 3=sin 3θT 1,D 正确.13、解析:选BC.根据光的直线传播规律,在观察该同步卫星的过程中,发现有16T 时间看不到该卫星,同步卫星相对行星中心转动角度为θ,则有sin θ2=R r ,结合θ=ωt =2πT ×T 6=π3,解得该同步卫星的轨道半径为r =2R ,故B 正确,A 错误;行星表面上两点与该同步卫星连线的夹角最大值为α,则有r sin α2=R ,所以行星表面上两点与该同步卫星连线的夹角最大值为60°,故C 正确,D 错误;故选BC.14、解析:选BD.当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2L ,所以:g =ω2Lμcos 30°-sin 30°=4ω2L ,绕该行星表面做匀速圆周运动的物体受到的万有引力提供向心力,则:GMmR 2=mg ,解得:M =gR 2G =4ω2R 2LG ,故A 错误;行星的第一宇宙速度v 1=gR =2ωLR ,故B 正确;因为不知道行星的自转情况,所以不能求出同步卫星的周期,故C 错误;离行星表面距离为R 的地方的万有引力:mg ′=GMm (2R )2=14mg ;即重力加速度为g ′=ω2L ,故D 正确.故选BD.15、解析 飞船在Gliese581g 表面附近运行时,万有引力提供向心力,则mg =m v 2R ,解得v =gR ,该星球半径大约是地球的2倍,重力加速度与地球相近,所以在该星球表面运行速度约为地球表面运行速度的2倍,在地球表面附近运行时的速度为7.9 km/s ,所以在该星球表面运行速度约为11.17 km/s ,故A 错误;根据密度的定义式ρ=M V =gR 2G 43πR 3=3g4πGR ,故该行星的平均密度与地球平均密度之比等于半径的反比,即该行星的平均密度约是地球平均密度的12,故B 正确;忽略星球自转的影响,根据万有引力等于重力,则有mg =G Mm R 2,g =GMR 2,这颗行星的重力加速度与地球相近,它的半径大约是地球的2倍,所以它的质量是地球的4倍,故C 错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D 正确.16、解析:选BC.若发光带是该行星的组成部分,则其角速度与行星自转角速度相同,应有v =ωr ,v 与r 应成正比,与图象不符,因此发光带不是该行星的组成部分,故A 错误;设发光带是环绕该行星的卫星群,由万有引力提供向心力,则有:G Mmr 2=m v 2r ,得该行星的质量为:M =v 2r G ;由题图乙知,r =R 时,v =v 0,则有:M=v 20R G ,故B 正确;当r =R 时有mg =m v 20R ,得行星表面的重力加速度g =v 20R ,故C 正确;该行星的平均密度为ρ=M43πR 3=3v 204πGR 2,故D 错误. 17解析:选A.在北极,由h =12gt 21得:g =2h t 21,根据G Mm R 2=mg 得星球的质量为M =gR 2G =2hR 2Gt 21,则星球的密度为ρ=M V =M 43πR 3=3h2πGt 21R,故A 正确,B 、 C 、D 错误.18、解析:选C.设地球质量为M ,卫星质量为m .对b 、c 、d 三颗卫星有:G Mmr 2=m v 2r =mω2r =m ⎝⎛⎭⎫2πT 2r =ma ,可得:v =GMr ,ω=GMr 3,T =2πr 3GM ,a =GMr2;因c 为同步卫星,则T a =T c ,选项B 错误;a a <a c <g ,选项A 错误;由v =ωr 可知v a <v c ,由l =v t 可知,选项D 错误;由ωb >ωc =ωa >ωd 可知,选项C 正确.19、解析:选AC.由题意知“淮安号”卫星的高度小于同步卫星的高度,而同步卫星的角速度与地球自转的角速度相等,故选项A 对、B 错;由r 3T 2=k 对“淮安号”星进行周期估算,则r 3同T 2同=r 3卫T 2卫,r 同=36 000 km +6 400 km≈7R 地,T 同=24 h ,r 卫=6 400 km +h =1.1R 地,经估算可知T 卫=1.6 h ,C 项正确;地球表面的重力加速度g =GMR 2地,而“淮安号”卫星的加速度可表示为a ′=GM (R 地+h )2,比较可得a ′g =56,选项D 错. 20、解析 卫星在B 点的速度v B 小于以r 2为半径做匀速圆周运动的速度,以r 2为半径做匀速圆周运动的速度小于v 1,故v B <v 1,A 正确;G Mmr 2=ma ,可知A 点的加速度更大,B 错误;从A 点到B 点的过程由机械能守恒得-G Mm r 1+12m v 2A =-G Mm r 2+12m v 2B,解得v A =2GM ⎝⎛⎭⎫1r 1-1r 2+v 2B ,C 正确;卫星在圆轨道上的运动周期T 1=2πr 1v 1,由开普勒第三定律:r 31T 21=⎝⎛⎭⎫r 1+r 223T 22,解得T 2=2πr 1v 1(r 1+r 2)38r 31=2πv 1(r 1+r 2)38r 1,卫星从A 点运动至B 点的最短时间为T 22=πv 1(r 1+r 2)38r 1,D 错误.。
专题04 天体运动【练】-2021年高考物理二轮讲练测解析版
RG+Mhm2=ma 可得探测器的向心加速度为 a=RG+Mh2,故 C 错误;探测器绕火星做匀速圆周运动,由万有引力
2 / 15
提供,解得火星质量为
M=4π2R+h3,物体在火星表面的加速度等于火星表面的重 GT2
力加速度,根据重力等于万有引力有 GMRm2 ′=m′g,解得 g=GRM2 =4π2RR2T+2 h3,故 D 正确。
5.(多选)(2020·福建永安一中等三校联考)用 m 表示地球同步卫星的质量,h 表示它离地面的高度,R 表示地球 的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则( )
A.同步卫星内的仪器不受重力
B.同步卫星的线速度大小为ω(R+h)
C.地球对同步卫星的万有引力大小为mhg2R2
第一部分 力与运动 专题 04 天体运动【练】
1.(2020·哈尔滨三中一模)下列关于天体运动的相关说法中,正确的是( )
A.地心说的代表人物是哥白尼,他认为地球是宇宙的中心,其他星球都在绕地球运动
B.牛顿由于测出了引力常量而成为第一个计算出地球质量的人
C.所有行星绕太阳运行的轨道都是椭圆,太阳在椭圆的焦点上
D.地球绕太阳公转时,在近日点附近的运行速度比较慢,在远日点附近的运行速度比较快
【答案】C
【解析】本题考查开普勒定律及物理学史。地心说的代表人物是托勒密,他认为地球是宇宙的中心,其他星球 都在绕地球运动,故 A 错误;卡文迪许由于测出了引力常量而成为第一个计算出地球质量的人,故 B 错误;根 据开普勒第一定律,所有行星绕太阳运行的轨道都是椭圆,太阳在椭圆的一个焦点上,故 C 正确;对同一个行 星而言,太阳与行星的连线在相同时间内扫过的面积相等,地球绕太阳公转时,在近日点附近运行的速度比较 快,在远日点附近运行的速度比较慢,故 D 错误。
历年高考题天体运动汇编
可知
因为该卫星的运动周期与地球自转周期相同,等于“静止”在赤道上空的同步卫星的周期,可知该卫星的轨道半径等于“静止”在赤道上空的同步卫星的轨道半径,选项CD错误。
故选B。
12.【解答】(1) ;(2) ;(3)
【详解】(1)质量为 的货物绕 点做匀速圆周运动,半径为 ,根据牛顿第二定律可知
A.线速度大于地球的线速度
B.向心加速度大于地球的向心加速度
C.向心力仅由太阳的引力提供
D.向心力仅由地球的引力提供
3.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知
(A)太阳位于木星运行轨道的中心
(B)火星和木星绕太阳运行速度的大小始终相等
(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
故选:A。
5.【解答】解:研究行星绕某一恒星做匀速圆周运动,根据万有引力提供向心力,列出等式为:
=m r
M=
“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的 ,
所以该中心恒星与太阳的质量比约为 ≈1,
故选:B.
6.【解答】AD
7.【解答】BCD
8.【解答】A
(A)角速度小于地球自转角速度
(B)线速度小于第一宇宙速度
(C)周期小于地球自转周期
(D)向心加速度小于地面的重力加速度
8.(2018•江苏)我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km,之前已运行的“高分四号”轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号冶相比,下列物理量中“高分五号”较小的是
A. 运动速度大于第一宇宙速度
专题09万有引力与天体运动-【好题汇编】三年(2022-2024)高考物理真题分类汇编(解析版)
专题09万有引力和天体运动考点三年考情(2022-2024)命题趋势考点1万有引力定律(5年3考)2024年高考广西卷:潮汐现象2023年高考辽宁卷:在地球上观察,月球和太阳的角直径(直径对应的张角)近似相等,计算地球与太阳的平均密度之比。
2022年重庆高考:以空间站切入,考查万有引力定律和计算地球密度。
2022年新高考海南卷:计算火星与地球的的第一字宙速度之比和表面的重力加速度之比。
1.万有引力定律与天体运动中高考考查频率较高的知识主要表现在:天体质量和密度的计算;重力加速度的计算;第一宇宙速度的计算等:2.试题通常以宇宙观测给出情景,文字叙述较多,信息较多,进行一些假设,解答时需要套用模型。
考点2天体运动(5年3考)2024年全国理综新课程卷:给出太阳系外的一颗红矮屋行星数据,计算这颗红矮星的质量。
2024年高考江西卷:两个质量相同的卫星绕月球做匀速圆周运动,计算其动能和周期的比值。
2023年6月高考浙江卷:给出木星的卫星信息,判断相关物理量。
2023年高考山东卷:根据牛顿的猜想,计算月球绕地球公转的周期。
2023年高考湖南卷:根据宇宙大爆炸理论,恒星最终的归宿与其质量有关,判断恒星坍缩前后的第一宇宙速度,逃逸速度等。
2022年高考湖北物理:天文观测得到恒星羲和的质量是太阳质量的2倍,计算望舒与地球公转速度大小的比值。
考点01万有引力定律1.(2024年高考广西卷)潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同。
图中a 、b 和c 处单位质量的海水受月球引力大小在()A.a 处最大B.b 处最大C.c 处最大D.a 、c 处相等,b 处最小【答案】A 【解析】根据万有引力公式2m =M F GR 可知图中a 处单位质量的海水收到月球的引力最大;故选A 。
2.(2023高考江苏学业水平选择性考试)设想将来发射一颗人造卫星,能在月球绕地球运动的轨道上稳定运行,该轨道可视为圆轨道.该卫星与月球相比,一定相等的是()A.质量B.向心力大小C.向心加速度大小D.受到地球的万有引力大小【参考答案】C 【名师解析】根据2MmGma r =,可得2GM a r =因该卫星与月球的轨道半径相同,可知向心加速度相同;因该卫星的质量与月球质量不同,则向心力大小以及受地球的万有引力大小均不相同。
2025高考物理总复习天体运动的四大问题
=
2
。
1
二、多星模型
所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,
各星体的角速度或周期相同。常见的多星模型及规律:
①
Gm 2
(2R)2
+
Gm 0 m
=ma 向
R2
常见的三星模型
Gm 2
② L 2 ×cos
30°×2=ma 向
Gm 2
① L 2 ×cos
一、星球的瓦解问题
当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力
时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的
0
物体所受星球的引力恰好提供向心力,即 2 =mω2R,得
ω>
0
时,星球瓦解;当
3
ω<
ω=
0
。当
3
0
时,星球稳定运行。
2
=m
r
,
=m
1
1
2
1
2 r2。
2
2
(2)两星的周期、角速度相同,即T1=T2,ω1=ω2。
(3)两星的轨道半径与它们之间的距离关系为r1+r2=L。
(4)两星到圆心的距离
1
r1、r2 与星体质量成反比,即
2
(5)双星的运动周期 T=2π
(6)双星的总质量
3
。
( 1 + 2 )
4π 2 3
1
−
2
=
2-1
(n=1,2,3,…)。
2
典题6 (2023哈师大附中模拟)“海王星冲日”是指地球处在太阳与海王星之
整理版历届高考真题天体运动
最新6年高考4年模拟:万有引力、天体运动第一部分 六年高考题荟萃2010年高考新题1.2010·重庆·16月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕月球连线上某点O 做匀速圆周运动。
据此观点,可知月球与地球绕O 点运动生物线速度大小之比约为 A .1:6400 B.1:80 C. 80:1 D:6400:1 【答案】【解析】月球和地球绕O 做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等。
且月球和地球和O 始终共线,说明月球和地球有相同的角速度和周期。
因此有R M r m 22ωω=,所以mM R r V v ==,线速度和质量成反比,正确答案 2. 2010·天津·6探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小 答案:A3. 2010·全国卷Ⅱ·21已知地球同步卫星离地面的高度约为地球半径的6倍。
若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为A .6小时 B. 12小时 C. 24小时 D. 36小时 【答案】B【解析】地球的同步卫星的周期为T 1=24小时,轨道半径为r 1=7R 1,密度ρ1。
某行星的同步卫星周期为T 2,轨道半径为r 2=3.5R 2,密度ρ2。
根据牛顿第二定律和万有引力定律分别有1211213111)2(34r T m r R Gm ππρ=⨯2222223222)2(34r T m r R Gm ππρ=⨯ 两式化简得12212==T T 小时 【命题意图与考点定位】牛顿第二定律和万有引力定律应用于天体运动。
4.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 (A )在轨道Ⅱ上经过A 的速度小于经过B 的速度(B )在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 (C )在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期(D )在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 答案:ABC5.火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
高三物理关于天体运动的高考题搜集整理
咐呼州鸣咏市呢岸学校高考物理试题万有引力类型的题(选项为答案)卷Ⅰ据报道,最近在太阳系外发现了首颗“居〞行星,其质量约为地球质量的倍,一个在地球外表重量为600N 的人在这个行星外表的重量将变为960N 。
由此可推知,该行星的半径与地球半径之比约为〔 〕A 、0.5B 、2C 、D 、4卷Ⅱ假地球、月亮都是静止不动,用从地球沿地月连线向月球发探测器。
假探测器在地球外表附近脱离。
用W 表示探测器从脱离处飞到月球过程中克服地球引力做的功,用k E 表示探测器脱离时的动能,假设不计空气阻力,那么A 、k E 必须大于或于W ,探测器才能到达月球B 、k E 小于W ,探测器也可能到达月球C 、k E =12W ,探测器一能到达月球 D 、k E =12W ,探测器一不能到达月球卷不久前欧天文学就发现了一颗可能适合人类居住的行星,命名为“格利斯581c 〞。
该行星的质量是地球的5倍,直径是地球的倍。
设想在该行星外表附近绕行星沿圆轨道运行的人造卫星的动能为k1E ,在地球外表附近绕地球沿圆轨道运行的形同质量的人造卫星的动能为k2E ,那么k1k2E E 为A 、0.13B 、0.3C 、3D 、卷4月24日,欧家宣布在太阳之外发现了一颗可能适合人类居住的类地行星Gliese581c 。
这颗围绕红矮星Gliese581运行的星球有类似地球的温度,外表可能有液态水存在,距离地球约为20光年,直径约为地球的倍 ,质量约为地球的5倍,绕红矮星Gliese581运行的周期约为13天。
假设有一艘宇宙飞船飞临该星球外表附近轨道,以下说法正确是A.飞船在Gliese581c 外表附近运行的周期约为13天B .飞船在Gliese581c 外表附近运行时的速度大于km/sC .人在Gliese581c 上所受重力比在地球上所受重力大D .Gliese581c 的平均密度比地球平均密度小卷我国探月的“嫦娥工程〞已启动,在不久的将来,我国宇航员将登上月球。
浙江省自主命题最近三年(2009、2010、2011)高考物理分类汇编
浙江省自主命题最近三年(2009、2010、2011)高考物理分类汇编目录:一、力与运动 二、天体运动 三、静电场四、机械能与圆周运动和平抛运动 五、磁场 六、电磁感应七、机械振动与机械波 八、光学 九、原子核物理 十、实验题一、力与运动1.(2009)如图所示,质量为m 的等边三棱柱静止在水平放置的斜面上。
已知三棱柱与斜面之间的动摩擦因数为μ,斜面的倾角为o30,则斜面对三棱柱的支持力与摩擦力的大小分别为( )A .23mg 和21mg B .21mg 和23mgC .21mg 和21μmg D .23mg 和23μmg2.(2009)氮原子核由两个质子与两个中子组成,这两个质子之间存在着万有引力、库伦力和核力,则3种力从大到小的排列顺序是( )A .核力、万有引力、库伦力B .万有引力、库伦力、核力C .库伦力、核力、万有引力D .核力、库伦力、万有引力3.(2010)如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。
下列说法正确的是 ( )A .在上升和下降过程中A 对B 的压力一定为零 B .上升过程中A 对B 的压力大于A 对物体受到的重力C .下降过程中A 对B 的压力大于A 物体受到的重力D .在上升和下降过程中A 对B 的压力等于A 物体受到的重力 4.(2011)如图所示,甲、已两人在冰面上“拔河”。
两人中间位置处有一分界线,约定先使对方过分界线者为赢。
若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )A .甲对绳的拉力与绳对甲的拉力是一对平衡力B .甲对绳的拉力与乙对绳的拉力是作用力与反作用力C .若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D .若已对绳的速度比甲快,则已能赢得“拔河”比赛的胜利二、天体运动5.(2009)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道。
已知太阳质量约为月球质量的7107.2⨯倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍。
历年高考试题分类汇编之《天体运动》
历年高考试题分类汇编之《天体运动》(全国卷1)17.已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为A.0.2B.2C.20D.200 答案:B解析:设太阳质量M ,地球质量m ,月球质量m 0,日地间距离为R ,月地间距离为r ,日月之间距离近似等于R ,地球绕太阳的周期为T 约为360天,月球绕地球的周期为t =27天。
对地球绕着太阳转动,由万有引力定律:G Mm R 2=m 4π2R T 2,同理对月球绕着地球转动:G mm 0r 2=m 04π2r t 2,则太阳质量与地球质量之比为M : m =R 3T 2r 3t 2;太阳对月球的万有引力F = G Mm 0R 2,地球对月球的万有引力f = G mm 0r 2,故F : f = Mr 2mR 2,带入太阳与地球质量比,计算出比值约为2,B 对。
(全国卷2)25.(20分)我国发射的“嫦娥一号”探月卫星沿近似于圆形轨道绕月飞行。
为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。
卫星将获得的信息持续用微波信号发回地球。
设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T 。
假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影响)。
解析:如下图所示:设O 和O '分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线O O '与地月球表面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星轨道的交点.过A 点在另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在圆弧BE 上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:r T m r Mm G 222⎪⎭⎫⎝⎛=π……………………① (4分)r T m r MmG 2102102⎪⎪⎭⎫⎝⎛=π……………………② (4分) ②式中,T 1表示探月卫星绕月球转动的周期.由以上两式可得:3121⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛r r m M T T …………③设卫星的微波信号被遮挡的时间为t ,则由于卫星绕月球做匀速圆周运动,应有:πβα-=1T t ……………………④ (5分)上式中A O C '∠=α,B O C '∠=β.由几何关系得:1cos R R r -=α………………⑤ (2分)11cos R r =β…………………………⑥ (2分)由③④⑤⑥得:⎪⎪⎭⎫ ⎝⎛--=111331arccos arccos r R r R R mr Mr Tt π……………………⑦ (3分) (北京卷)17.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟。
2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
高三物理高考冲刺专题系列6天体运动
高考冲刺专题系列:天体运动1.(10分)试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比。
证:设天体的质量为M ,半径为R ,密度为ρ,卫星的质量为m ,周期为T 。
则:绕天体运行的卫星的轨道半径约为R ,依牛顿第二定律有: ρππ3222344R M R Tm R Mm G == 可得ρπG T 3=得证。
2.(20分)“神舟”五号载人飞船绕地球14圈后安全返回。
若把“神舟”五号载人飞船的绕地运行看作是在同一轨道上的匀速圆周运动,已知地球半径为R ,地球表面重力加速度为g 。
(1)试估算“神舟”五号载人飞船绕地球运行的周期T 为多少秒?(保留二位有效数字)(2)设“神舟”五号载人飞船绕地球运行的周期为T 、地球表面的重力加速度为g 、地球半径为R ,用T 、g 、R 能求出哪些与“神舟”五号载人飞船有关的物理量?分别写出计算这些物理量的表达式(不必代入数据计算)。
解:(1)由题意可知:“神舟”五号载人飞船绕地球14圈共同时间为21小时23分钟,故飞船绕地球做圆周运动的周期T ≈5.5×103s ①(2)对“神舟”五号,万有引力作为圆周运动的向心力22)2(Tmr rMm G π==② 在地球表面mg R MmG=2③ 可得“神舟”五号轨道半径32224πgT R r =(或轨道周长=l 222gT R π④此外还可求得“神舟”五号载人飞船的运行频率Tf1=⑤运行角速度T πω2= ⑥ 运行线速度322T g R v π= ⑦运行向心加速度(加速度、轨道处重力加速度)3222Tg R Ta ππ= ⑧离地面高度R gT R h -=32224π ⑨3.(14分)2003年10月15日,我国成功发射了“神舟”五号载人宇宙飞船。
火箭全长58.3m ,起飞质量为479.8t ,刚起飞时,火箭竖直升空,航天员杨利伟有较强的超重感,仪器显示他对座舱的最大压力达到他体重的5倍。
高考热点3:天体运动问题》
天体运动问题大全天体运动问题, 是万有引力定律和牛顿第二定律(向心力公式)在匀速圆周运动模型中的综合应用.人造卫星、月亮绕地球运动或行星绕恒星运动可视为“环绕模型”, 由万有引力提供向心力: F引=F 向.此模型可计算卫星或行星的环绕速度、角速度、周期、向心加速度以及中心天体(被环绕的天体, 如地球、太阳)的质量和密度.对于卫星而言, 一条轨道, 对应着一个环绕速度, 因为一条轨道对应着一个固定的万有引力(作为向心力), 当卫星的环绕速度改变时, 轨道上所能提供的向心力不足或过量, 则卫星将发生离心或近心运动, 即意味着卫星要变轨, 这就是考题中的变轨问题!为什么当星球的自转速度增大到一定的程度后, 星球赤道表面的物体会“飘起来”, 甚至连星球本身也可能会离散瓦解呢!首先, 当星球自转的速度比较小的时候, 星球表面的物体随星球自转所需的向心力也比较小, 物体受到的万有引力足以提供这么一个向心力, 而且还有剩余!剩余的部分表现为物体的重力:赤道上的物体与地球一起自转时的向心力为GMm/R2-N=mv2/R, N=mg.当自转速度逐渐加快时, 物体所需的向心力也逐渐增大, 则N逐渐减小, 若自转速度继续增加, 当N=0时, 物体就会“飘起来”了.实际上就是当王物体所需的向心力比能提供的大时, 物体作离心运动!学离心运动的时候我们知道, 砂轮转速过大的时候会破碎瓦解, 那么我们把自转的星球看成转动的砂轮又有何妨呢!当星球自转太快时, 星球也会破碎瓦解的!星球表面或附近(距离地面有一定高度)的物体受到的万有引力,绝大部分用来产生物体的重力加速,剩余的一小部分则作为维持物体与星球一起自转所需的向心力.可见重力和万有引力是有所区别的!不过,在要计算重力加速度的考题中,通常忽略星球的自转(因为自转所需的向心力很小),于是认为重力近似等于万有引力,即mg=F引(我们不妨把它记作“近球模型”),据此,我们就可以推导出非常有用的“黄金代换式”:GM=gR2.既然重力可以近似等于万有引力,那么对于近地轨道(环绕轨道近似等于星球半径R)的卫星,则有mg=F向,可求得其环绕速度为v1=,也就是我们在考题中遇到的第一宇宙速度!例题点拨:例题1 (2004年江苏, 4)若人造卫星绕地球做匀速圆周运动, 则下列说法正确的是( )A. 卫星的轨道半径越大, 它的运行速度越大B. 卫星的轨道半径越大, 它的运行速度越小C. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越大D. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越小例题2 发射地球同步卫星时, 先将卫星发射至近地圆轨道1.然后经点火, 使其沿椭圆轨道2运动, 最后再次点火, 将卫星送人同步圆轨道3, 轨道1.2相切于Q点, 轨道2、3相切于P点(见下图), 当卫星分别在1.2、3轨道上正常运行时, 以下说法正确的是( )A. 卫星在轨道3上的速率大于在轨道1上的速率B. 卫星在轨道3上的角速度小于在轨道1上的角速度C. 卫星在轨道1上经过Q点的加速度大于它在轨道2上经过Q点时的加速度D. 卫星在轨道2上经过P点时的加速度等于它的轨道3上经过P点时的加速度例题3 地球赤道上的物体重力加速度为g, 物体在赤道上随地球自转的向心加速度为a, 要使赤道上的物体“飘”起来, 则地球的转速应为原来的( )A. g/a倍B. 倍C. 倍D. 倍例题4(2004年北京, 20)1990年5月, 紫金山天文台将他们发现的第2752号小行星命名为吴健雄星, 该小行星的半径为16 km.若将此小行星和地球均看成质量分布均匀的球体, 小行星密度与地球相同.已知地球半径R=6400km, 地球表面重力加速度为g.这个小行星表面的重力加速度为( )A. 400gB. g /400C. 20gD. g/20针对性训练1. 地球半径R0, 地面重力加速度为g, 若卫星距地面R0处做匀速圆周运动, 则( )A.卫星的速度为 B.卫星的角速度为C. 卫星的加速度为g/2D. 卫星的周期为2.假设地球质量不变, 而地球半径增大到原来的2倍, 那么从地球发射的人造地球卫星第一宇宙速度(球绕速度)大小应为原来的( )A. 倍B. 倍C. 倍D. 2倍3. 三颗人造卫星a、b、c绕地球作圆周运动, a与b的质量相等并小于c的质量, b和c的轨道半径相等且大于a的轨道半径, 则( )A. 卫星b、c运行的速度大小相等, 且大于a的速度大小B. 卫星b、c周期相等, 且大于a的周期C.卫星b、c向心加速度大小相等, 且大于a的向心加速度D. 卫星b所需的向心力最小4.关于绕地球运转的近地卫星和同步卫星, 下列说法中正确的是( )A. 近地卫星可以通过北京地理纬度圈所决定的平面上做匀速圆周运动B. 近地卫星可以在与地球赤道平面有一定倾角且经过北京上空的平面上运行C.近地卫星或地球同步卫星上的物体,因“完全失重”,其重力加速度为零D. 地球同步卫星可以在地球赤道平面上的不同高度运行5.假设一小型飞船, 在高空绕地球做匀速圆周运动, 若沿与其运动相反的方向发射一枚火箭, 则以下说法正确的是( )A. 飞船一定离开原来的轨道运动B. 火箭一定离开原来的轨道运动C. 若飞船继续绕地球匀速圆周运动, 则其运动的轨道的半径一定增大D. 若火箭离开飞船后绕地球做匀速圆周运动, 则其运动的圆轨道的半径一定减小6.关于人造地球卫星, 下列说法正确的是( )A. 轨道半径是地球半径n倍的同步卫星的向心加速度是地表附近重力加速度的倍B. 轨道半径是地球半径n倍的同步卫星的向心加速度是赤道表面物体向心加速度的n倍C. 如果卫星的轨道是椭圆, 则它在近地点比远地点时的动能大、势能小, 但两处的机械能相等D. 如果卫星因受空气阻力的作用, 其半径逐渐减小, 则它的势能逐渐减小, 动能逐渐增大, 机械能逐渐减少7.同一轨道上有一个宇航器和一个小行星,同方向围绕太阳做匀速圆周运动.由于某种原因,小行星发生爆炸而被分成两块,爆炸结束瞬间,两块都有原方向的速度,一块比原速度大,一块比原速度小,关于两块小行星能否撞上宇航器,下列判断正确的是()A. 速度大的一块能撞上宇航器B. 速度大的一块不能撞上宇航器C. 速度小的一块能撞上宇航器D. 速度小的一块不能撞上宇航器8.假设在质量与地球质量相同, 半径为地球半径两倍的某天体上进行运动比赛, 那么与地球成绩相比, 下列说法正确的是( )A. 跳高运动员的成绩会更好B. 投掷铁饼的距离更远C. 举重运动员的成绩会更好D. 游泳运动员的成绩会更好9.2003年10月15日“神舟五号”载人飞船搭载航天员杨利伟发射成功, 经过21小时太空之旅, 飞船返回舱乘载着杨利伟于10月16日6时23分在内蒙古主要着陆场成功着陆, 我国首次载人航天飞行圆满成功。
高考物理 3年高考2年模拟1年原创 专题5.3 天体的运动(含解析)
专题5.3 天体的运动【考纲解读与考频分析】宇宙中有很多天体在运动,高考对天体的运动考查频繁。
【高频考点定位】: 天体的运动考点一:天体的运动 【3年真题链接】1.(2018海南高考物理)土星与太阳的距离是火星与太阳距离的6倍多。
由此信息可知( ) A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 【参考答案】B【命题意图】此题考查万有引力定律、天体的运动及其相关的知识点。
【解题思路】根据题述,土星与太阳的距离是火星与太阳距离的6倍多,即土星围绕太阳做匀速圆周运动的半径是火星围绕太阳做匀速圆周运动轨道半径的6倍多,根据万有引力等于向心力,G 2Mm r=m 2v r 可知,轨道半径越大,运行速率越小,即土星运行的速率比火星的小,选项B 正确;根据万有引力等于向心力,G2Mm r =mr 2T π⎛⎫ ⎪⎝⎭2可知,轨道半径越大,周期越大,即土星运行的周期比火星的大,选项C 错误;根据万有引力等于向心力,G2Mm r=mr ω2可知,轨道半径越大,角速度越小,即土星运行的角速度大小比火星的小,选项D 错误。
根据题述信息,不能得出土星的质量比火星质量的关系,选项A 错误。
2.(2018高考理综II ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为11226.6710N m /kg -⨯⋅。
以周期T 稳定自转的星体的密度最小值约为( ) A .93510kg /m ⨯ B .123510kg /m ⨯C .153510kg /m ⨯D .183510kg /m ⨯ 【参考答案】.C【命题意图】本题考查万有引力定律、牛顿运动定律、密度及其相关的知识点。
【解题思路】设脉冲星质量为M ,半径为R 。
天体运动高考题精选
4、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比 ( )①地球与月球间的万有引力将变大; ②地球与月球间的万有引力将变小;③月球绕地球运动的周期将变长; ④月球绕地球的周期将变短。
A. ①③B. ②③C.①④D.②④5、地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( )A. gB. g/2C. g/4D. 2g6.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上。
用R 表示地球的半径,g 表示地球表面处的重力加速度,g /表示宇宙飞船所在处的地球引力加速度,N 表示人对秤的压力,下面说法正确的是 ( )A .0=NB .g r R g 22=' C .0='g D .g rR m N = 7.一物体在地球表面上的重力为16N,它在以5m/s 2的加速度加速上升的火箭中的示重9N,则此时火箭离地面的高度是地球半径R 的( )A.2倍B.3倍C.4倍D.0.5倍8.一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的……………………( )A. 4倍B. 0.5倍C. 0.25倍D. 2倍9、火星与地球的质量之比为P ,半径之比为q ,则火星表面的重力加速度和地球表面的重力加速度之比为( ) A. 2q p B.2pq C.q p D.pq 10. 2010·上海月球绕地球做匀速圆周运动的向心加速度大小为a ,设月球表面的重力加速度大小为1g ,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则( )(A )1g a = (B )2g a = (C )12g g a += (D )21g g a -=11.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量将是地球质量的( )A.41; B.4倍; C.16倍; D.64倍。
近三年高考天体物理(答案)
(2103 安徽)17.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为p GMm E r =-,其中G 为引力常量,M 为地球质量。
该卫星原来的在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为 A .2111()GMm R R - B .1211()GMm R R - C .2111()2GMm R R - D .1211()2GMm R R - 【答案】C【解析】人造地球卫星绕地球做匀速圆周运动,万有引力提供向心力:22Mm v G m r r=,故人造地球卫星的动能21122k GMm E mv r ==,而引力势能p GMm E r=-,人造地球卫星机械能E =E P +E k 。
由能量守恒定律,因摩擦而产生的热量:121122()()k p k p Q E E E E E E =-=+-+代入R 1和R 2得:2111()2GMm Q R R =-。
正确选项:C(2013 全国)18.“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟。
已知引力常量G =6.67×10–11 N•m 2/kg 2,月球的半径为1.74×103 km 。
利用以上数据估算月球的质量约为( )A .8.1×1010 kgB .7.4×1013 kgC .5.4×1019 kgD .7.4×1022 kg【答案】D(2013 福建)13.设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆。
已知万有引力常量为G ,则描述该行星运动的上述物理量满足A .2324r GM T π=B .2224r GM Tπ= C .2234r GM T π= D .324r GM T π= 【答案】A(2013 广东)14.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙大D .甲的线速度比乙大【答案】A(2013 四川)4.太阳系外行星大多不适宜人类居住,绕恒星“Glicsc581”运行的行星“Gl -581c”却很值得我们期待。
福建历年高考题天体运动
24.万有引力定律(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
(2)数学表达式:F=G,引力常量G由卡文迪许利用扭秤实验测出。
(万有引力定律中物体之间的距离r 是指两质点之间的距离)(3)应用:测中心天体的质量、密度,发现新天体,航天等。
25.人造地球卫星(1)轨道特征:轨道平面必过地心。
(2)动力学特征:万有引力提供卫星绕地球做圆周运动的向心力,即有G=m=m()2r。
(3)轨道半径越大,周期越长,但运行速度越小。
(4)发射人造地球卫星的最小速度——第一宇宙速度v1==7.9 km/s。
物体脱离地球引力,不再绕地球运行所需的最小速度——第二宇宙速度v2=11.2 km/s;物体脱离太阳的引力所需的最小速度——第三宇宙速度v3=16.7 km/s。
28.地球同步卫星“四定”(1)运行周期一定,周期为24 h。
(2)距地面高度一定,大约为3.6×104 km。
(3)轨道平面一定,轨道平面与赤道面重合。
(4)环绕方向及速度一定,环绕方向为自西向东运行,速度大小约为3.1km/s。
1.若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍 B.倍 C.倍 D.倍1.【答案】C【考点】第一宇宙速度、万有引力定律【解析】第一宇宙速度又叫环绕速度,即绕星球表面飞行的卫星的速度根据万有引力提供向心力,解得,所以,C项正确。
2.设太阳质量为M,某行星绕太阳公转周期为T,轨道可视为r的圆。
已知万有引力常量为G,则描述该行星运动的上述物理量满足A.B.C.D.2.答案: A2【解析】:行星绕太阳做匀速圆周运动,万有引力提供向心力,有,所以,选项A正确。
3.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为,已知引力常量为G,则这颗行星的质量为A.B.C.D.3【答案】: B【解析】:设星球半径为R,星球质量为M,卫星质量为m1,卫星做圆周运动向心力由万有引力提供即,而星球表面物体所受的重力等于万有引力即:;结合两式可解的星球质量为所以选B.4.火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天体运动一、开普勒三定律1. 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 A 太阳位于木星运行轨道的中心B 火星和木星绕太阳运行速度的大小始终相等C 火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 2. 关于环绕地球运动的卫星,下列说法正确的是A. 分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B. 沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C. 在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D. 沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合3.我国发射的探月卫星有一类为绕月极地卫星。
利用该卫星可对月球进行成像探测。
如图所示,设卫星在绕月极地轨道上做圆周运动时距月球表面的高度为H,绕行周期为T M ;月球绕地球公转的周期为 T E ,公转轨道半径为 R );地球半径为R E ,月球半径为 R M 忽略地球引力、 T MR )D •由开普勒第三定律可得 一T M 一3B •若光速为C ,信号从卫星传输到地面所用时间为.R o 2 (H R M )2 R EC •由开普勒第三定律可得T M (R M H)3T E 2 (R o R E )3太阳引力对绕月卫星的影响,则下列说法正确的是(R M H)二、万有引力定律4. 下列说法正确的是()A •牛顿发现万有引力定律并精确测出了引力常量B •哥白尼提出日心说,认为行星以椭圆轨道绕太阳运行C •牛顿在归纳总结了伽利略、笛卡尔等科学家结论的基础上,得出了牛顿第一定律D .亚里士多德提出了力是改变物体运动状态的原因5•在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道。
知太阳质量约为月球质量的 2.7 107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍。
关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是A .太阳引力远大于月球引力B .太阳引力与月球引力相差不大C •月球对不同区域海水的吸引力大小相等D •月球对不同区域海水的吸引力大小有差异6.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律。
以下说法正确的是()A. 物体的重力不是地球对物体的万有引力引起的B. 人造地球卫星离地球越远,受到地球的万有引力越大C. 人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D. 宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用7•牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律。
在创建万有引力定律的过程中,牛顿()A. 接受了胡克等科学家关于“吸引力与两中心距离的平方成反比”的猜想B. 根据地球上一切物体都以相同加速度下落的事实,得出物体受地球的引力与其质量成正比,即F m的结论C. 根据F m和牛顿第三定律,分析了地月间的引力关系,进而得出 F m1m2D. 根据大量实验数据得出了比例系数G的大小三、关于天体质量、密度的计算8. 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0, 赤道的大小为g;地球自转的周期为T,引力常量为G.地球的密度为()9. 一卫星「绕某一行星表面附近做匀速圆周运动,其线速度大小为 V 。
假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N 已知引力常量为G,,则这颗行星的质量为( )A . mv2/GNB . mv4/GNC . Nv2/Gm .D. Nv4/Gm.10. 为了对火星及其周围的空间环境进行探测,我国预计于 2011年10月发射第一颗火星 探测器“萤火一号”。
假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2。
火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常 量为G 仅利用以上数据,可以计算出( )A .火星的密度和火星表面的重力加速度B .火星的质量和火星对“萤火一号”的引力C .火星的半径和“萤火一号”的质量D .火星表面的重力加速度和火星对“萤火一号”的引力11.设想我国宇航员随“嫦娥”号登月飞船贴近月球表面做匀速圆周运动,宇航员测出飞船 绕行n 圈所用的时间为t.登月后,宇航员利用身边的弹簧秤测出质量为 m 的物体重力为G1.已知引力常量为 G,根据以上信息可得到( )A.月球的密度 B.飞船的质量 C.月球的第一宇宙速度12. 一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定 该行星的密度,只需要测量()A.飞船的轨道半径 B .飞船的运行速度 C.飞船的运行周期D.行星的质量13. 已知地球同步卫星离地面的高度约为地球半径的 6倍。
若某行星的平均密度为地球平均 密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为()A 3n g0 - g A. GT2 gO C.3n GT23 n gO IGT2]0- g 3 n gO D GT2gD.月球的自转周期A. 6小时B. 12 小时C. 24 小时D. 36 小时14. 一物体静置在平均密度为p的球形天体表面的赤道上。
已知万有引力常量为天体自转使物体对天体表面压力恰好为零,则天体自转周期为(四、卫星的线速度,加速度,角速度,周期的比较及计算15. 被认为是冥王星唯一的卫星,它的公转轨道半径天.2006年3月,天文学家新发现两颗冥王星的小卫星, km则它的公转周期T2最接近于()A. 15 天B . 25 天C . 35 天D . 45 天16. 某人造卫星运动的轨道可近似看作是以地心为中心的圆,由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用Ek1、Ek2分别表示卫星在这两个轨道上的动能,则()A. r1 < r2,Ek1 < Ek2B.r1 > r2,Ek1 < Ek2C.r1 < r2,Ek1 > Ek2D.r1 > r2,Ek1 > Ek217. 2012年10月,美国耶鲁大学的研究人员发现一颗完全由钻石组成的星球,通过观测发现该星球的半径是地球的2倍,质量是地球的8倍,假设该星球有一颗近地卫星,下列说法正确的是()A. 该星球的密度是地球密度的2倍B. 该星球表面的重力加速度是地球表面重力加速度的4倍C. 该星球的近地卫星周期跟地球的近地卫星周期相等D. 该星球近地卫星的速度是地球近地卫星速度的4倍18. 地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。
设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则()GM 4 2r3GM4 2r2A . T2B . T2G若由于A. 3GB. 4 nC. GD. Gr1 = 19 600 km,公转周期T1 = 6.39其中一颗的公转轨道半径r2 = 48 000A. v1>v2>v3B.v1<v2<v3C. a1>a2> a319. 设太阳质量为M某行星绕太阳公转周期为为G,则描述该行星运动的上述物理量满足D.a1< a3<a2T,轨道可视为r的圆。
已知万有引力常量GM 4 2r2GM 4 r3 C . T3 D . T220.如图所示,在火星与木星轨道之间有一小行星带。
假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。
下列说法正确的是( A. 太阳对各小行星的引力相同B. 各小行星绕太阳运动的周期均小于一年C. 小行星带内侧小行星的向心加速度值大于外 侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值21.某行星和地球绕太阳公转的轨道均可视为圆。
每过N 年,该行星会运行到日地连线的延该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 太阳的60倍。
假设母星与太阳密度相同, Cancri e ”与地球的()23.北京时间2012年2月25日凌晨O 时12分,中国在西昌卫星发射中心用“长征三号 丙” 运载火箭,将第十一颗“北斗”导航卫星成功送入太空预定转移轨道,这是一颗地球静止轨道卫星•“北斗”导航卫星定位系统由静止轨道卫星(同步卫星 )、中轨道卫星和倾斜同 步卫星组成,中轨道卫星轨道半径约为27900公里,静止轨道卫星的半径约为42400公里.A.静止轨道卫星的向心加速度比中轨道卫星向心加速度小B. 静止轨道卫星和中轨道卫星的线速度均大于地球的第一宇宙速度长线上,如题21图所示。
该行星与地球的公转半径比为()22*产'七N 1 3N 3* 、 /A.NB.N 1■ / 玻对叮■ :: \ ;33; O:; * 1K RL: /\\/事N 1 2N 2C.ND.N 1■ JJ*kj 亠.-/\- 单J 、- __________ - ” 122.据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“ 55 Cancri e ”,1 480,母星的体积约为55 Cancri e ”与地球均做匀速圆周运动,则“55A.轨道半径之比约为 】480 C.向心加速度之比约为引60 4802B.轨道半径之比约为'■ 4802 D.向心加速度之比约为3 60 480(479)30.53 可供应用) F 列说法正确的是()C. 中轨道卫星的周期约为12. 7hD. 地球赤道上随地球自转物体的向心加速度比静止轨道卫星向心加速度大五、关于重力常数g24.科学研究发现,在月球表面附近没有空气,没有磁场,重力加速度约为地球表面的I /6。
若宇航员登上月球后,在空中从同一高度同时释放氢气球和铅球,忽略地球和其他星球 的影响,以下说法正确的是()A. 氢气球和铅球都将下落,且同时落到月球表面B. 氢气球和铅球都将下落,但铅球先落到月球表面C. 氢气球将加速上升,铅球将加速下落D. 氢气球和铅球都将上升 25.某星球与地球的质量比为 a ,半径比为b ,则该行星表面的重力加速度与地球表面重力 加速度之比为()A . a/bB . a/b2C . ab2D . Ab26. 英国《新科学家(New Scientist )》杂志评选出了 2008年度世界8项科学之最,在 XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径 R 约45km,质量M 和半径R 的关系满足 M — (其中c 为光速,G 为引力常量),则该黑洞表面重力加速度R 2G的数量级为( )A. 108m/s 2B10 / 2 .10 m/sC. 10 m/sD142.10 m/s球壳对壳内物体的引力为零。