人教版七年级数学下册第七章第一节7.1.1平面直角坐标系教学设计

合集下载

平面直角坐标系--教学设计

平面直角坐标系--教学设计

“平面直角坐标系”教学设计人教版义务教育教科书数学七年级下册第七章第一节第2课时一、教学内容和内容解析《平面直角坐标系》是人教版《义务教育教科书·数学》七年级下册第七章第一节的第2课时的内容.“平面直角坐标系”是在“数轴”的基础上发展起来的.平面直角坐标系使点与数的关系从一维空间过渡到二维空间,建立了有序实数对与平面内的点的一一对应关系,架起了“数”与“形”之间的桥梁,构成了更广范围内的数形结合、数形互相转化的理论基础.“平面直角坐标系”是今后学习函数、函数与方程、函数与不等式和解析几何的必要知识,也是今后学习的重要数学工具.二、教学目标和目标解析◆教学目标1.理解平面直角坐标系的有关概念及平面内点的坐标的意义.2.掌握平面直角坐标系中点与坐标(有序实数对)的一一对应关系.3.通过建立平面直角坐标系,体验数形结合的思想.4.通过用平面直角坐标系解决数学问题,初步建立学生的几何直观.5.了解平面直角坐标系的建立过程与意义,体会平面直角坐标系的价值,感受笛卡尔的探索精神,增强对数学的求知欲.◆教学目标解析为什么要建立平面直角坐标系、平面直角坐标系有哪些构成要素是本节课的重要内容,教学中根据七年级学生虽然以抽象思维为主,但很大程度上依赖形象思维的认知特点,采用从实际情境中抽象出数学问题,由对实际问题的解决提升学生认识,再回到解决实际问题,即:实践—理论—实践的教学过程.理解平面直角坐标系中点与坐标的对应关系是本节课的另一个重要内容.在教学中通过“数形结合”,了解平面直角坐标系的象限,并通过由点写坐标和由坐标找点等数学活动,让学生理解点与有序实数对的“一一对应”关系.三、教学问题诊断分析由于学生第一次从一维空间的数轴过渡到二维空间的平面直角坐标系,在认知上理解如何建立平面直角坐标系比较困难,理解平面直角坐标系中点与坐标的一一对应关系要求学生有较强的抽象思维能力.因此,本节课的教学重点和难点分别为:◆教学重点:1.平面直角坐标系的相关概念;2.由点求出坐标及根据坐标确定点的位置;◆教学难点:理解平面直角坐标系建立的必要性以及在平面直角坐标系中点与有序实数对的一一对应关系.根据教学目标、重难点及学生认知水平,这节课主要采用情景激趣、自主学习尝试、合作探究交流等教学方法.四、教学条件支持分析学校辅有电子白板、几何画板、实物展台等现代教学技术,本节课充分利用PPT课件和现代教学技术,展示平面直角坐标系的画法及探究点的坐标,并利用实物展示台展示学生掌握情况,点拨释疑.五、教学过程(一)建立模型,导入新课情境展示:多媒体课件展示阆中古城的文化宣传片.【设计意图】通过欣赏学生参观的阆中古城宣传片,让数学课堂充满人文、文化魅力,培养和提升学生的数学文化素养.出示学生参观的南充阆中古城的照片和阆中古城的景点路线图:问题1:如果引入网格线,如何描述小刚、小伙伴A和小伙伴B的位置?【设计意图】以学生参观了的“阆中古城”作为问题情境,贴近生活实际,有利于调动学生学习的热情;复习、巩固数轴的“三要素”;也为学习“平面直角坐标系”起着“先行组织者”的作用.问题2:在小刚的正南方向3格处有一个小伙伴C ,以小刚为原点,能否类比点A 、点B 的方法表示点C 的位置?.【设计意图】通过建构“竖”数轴,与前面的“横”数轴相呼应,为一维空间过渡到二维空间搭好“脚手架”.思考:这两条数轴有什么共同特征?问题3:如何表示不在同一条直线上的小刚和小伙伴A ,B ,C 的位置?思考:平面直角坐标系与数轴相比有什么优势?【设计意图】连续三个问题的提出,以具体点的表示,帮助学生理解建构平面直角坐标系的必要性,让学生体会由实际问题抽象成数学模型的过程.史料介绍:介绍法国数学家笛卡尔及他发现平面直角坐标系的相关材料.【设计意图】通过介绍笛卡尔建立平面直角坐标系的故事,一方面激发学生学习兴趣,另一方面,鼓励学生像笛卡尔一样:关注生活,善于观察、勤于思考.(二)活动引领,探究新知活动1 自学明晰概念(阅读课本第66-67页).思考:①说一说组成平面直角坐标系的两条数轴具备什么特征? ②什么是横轴?什么是纵轴?什么是坐标原点? ③坐标平面点的坐标具体怎么表示?【设计意图】通过问题引领学生自主学习,进一步明确平面直角坐标系的相关概念;同时培养学生表达能力.O 12345-1-21234-1-2-3-3-4-4A BC追问:你会画一个平面直角坐标系吗?试一试.(教师先在黑板上画出平面直角坐标系,然后巡视指导,把学生有问题的坐标图形进行投影,让其他学生找出错误,并进行纠正)【设计意图】让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯.活动2 由点写出坐标问题4:你能写出图中平面内点P的坐标吗?怎么找到的?由点A分别向x轴和y轴作垂线,垂足在x轴上的坐标是3,垂足在y轴上的坐标是4,有序实数对(3,4)就是点P的坐标.【设计意图】由点写出坐标,让学生理解平面内点的坐标意义,渗透由“形”到“数”.问题解决:怎么用坐标表示小刚和他的四个小伙伴A,B,C,D在阆中古城的位置?【设计意图】让学生体会用已建立的平面直角坐标系解决实际问题.游戏互动:由其中一位同学作为小老师,对几何画板课件中的点提问其坐标,由其他同学回答。

七年级数学下册-第七章-平面直角坐标系教学设计-(新版)新人教版

七年级数学下册-第七章-平面直角坐标系教学设计-(新版)新人教版

平面直角坐标系课题主备人执教者课型!新授课课时1时间教学目标情感态度培养学生用数学的意识,激发学生的学习兴趣.通过导入部分的视频激发学生爱国热情。

知识与技能理解有序数对的意义,能利用有序数对表示物体的位置。

过程与方法结合用有序数对表示物体的位置的内容,体会数形结合的思想.教学重难点。

重点有序数对的概念,用有序数对来表示物体的位置是重点;难点用有序数对表示平面内的点是难点。

教法与学法小组合作自主探究,讲授法,练习法教具准备<多媒体课件教学过程教学环节及时间分配教师活动学生活动(一)问题导入(3分钟)、;(二)提出问题,尝试解决(15分钟)…问题12009年60周年国庆庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置请3组5号起来回答。

这些都说的是用两个数确定一个物体的位置,那么怎样用两个数来确定一个物体的位置呢今天我们学习了有序数对就会表示了。

〔问题2〕下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.观看视频(~·]#`》(三)巩固训练(5分钟)(四)归纳总结,布置作业(5分钟)(五)检测反馈(101234567654321纵排横排怎样确定教室里座位的位置^教师追问:排数和列数的先后顺序对位置有影响吗举例说明。

这就是说用两个数表示物体的位置是有顺序的。

假设我们约定“列数在前,排数在后”,请你在课本图上标出被邀请参加讨论的同学的座位。

上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。

我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

$利用有序数对,可以很准确地表示出一个位置。

生活中利用有序数对表示位置的情况是很常见的。

人教版七年级下册第七章平面直角坐标系7.1.1有序数对优秀教学案例

人教版七年级下册第七章平面直角坐标系7.1.1有序数对优秀教学案例
4.鼓励学生提出自己的问题,培养他们独立思考和解决问题的能力。
(三)小组合作
1.将学生分成若干小组,鼓励他们相互讨论、交流,共同解决问题。
2.设计小组合作任务,让学生通过合作完成任务,培养他们的团队合作意识。
3.在小组合作过程中,教师要关注每个学生的参与程度,及时给予指导和鼓励。
4.鼓励学生分享自己的解题思路和方法,培养他们的表达能力和倾听能力。
5.多元化的教学评价:本节课注重对学生的全面评价,不仅关注他们的学习成果,还注重他们的学习过程和团队合作能力。教师通过观察、提问、作业批改等方式,及时给予学生反馈和指导,帮助他们纠正错误和提高解题能力。同时,鼓励学生自主学习和思考,培养他们的创新能力和实践能力。
本节课的教学目标是让学生理解有序数对的含义,掌握用有序数对表示点的方法,并能够利用坐标轴来表示和理解实际问题中的点。在教学过程中,我将以实际问题为导入,引导学生通过观察和分析来发现有序数对与坐标系之间的关系,通过小组合作和讨论来加深对知识的理解,培养学生的合作意识和解决问题的能力。在教学方法上,我将采用问题驱动的教学模式,让学生在解决问题的过程中自主探索和学习,提高学生的主动学习和思考的能力。同时,我还将注重对学生的个别辅导,帮助他们在学习过程中解决遇到的问题,提高他们的学习效果。
5.创设丰富的教学情境,引导学生运用所学知识解决实际问题,培养学生的创新能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,使他们愿意主动参与到数学学习中。
2.培养学生克服困难的勇气和信心,使他们能够面对挑战,积极解决问题。
3.培养学生良好的学习习惯,使他们能够独立思考,自主学习。
3.设计有趣的数学游戏,让学生在游戏中自然而然地接触到有序数对和平面直角坐标系。

人教版七年级下册7.1 平面直角坐标系学案设计(含答案)

人教版七年级下册7.1  平面直角坐标系学案设计(含答案)

人教版七年级下册7.1 平面直角坐标系学案设计(含答案)1 / 67.1 平面直角坐标系知识要点:1.有序数对(1)理解有序数对的概念有两个要点:一是“有序”,二是“数对”,“数对”是指有两个数.(2)有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.2.平面直角坐标系(1)在建立平面直角坐标系时要适当,一般建立时能使表示的点的坐标越简单、越容易表示就越适当.(2)在建立平面直角坐标系时要首先规定谁是x 轴、谁是y 轴,谁是原点、正方向,并规定了适当的单位长度,然后再用坐标确定点的位置.(3)在写点的坐标时,必须先写横坐标,再写纵坐标,中间用逗号隔开.平面上的任意一点都有唯一的一对有序数对(即这个点的坐标)与之对应,反过来,对于任意一对有序数对,平面上都有唯一的一个点与之对应.一、单选题1.如果点P(m +3,m +1)在直角坐标系的x 轴上,那么P 点坐标为( ) A .(0,2) B .(2,0) C .(4,0) D .(0,-4)【答案】B2.若点(,)N x y 在x 轴下方,y 轴左侧,且30x -=,|y|=2,则点N 的坐标为( ) A .(3,2)--B .(3,2)-C .(3,2)-D .(3,2)【答案】A 3.点M 的坐标为(-3,-4),则下列说法正确的是( )A .点M 到x 轴的距离是3B .点M 到x 轴的距离是-4C .点M 到x 轴的距离是4D .点M 到x 轴的距离是-3【答案】C 4.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示( )A .6排4座B .4排6座C .4排4座D .6排6座【答案】B5.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B6.点A (4,−3)到y 轴的距离为( )A .4B .-4C .3D .-3【答案】A7.在平面直角坐标系中,点A (-1,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C8.在平面直角坐标系中,下列各点位于第二象限的是( )A .()3,4B .()3,4-C .()3,4--D .()3,4- 【答案】B9.在平面直角坐标系中,第二象限内的点P 到x 轴的距离是2,到y 轴的距离是3,已知线段PQ ∥y 轴且PQ =5,则点Q 的坐标是( )A .(3,7)-或(3,3)--B .(3,3)--或(7,3)-人教版七年级下册7.1 平面直角坐标系学案设计(含答案)3 / 6C .(2,2)-或(8,2)-D .(2,8)-或(2,2)-- 【答案】A10.己知P 点的坐标为(2,36)a a -+,且P 到两坐标轴的距离相等,P 点的坐标为( ) A .()3,3 B .()3,3- C .()6,6- D .()3,3或()6,6-【答案】D11.点(),P a b 在第二象限,则a.b 的取为( )A .0a >,0b >B .0a <,0b >C .0a <,0b <D .0a >,0b <【答案】B二、填空题12.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点P 1、P 2、P 3、…、P 2019的位置,则点P 2019的横坐标为_______.【答案】2018.513.如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________.【答案】(﹣2,0)14.在x轴上到原点距离为3的点的坐标为_______;在x轴上到点(-2,0)距离为5个单位的点的坐标是_______;在x轴上到点(-32,0)距离为4.5个单位的点的坐标是_______.【答案】(3,0)或(-3,0);(3,0)或(-7,0);(3,0)或(-6,0)15.已知点B在x轴上,且与点A(3,0)的距离为2,则点B的坐标为________;【答案】(1,0)或(5,0)16.点M(-6,5)到x轴的距离是_____,到y轴的距离是______.【答案】5;617.已知0mn ,则点(m,n)在_________________________【答案】坐标轴上.18.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.【答案】±419.在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于_______个单位长度【答案】6三、解答题20.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的平分线上?人教版七年级下册7.1 平面直角坐标系学案设计(含答案)(2)点P在第一、三象限的平分线上?【答案】(1)当m=2时,点P在第二、四象限的平分线上;(2)当m=4时,点P在第一、三象限的平分线上.21.若点M(x,y)在第三象限,且x,y满足|x-2|=4,|3-y|=5,求点M的坐标.【答案】(-2,-2)22.按下列要求写出点的坐标.(1)F在第三象限,到x轴距离为4,到y轴距离为6;(2)直线AB,点A(-2,y),B(x,3).若AB∥x轴,且A,B之间距离为6个单位,写出A,B的坐标.【答案】(1)F(-6,-4);(2)点A(-2,3),B(-8,3)或(4,3).23.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B,C三点的坐标;(2)写出∥ABC的三个顶点关于原点对称的点A1、B1、C1的坐标。

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。

人教版初一数学下册7.1.1有序数对(教学设计)

人教版初一数学下册7.1.1有序数对(教学设计)

第七章平面直角坐标系7.1 平面直角坐标系7.1.1 有序数对教学目标【知识与技能】1.知道表示平面上的点的位置需要两个数.这样的两个数叫做数对.为了方便,通常先约定这两个数的顺序,所以这样的数对叫有序数对.2.能用有序数对表示平面上点的位置,也能根据有序数对找到它所表示的点.【过程与方法】通过实际问题中对位置的确定体会有序数对的意义.进而用有序数对表示平面上点的位置及根据有序数对找到它所表示的点.【情感态度】锻炼用数学解决实际问题的能力,培养学习数学的兴趣.【教学重点】有序数对的意义.运用有序数对表示平面上的点或根据有序数对找到它所表示的点.【教学难点】用不同的有序数对表示平面上的同一个点.教学过程一、情景导入,初步认识问题1 去影剧院看电影,影剧票上怎样表示你的座位?问题 2 当教师告诉你某页书上的某个字是关键字,要你将这个字打上着重号,老师怎样告诉你这个字的具体位置?问题3 在教室里,怎样确定每个同学的座位?【教学说明】学生分组讨论,然后交流成果,最后形成共识.二、思考探究,获取新知思考 1.怎样较简单地表示平面上点的位置?2.在平面上表示一个点的位置只有一种方法吗?3.有序数对的顺序是怎样规定的?【归纳结论】1.通常用有序数对(a,b)表示平面上点的位置,这种表示法非常简明,人们一般都喜欢运用它,是公认的较简单的方法.2.在平面上表示一个点的位置有很多方法,如表示点A的位置(如图),可用(0,3)表示,也可用(3,90°)表示;表示点B的位置可用(7,0)表示,也可用(7,0°)表示.(后一种表示方法,教师可根据实际情况进行拓展)3.有序数对:为了表示平面上点的位置,需要用两个有顺序的数a与b表示,这种有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b).4.有序数对的顺序是人为规定的,但为了方便,往往大家都遵循一种特定的顺序,这样,在大的范围内,人们使用起来就方便多了。

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。

记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。

例2 :请同学们说出以下各个地点所表示的有序数对。

—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。

例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。

(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。

人教版七年级数学7.1.2平面直角坐标系说课讲稿

人教版七年级数学7.1.2平面直角坐标系说课讲稿

⼈教版七年级数学7.1.2平⾯直⾓坐标系说课讲稿《平⾯直⾓坐标系》说课稿今天我说课的内容是九年义务教育⼈教版七年级数学下册第七章第⼀节第⼆课时平⾯直⾓坐标系,我将从教材分析、学情分析、教法与学法、教学过程、教学评价⼏个⽅⾯谈谈我对本节课的认识。

⼀、教材分析(⼀)教材的地位和作⽤平⾯直⾓坐标系是在学习了数轴和有序数对后安排的⼀次概念性教学,也是初中⽣与坐标系的第⼀次亲密接触。

平⾯直⾓坐标系的建⽴架起了数与形之间的桥梁,是数形结合的具体体现。

这⼀节课主要是让学⽣认识平⾯直⾓坐标系,了解点与坐标的对应关系;在给定的平⾯直⾓坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。

因此,本节课的学习,是进⼀步学习函数及其它坐标系必备的基础知识,也就是说它在整个初中数学教材体系中有着举⾜轻重的作⽤。

(⼆)教学⽬标知识⽬标让学⽣理解平⾯直⾓坐标系的有关概念,并会由点确定坐标、由坐标描点的位置;能⼒⽬标让学⽣经历从实际⽣活中的具体问题抽象出数学模型—平⾯直⾓坐标系的过程;情感⽬标通过对问题情境的探索、交流等数学活动,培养学⽣的合作意识;(三)教学重难点教学重点:平⾯直⾓坐标系及相关概念。

教学难点:理解建⽴平⾯直⾓坐标系的必要性,体会坐标系中点与坐标的⼀⼀对应关系。

⼆、学情分析七年级的学⽣具有活泼好动,好奇的天性,他们正处于独⽴思维发展的重要阶段,对数学的求知欲较强,并且具有初步的⾃主、合作探究的学习能⼒,由于对数轴有⼀定的认识,因此,对于平⾯直⾓坐标系的构成和建⽴较为容易理解。

另外⼼理上,学⽣爱听⼩故事,我抓住这⼀点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学⽣进⾏数学⽂化的熏陶,以此来激发学⽣学习的积极性。

三、教法与学法教学⽅法:1.探索发现法2.指导阅读法3.讲练结合法学习⽅法:新课标倡导积极主动,勇于探索的学习⽅式,要求把课堂交给学⽣,因此本节课我主要引导学⽣在⼤胆猜想、⾃主探索、合作交流的学习过程中⾃主参与知识的形成过程,从⽽培养学⽣探究问题,交流合作的良好品质。

人教版七年级下数学7.1.2 平面直角坐标系教案

人教版七年级下数学7.1.2 平面直角坐标系教案

一、情境导入文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8) (8,7),(8,8).9家个和怎他是的去常8聪到饿日一有啊!哦7的我是发搞可了明在6确小大北京你才批不5年没定妈,爸事达方4营业女天员各合乎经3由于嘿毫力量靠孩济2仍真击歼安机麻生世1然往亲赌东门密棒暗0123456789二、讲授新知探究点1:平面直角坐标系问题1:建立了平面直角坐标系以后,平面内的点可以用来表示,由点P 向轴作垂线,垂足M在x轴上的坐标是;由点P向轴作垂线,垂足N在y轴上的坐标是 .于是,点P的横坐标是-2,纵坐标是3,且把横坐标写在纵坐标的前面,记作(-2,3).(-2,3)叫做点P在平面直角坐标系中的坐标,简称点P的坐标.典例精析例1.写出下图中的多边形ABCDEF各个顶点的坐标.针对训练在直角坐标系中描下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-2).方法总结:由坐标找点的方法:(1)先在坐标轴上找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.探究点2:直角坐标系中点的坐标的特征问题1:建立平面直角坐标系后,两条坐标轴把坐标平面分成个部分,从右上的象限开始,按逆时针方向依次为、、、,坐标轴上的点任何象限(填“属于”或“不属于”)问题2:各象限内点的坐标有什么特点?坐标轴上点的坐标有什么特点?问题3:坐标平面内的点与有序数对(坐标)是什么关系?典例精析例2.在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.例3..设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.例4.点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.针对训练1.已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是______.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.2.已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1)B.(1,-2)C.(-2,-1)D.(1,2)方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道“点P到x轴的距离”对应的是纵坐标,“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.探究点3:建立坐标系求图形中点的坐标问题1:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.问题2:建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?总结归纳:建立平面直角坐标系,一般要使图形上的点的坐标容易确定,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系,又如以正方形的中心为原点建立平面直角坐标系.需要说明的是,虽然建立不同的平面直角坐标系,同一个点会有不同的坐标,但正方形的形状和性质不会改变.典例精析例5.长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.针对训练右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.三、课堂练习1.如图,点A的坐标为( )A.( -2,3)B.( 2,-3)C.( -2,-3)D.( 2,3)第1题图第2题图2.如图,点A的坐标为,点B的坐标为 .3.在 y轴上的点的横坐标是,在 x轴上的点的纵坐标是 .4.点 M(- 8,12)到 x轴的距离是,到 y轴的距离是 .。

第七章平面直角坐标系教(学)案

第七章平面直角坐标系教(学)案

授课教师:爱华授课时间:(3)要确定每艘敌舰的位置,两个数据:距离和方位角.么?在学校的哪个方向上?这一方向上还有其他设施吗?怎么区分?(3)要确定京山相对于学校的位置,需要哪些数据?板书设计7.1.1 有序数对教学反思本课容比较简单,但涉及到实际情境,有些学生由于不理解实际情境造成不理解题意,从而出现解题错误.教师授课过程中应当加强学生对情境的理解,从情境中抽象出数学本质的知识,以利于学生解题.授课教师:授课时间:课题7.1.2 平面直角坐标系课时教学目标1.掌握平面直角坐标系的有关概念,会画平面直角坐标系.2通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系的原点、横轴和纵轴等,会由坐标描点,由点写出坐标,让学生体会到平面上的点与有序实数对之间的对应关系.3.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想,培养学生自主探究与合作交流的学习习惯.教学重点正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点.教学难点各象限及各坐标轴上点的坐标的特点,平面上的点与有序实数对之间的对应关系.教学方法探究法、演示法、练习法教学手段多媒体教学手段课型新授课教学环节教学容教师活动学生活动授课教师:授课时间:课题7.2.1 用坐标表示地理位置课时教学目1.掌握用坐标表示地理位置的方法.2.通过学生观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.3.通过用坐标表示地理位置的方法,让学生体验数学活动充满着探索与创造.学生体会了解。

图7-2-8播放央视新闻联播关于2014月3日市鲁甸县发生6.5级地震的新闻片段.新闻报道中是用什么方法表示地震位置授课教师:授课时间:。

部编人教版七年级下册第七章平面直角坐标系第一节有序数对教学设计课件

部编人教版七年级下册第七章平面直角坐标系第一节有序数对教学设计课件

7.1.1有序数对一、教学内容:有序数对是(部编)人教版七年级数学下册第七章《平面直角坐标系》第一节的内容,它是学习全章的基础,也是今后学习平面直角坐标系和研究函数的运动变化的基础。

学生在实际生活中用“数对”表示点或事物的位置有一定的基础知识谈到“有序”有些陌生。

本节内容有利于增强学生的数学符号感,是“数”向“形”的正式过度,让学生充分认识到数学是描述解决实际生活中事物、问题的重要工具。

二、学情分析:1、学生已具备的基本知识与技能学生在小学阶段已经对确定物体的位置有基础性的了解,能够在方格纸上用数对以及根据方向和距离确定物体的位置2、学生的认知特点七年级学生的数学思维能力、抽象思维能力、以及用数学语言符号表达思维对象、思维结构的能力没有达到一定的水平,言辞我选择的教学素材是学生熟悉的生活经验,和小学已有的数学知识经验。

并借助多媒体这一教学辅助工具来进行素材的呈现三、设计思想:1、教学方法作为课堂的组织者、引导、启发者,教师要启发引导学生自主学习,结合教学目标,针对我校学生的知识水平、认知情况,借助多媒体课件、白板软件提高学生学习兴趣,利用教材插图引导学生发现问题、具体解决,增强课堂教学的趣味性和直观性,激发学生求知欲望,有效的渗透数形结合思想、方法,提高课堂教学效益。

2、学生学法在教学过程中要可能多的给学生提供参与学习活动的时间和空间,让学生体会有序数对知识的产生过程,学会学习。

首先学生观察、分析后提出问题,之后学生通过个人思考和小组间的交流协作进行探究归纳,真正体会有序数对的含义,从中领悟知识的产生,归纳规律。

四、教学目标:1、知识与能力目标1)通过丰富的实例认识有序数对,感受它在确定点的位置中的作用;2)理解有序数对的概念,学会用有序数对表示点的位置。

2、过程与方法目标1)能用有序数对表示实际生活中物体的位置,并能说出一对有序数对的实际含义;2)通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力;3)体会具体-抽象-具体的数学学习过程。

《7.1.2平面直角坐标系》说课稿

《7.1.2平面直角坐标系》说课稿

人教版七年级数学下册第7章《7.1.2平面直角坐标系》说课稿各位评委老师:大家好!今天我说课的内容是人教版数学七年级下册第七章第一节《平面直角坐标系》第二课时.下面我就从以下六个方面对本节课进行阐述.一、教材分析(一)教材的内容、地位与作用本节课是《平面直角坐标系》的第二课,主要内容是:让学生认识平面直角坐标系,了解点与坐标的对应关系,掌握坐标轴及各象限点的坐标的符号特征.平面直角坐标系是在学生学习了数轴和有序数对后的一次概念性教学,它的建立架起了数与形之间的桥梁,是数形结合的具体体现.它不仅强化了平面直角坐标系的意义,还将其应用于现实生活中,并为今后函数和解析几何的学习打下基础,它在整个初中数学教材体系中有着举足轻重的作用.(二)教学目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

遵循这一理念,结合学生实际,确立本节课的目标为:1.知识与能力目标:理解平面直角坐标系的有关概念,能正确的画出平面直角坐标系,并会由点确定坐标、由坐标描点,准确知道各象限的点的符号特征,初步感受数形结合的思想.2.过程与方法目标:通过实例、活动与实践,让学生经历从实际生活中的具体问题抽象出数学模型-----平面直角坐标系的过程;体验数学来源于生活,并服务于生活.3.情感态度价值观目标:养学生合作意识,感受学习的快乐,让不同层次的学生得到不同的收获,感受成功,建立自信.二、学情分析(一)1.学生年龄特征与认知规律七年级的学生活泼好动,好奇心强,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解.2.学生已有知识经验学习本节内容之前,学生已经具有使用数轴的经验,了解了直线上的点与有理数之间的对应关系.3.学生的认知困惑与教学预设平面内点的坐标概念以及由坐标描点和由点写出坐标.由于“对应”的概念比较抽象,所以认识点与坐标的对应是本节课教学的难点,在教学设计中利用具体的例子对该问题进行说明,加深学生的理解.(二)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置,并掌握坐标轴及象限内点的坐标符号特征.教学难点:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系.三、教学方法《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。

人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)

人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)

教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。

人教版七年级数学下册教案 7-1-2 平面直角坐标系

人教版七年级数学下册教案 7-1-2 平面直角坐标系

7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。

新人教版七年级数学下册《七章 平面直角坐标系 7.1 平面直角坐标系 用经纬度表示地理位置》研讨课教案_2

新人教版七年级数学下册《七章 平面直角坐标系  7.1 平面直角坐标系  用经纬度表示地理位置》研讨课教案_2

教学设计阅读与思考——用经纬度表示地理位置学科:数学阅读与思考——用经纬度表示地理位置一、教材分析(一)教学内容《阅读与思考----用经纬度表示地理位置》是人教版七年级下册第七章《平面直角坐标系》中“阅读与思考”的内容,是本章阅读与选学内容。

(二)在教材中的地位和作用《阅读与思考----用经纬度表示地理位置》是本章阅读与选学内容。

用经纬度表示地理位置在7.1.1小节介绍有序数对时提到过,让学生通过阅读,了解有序数对在实际中的应用。

利用经纬度确定地球上一个地点的地理位置,是一个较好体现有序数对在生活中应用的实例。

这个素材对学生有一定的吸引力,与地理等相关学科有密切联系,教学时可以利用这个素材,让学生查阅资料,了解更多的有关确定地理位置的知识,培养学生查阅资料获得信息的能力。

经纬度判读是学生认识地球仪的进一步细化和深化,也是地理中学习利用经纬网定位、地球的运动、在地图上判断方向等知识的基础。

(三)目标要求目标要求是:“运用地球仪和经纬网,能说出经度与纬度的划分。

”通过经度和纬度的排列规律,对某一地点在地球仪进行准确定位,并运用相关知识判断南纬、北纬、东经、西经。

教学重点:分析地球上某一点的经纬度位置,能根据给定的经纬度,找出其在图上的位置。

二、学情分析(一)学生的认知特点七年级学生直接经验少,理解能力差,习惯于机械记忆。

思维方式正处于由形象思维向抽象思维的逐步过渡阶段,分析、归纳、推理的能力和空间想象能力还较差。

因此,在教学时要运用地球仪、板图、简图等直观形象的教具和各种启发手段帮助学生理解教材。

(二)学生已有的知识和技能基础学习这部分内容时,学生还刚开始系统的学习地理知识,还没有建立地理空间概念,读图能力较差,因此,这一知识点需要较细致地引导学生读图、分析、归纳、反馈。

教学难点:分析地球上某一点的经纬度位置,能根据给定的经纬度,找出其在图上的位置。

三、教学目标(1)识记经线、纬线,经度、经度。

理解经纬线分布特点;经纬度的划分;(2)运用经纬度的排列规律判断南纬、北纬、东经、西经;分析某一点的经纬度位置,能根据给定的经纬度,找出其在图上的位置;(3)明白了解、研究地球对人类活动的重要性,会用经纬度表示地理位置;(4)培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

2020春人教版七年级数学下册-第7章 平面直角坐标系-单元说课稿

2020春人教版七年级数学下册-第7章 平面直角坐标系-单元说课稿

平面直角坐标系一、说教材(一)教学内容与地位《平面直角坐标系》是人教版九年义务教育七年级数学下册第七章第一节内容,它是在学习了数轴和有序数对后安排的一次概念性教学。

《数学课程标准》7~9年级的学段内容标准中对平面直角坐标系的要求是:(1)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

(2)在实际问题中,能建立适当的直角坐标系,描述物体的位置。

平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。

这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系。

因此,本节课的学习是今后学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。

(二)教学三维目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

遵循这一理念,结合课程标准中对该部分的要求与本节课在这一章节中的作用,结合学生实际我制订了以下教学目标:1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。

2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。

3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。

(三)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。

教学难点:知道点的坐标描点,认识点与坐标的对应。

第七章 平面直角坐标系7.1.1有序数对 (第一课时) 教学设计

第七章 平面直角坐标系7.1.1有序数对 (第一课时) 教学设计

第七章平面直角坐标系7.1.1有序数对(第一课时)教学目标1、知识与技能目标理解有序数对的概念,能根据有序数对能确定点的位置,由点的位置写出相应的有序数对。

说出一对有序数对的实际含义。

通过用有序数对描述位置和根据位置写出有序数对的活动,体会一一对应的关系,树立“数”与“形”相互转化和统一的数学思想2、过程与方法目标新课讲授,多媒体白板应用并采用自主探究的方法学习,并使学生从中体会学习的兴趣及对团队合作学习意识的培养。

3、情感与态度目标通过对有序数对应用的研究,进一步感悟数学与实际生活密切相关,体会有序数对在生活中的广泛应用。

让学生感受数学活动充满了探索性与创造性,培养学生的合作意识和探索精神;教学重点理解有序数对的含义,熟练进行有序数对与点的位置的相互转化。

教学难点体会有序数对与点的位置之间一一对应的关系。

教学流程:一、创设情境,引入新课播放建国60周年庆典活动的视频并展示相关图片。

问题1:你怎样让他们能从茫茫人海中一下子就找到你呢? 引导学生回答按照几排和几列来确定位置。

设计意图:通过截取建国60周年活动庆典的视频来设疑,吸引学生的注意力,激起学生探究新知识的兴趣和热情。

类似于用“第几排第几列”来确定同学的位置,在数学中通常是用平面直角坐标系来描述位置。

有了平面直角坐标系,我们就可以把几何问题代数化,也可以把代数问题几何化。

那么在平面直角坐标系中如何描述具体位置呢?就要用到我们今天研究的《有序数对》(板书)二、探究新知活动1找客人(1)他在第5列,能确定是谁吗?他在第3排!你能确定是谁了吗?(2)他在第3列,能确定是谁吗?他在第2排!你能确定是谁了吗?通过这个小游戏你发现要确定一个同学的位置,应该需要几个数字呢?我们把“5列3排”简写成(5,3)启发学生回答上述问题后,指出:像这样的两个数我们称之为“数对”。

设计意图:让学生通过亲身经历体会从具体情景中发现数学问题,进而寻求解决问题方法的全过程,从而使学生认识到现实生活中蕴含着大量的数学信息。

数学人教版七年级上册笛卡尔平面直角坐标系教学设计

数学人教版七年级上册笛卡尔平面直角坐标系教学设计

7.1.2平面直角坐标系教学设计教学内容:人教版七年级数学下册第七章第一节第二课时《平面直角坐标系》P65-68。

教学目标:知识与技能:认识并会画平面直角坐标系,能由点的位置写出其坐标;在给定的直角坐标系中能根据坐标描出点,了解点与坐标的一一对应关系。

过程与方法:1.在找点的坐标和通过坐标找点的过程中,发展学生的自学、思考能力。

2.通过“合作交流”等数学活动,培养起合作交流意识与探究精神。

情感态度与价值观:通过同学之间的交流与游戏,激发学生学习数学的兴趣;通过相同的点在不同的坐标系中有不同的坐标的认识,让学生懂得事物是相对的,是变化的辩证唯物主义观。

教学重点与难点:教学重点:平面直角坐标系概念。

教学难点:在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点。

教学方法:自主学习,合作交流教学媒体:多媒体,课件教学过程:一、创设情境,导入新课:1.出示图片,学生欣赏风景。

2.向学生提出问题:如何确定小鸟在直线上的位置?3.引导学生明确数轴上点的坐标概念。

4.提问:如何确定平面上点的位置?5.引出课题:7.1.2平面直角坐标系。

二、探索新知,解决问题活动一:学生阅读笛卡尔的简介,了解平面直角坐标系的由来及意义,增强其学习的目的性。

活动二:明确概念1. 学生自学课本66页倒数第二段。

2. 出示检测题:3.引出平面直角坐标系、横轴、纵轴、原点、象限的概念。

4.学生动手画平面直角坐标系。

5.展示学生作品,强调画平面直角坐标系的注意事项:①互相垂直②标明正方向③原点重合活动三:表示平面内点的坐标。

1. 学生自学课本66页最后一段。

2. 学生以A点为例回答如何找点的坐标。

3. 以B、C、D、E、F、G、H为例,同为之间互相说一说。

4.教师在学生中间适当点拨。

5.师生一起总结找点坐标的方法:过一点作x轴的垂线,垂足在x轴上对应的数就是点A的横坐标;作y轴的垂线,垂足在y 轴上对应的数就是点A的纵坐标。

两数组成有序数对就是点A的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.1平面直角坐标系教学设计
二、教学目标
(1)知识与技能:
了解有序数对的概念,学会用有序数对表示点的位置.
(2)过程与方法:
结合有序数对表示物体的位置的内容,体会数形结合的思想.
(3)情感态度、价值观:
让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神 .
三、学习者分析
初一学生对本节内容没有基础,是初次接触的概念。

四、教学重难分析及解决措施
用有序数对表示点的位置是重点也是难点,解决措施是借助多媒体进行展示,使问题形象化。

五、教学设计
注:此模板可另附纸,为教学案例和教学论文的发表奠定基础。

相关文档
最新文档