哈尔滨南岗区2014届九年级调研测试(一)数学试卷及答案

合集下载

哈尔滨市南岗区四十八中初三1月月测数学试题及答案.doc

哈尔滨市南岗区四十八中初三1月月测数学试题及答案.doc

黑龙江哈尔滨市南岗区四十八中2014—2015学年度1月月测数学试题一、选择题(每小题3分,共计30分)1.—21的倒数是( )A.21B.2C. —2D.—12.下列计算正确的是( )A. a+a=a2B.(2a)3=8a3C. (a-1)2=a2-1D.(-a)5÷(-a)2=a33.下列图形中既是轴对称图形又是中心对称图形的是( )4.已知抛物线的解析式为y=(x-3)2+1,则当x≥3时,y随x增大的变化规律是( )A.增大B.减小C.先增大再减小D.先减小再增大5.如图是某个几何体的三视图.则该几何体是 ( )A.三棱柱B.三棱锥C.圆柱D.长方体6.在菱形ABCD中,∠ADC=120°,则BD∶AC等于( )A.1∶2B.3∶2C.3∶1D.3∶37.如图,将矩形纸片ABCD折痕.使点D落在点线段AB的中点F处.若AB=4,则边BC的长为( )A.334B.5C.32 D.48.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出两个球都是绿球的概率是( )A.94B.103C.53D.329.如图,把△ABC绕点C顺时针旋转某个角度后得到△A B C,若∠A=30°,∠1=70°,则旋转角可能等于下列哪一个角度 ( )A.40° B.50° C.70° D.100°10. 小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是( )A.他离家8 km共用了30minB.他等公交车时间为6minC.公交车的速度是350 m/minD.他步行的速度是100 m/min二、填空题(每小题3分,共30分)11.用科学记数法表示6 300 000应记作______________.12.化简:22—24=_________.13.把多项式2a2-4ab+2b2分解因式的结果是____________.14. 不等式组⎩⎨⎧-+1112xx的解集为_________________..15.如图,在Rt△ABC中,∠C=90°,D是边AC上的点,AD=DB=2a,∠A=15°,则BC边的长为___________.16.已知圆锥的底面半径是3,母线长为5,则圆锥的侧面展开图的圆心角为°.17. 如图,AB是⊙O的直径,AC是弦,∠DCA=25°,过圆心O作OD⊥AC交AC于点D,连接DC,则∠ABC=__________度18.某厂前年缴税30万元,今年缴税36.3万元,如果该厂缴税的年平均增长率为x,那么可列方程为__________.19.等腰△ABC中,AB=AC,AD⊥BC于点D,点E在直线AC上,2CE=AC,AD=6,BE=5,则△ABC的面积是____________.20.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=62,那么AC的长等于________..三、解答题(共60分)21.(本题6分)先化简,再求值:111212-÷-+-+aaaaa,其中a=tan60°-2cos60°22.(本题6分)如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)连接AB1、B1C,请直接写出四边形ABCB1的周长.23.(本题6分)某中学为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)在这次调查中,参与问卷调查的学生共有多少人?(2)补全直方图(3)若该校有2 000名学生,估计喜欢足球的学生共有多少人?24.(本题6分)如图,一次函数图象与反比例函数图象交于A、B两点,与x轴交于点C,与y轴交于点D,OC=1,tan∠DCO=2,已知点A纵坐标为-2.(1)求一次函数和反比例函数的解析式;(2)连接BO,求△BOD的面积.25.(本题8分)26.(本题8分)威娜宝美容店欲购进A、B两种化妆品,用160元购进的A种化妆品与用240元购进的B种化妆品的数量相同,每件B种化妆品的进价比A种化妆品的进价贵10元.(1) 求A、B两种化妆品每件的进价分别为多少元?(2)若该商店A种化妆品每件售价24元,B种化妆品每件售价35元,准备购进A、B两种化妆品共100件,且这两种化妆品全部售出后总获利高于468元,则最多购进A种化妆品多少件?27.如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2)抛物线y=21x2+bx-2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线L.当L移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.28.在△ABC中,AB=AC,点O为BC边的中点,点D在线段OC上,点E在线段BO上,∠BAC=2∠DAE,过点C作CG⊥AD于点G,交射线AE于点F,连接BF、OG。

哈尔滨市南岗区四十八中2014—2015年初三10月月测数学试题

哈尔滨市南岗区四十八中2014—2015年初三10月月测数学试题

8 的图象交于点
B,与
x
轴交于点
C,且
AB=2BC,求
点 C 的坐标.
y A
B
C
Ox
25. 如图,以 AB 为直径的圆 O 交 AC 于点 D,且点 D 为 AC 的中点,DE⊥BC 于点 E,AE 交圆 O 于点
F,BF 的延长线交 DE 于点 G.
C
(1)求证:DE 为半圆 O 的切线;
(2)若 BG:AE= 3 :4, DG 1,求 CE 的长.
6.反比例函数
y

2
3k x
的图象经过点(-2,5),则
k
的值为(
)
A.10 B.-10 C. 4 D. -4
7.如图,矩形 ABCD 中,AE 为∠BAD 的平分线,矩形 ABCD 的周长是
20cm,AE= 2 2 cm,则 CE 的长为(
)
A.2
B.4
C.6
D.8
9题
8. 现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽
少元?
与 x 轴交于 A,B 两点(点 A 在点 B 左侧),与 y 轴交于点 C,点 D 为顶点.
27.抛物线 y x 3 x 1
(1)求点 B 及点 D 的坐标. (2)连结 BD,CD,抛物线的对称轴与 x 轴交于点 E.点 P 从点 O 出发,以每秒一个单位的长度向终点 B 运动,设△PCD的面积为 S,点 P 的运动时间为 t 秒,求 S 与 t 的函数关系式,并直接写出自变量 t 的取 值范围. (3)在(2)的条件下,点 M 在直线 BD 上,当 S=2 时,若△MPD与△BPC相似,求点 M 的坐标.

哈尔滨市2014 南岗一模数学答案

哈尔滨市2014 南岗一模数学答案

2014年中考调研测试(一)数学试卷参考答案与评分标准二、(每小题3分,共计30分) 三、解答题(共计60分)21.解:x x x -+-24224............22)2)(2(2424222'+=--+=--=---=x x x x x x x x x∵x =2sin 60°-2tan 45°=1 (23122)32'-=⨯-⨯∴1 (3223224)22'=+-=+=-+-x xx x 22. 解:(1)画图正确2....................' 1.....).........1,2(1'--C (2)画图正确1.....).........4,2(2....................2''C 23. 证明:过点A 作BG AM ⊥交GB 的延长线于M , 作DG AN ⊥于N ︒=∠=∠=∠∴90AND ANG AMG DE BG ⊥ ︒=∠∴90BGD∴四边形AMGN 为矩形︒=∠∴90MAN '2....................................M∵四边形ABCD 为正方形MAN BAD ∠=︒=∠∴90 AD AB =BAN BAD BAN MAN ∠-∠=∠-∠∴即DAN BAM ∠=∠....................................1' DAN BAM ∆∆∴≌....................................1'\AN AM =∴ ....................................1' ∴GA 平分BGD ∠ ....................................1'24. 解:(1)1410616450=----=x ,图形略3....................................' (2)70分以上的频率为:64.05010616=++, 由样本估计总体可知:)(38460064.0人=⨯∴估计该校学生时事政治掌握情况良好的人数约为384人. 3....................................' 25.(1)证明:连接OE ,在⊙O 中,OB OE OA ==,2.........,//,'∠=∠=∠=∠∴∠=∠∴EOD OEB OBE AOD BE OD OEB OBE1..................,,'∠=∠∴∆∆∴==OED OAD EOD AOD OD OD OE OA ≌又∵AM 是⊙O 的切线,切点为A , ∴AM ⊥BA , ∴DE OE OED OAD ⊥∴︒=∠=∠,90∵OE 是⊙O 的半径 是DE ∴⊙O 的切线.1................' (2)解:过点D 作BC 的垂线,垂足为H. ∵BN 切⊙O 于点B ,∴BHDBAD ABC ∠=∠=︒=∠90∴四边形ABHD 是矩形,2........................................,1'===∴DH AB BH AD 314=-=-=∴BH BC CH AD 、CB 、CD 分别切⊙O 于点A 、B 、E ,1...............541,4,1'=+=+=∴====∴CE DE DC CE BC ED AD在 DHC Rt ∆中,1.....................435,22222'=-==∴+=DH AB CH DH DC 26. 解:(1)设甲种商品每件的进价是x 元,则乙种商品每件的进价为x 3元.依题意可得8031200400=+xx ,解得'2........................................10=x 经检验10=x 为原分式方程的解,∴301033=⨯=x '2.................................................答:甲、乙两种商品的进价分别为每件10元、30元.(2)设六月份再次购进甲种商品a 件,则购进乙种商品)80(a -件,依题意可得3.............................................600)80)(3040()1015('≥--+-a a 解得40≤a ,a 的最大值是40答:该超市六月份最多购进甲种商品40件....................................1' 27. 解:(1) 令0=x ,则33,02=++==+=+-=bx ax y n n n x y,3n OC ==∴令,0=y 则1....................................).........0,3(,3,03'∴===+-B OB x x在AOC ∆中, 1.........).........0,1(,1,33t an ,90'-∴=∴===∠︒=∠A OA OAOA CO CAO AOC 将A(-1,0),B(3,0)代入32++=bx ax y , 得⎩⎨⎧=+-=++030339b a b a 解得:⎩⎨⎧=-=21b a∴抛物线的解析式:'1 (322)++-=x x y (2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|=| t 2-3t | ∴ d=-t 2+3t (0<t<3)2.............................'d=t 2-3t (t>3) 1........................................' (3) ∵e d ,是y 2-(m+3)y+41(5m 2-2m+13)=0(m 的两个实数根,∴△≥0,即△=(m+3)2-4×41(5m 2-2m+13)≥0 整理得:△= -4(m -1)2≥0,∵-4(m -1)2≤0,∴△=0,m=1,1.........................................' L∴ PQ 与PH 是y 2-4y+4=0的两个实数根,解得y 1=y 2=2∴ PQ=PH=2, ∴-t+3=2,∴t=1 ,1.....................................' ∴此时Q 是抛物线的顶点,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2, ∵LP=MP ,PQ=PH ,∴四边形LQMH 是平行四边形, ∴LH ∥QM ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴LH=MH ,∴平行四边形LQMH 是菱形,∴PM ⊥QH ,∴点M 的纵坐标与P 点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x 2=1-2综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2) 2...........................................' 28.(1)证明:如图1,延长AG 至M ,使得MG=AG∵DG=EG ,∠AGD=∠EGM∴△ADG ≌△MEG .............................................................................1' ∴∠DAG=∠M ,AD=EM..................................................................1' ∵∠DAG=∠B ∴∠M=∠B...............................................................1' ∵∠EAG=∠C ,∴△AME ∽△CBA.................................................1'∴54===AE AD AE EM ACAB ∴AB=54AC.................................................................1' (2)○1∵∠EAG=∠ACB ,∠DAG=∠B,∴∠EAD+∠BAC=180°,又∵∠EAD=∠AFD ∴∠AFD+∠BAC=180°∴DF ∥AB..................1'∴△CDF ∽△CKA ∴CD:CK=CF:AC=1:2,∴DQ ∥BC ,∴△KDQ ∽△KCB,KCKDBC DQ KB KQ ==∴∵CD=DK,∴QK=BQ BC=2QD ∴点Q 为BK 的中点○2BE 与DQ 的数量关系为DQ BE 167= 延长BA 至R ,使AR=AB ,连接CR 、DR,∴AC ARAEAD =∵∠EAD+∠BAC=180° ∠CAR+∠BAC=180° ∴∠EAD=∠CAR,∴∠EAD+∠CAD=∠CAD+∠CAR ,即∠EAC=∠DAR ∴△DAR ∽△EAC,∴∠DRA=∠ACB54==AE AD CE DR 即DR=54CE ∵DQ ∥BC ∴∠AQD=∠B,∴△ABC ∽△DQR(图1)M54==∴AC AB DR DQ 即DR=45DQ.........................................1'∴54CE=45DQ ,∴CE=DQ 1625 DQ BC 2= DQ DQ DQ CE BC BE 16716252=-=-=∴∴DQ BE 167=................1'(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

2014年黑龙江省哈尔滨市中考数学试卷(附答案与解析)

2014年黑龙江省哈尔滨市中考数学试卷(附答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前黑龙江省哈尔滨市2014年初中升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为 ( ) A .5℃ B .6℃ C .7℃ D .8℃2.用科学记数法表示927000正确的是 ( )A .69.2710⨯B .59.2710⨯C .49.2710⨯D .392710⨯ 3.下列计算正确的是( )A .321a a -=B .257=a a a +C .246=a a aD .33()ab ab = 4.下列图形中,不是中心对称图形的是( )ABCD5.在反比例函数1k y x-=的图象的每一条曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( ) A .1k > B .0k > C .k ≥1 D .1k <6.如下左图所示的几何体是由一些小正方体组合而成的,则这个几何体的俯视图是 ( )AB C D7.如图,AB 是O 的直径,AC 是O 的切线,连接OC 交O 于点D ,连接BD ,40C ∠=,则ABD ∠的度数是( ) A .30 B .25 C .20 D .158.将抛物线221y x =-+向右平移l 个单位,再向上平移2个单位后所得到的抛物线为 ( ) A .22(1)1y x =-+- B .22(1)+3y x =-+ C .22(1)+1y x =--D .22(1)3y x =--+9.如图,在Rt ABC △中,90ACB ∠=,60B ∠=,2BC =,A B C ''△可以由ABC △绕点C 顺时针旋转得到,其中点A '与点A 是对应点,点B '与点B 是对应点,连接AB ',且A ,B ',A '在同一条直线上,则AA '的长为 ( ) A .6B.C.D .310.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回.两人相遇后,小刚立即赶往学校,妈妈回家,l5分钟妈妈到家,再经过3分钟小刚到达学校.小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间函数关系如图所示,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚与妈妈相遇后,妈妈回家的速度为l50米/分;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)④小刚家与学校的距离为2250米. 其中正确的个数( ) A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.把答案填写在题中的横线上) 11..12.在函数324xy x =+中,自变量x 的取值范围是 . 13.已把多项式2236+3n m mn -分解因式的结果是 .14.不等式组2x 13x 21+≤⎧⎨+>⎩的解集是 .15.若1x =是关于x 的一元二次方程2310x x m +++=的一个解,则m 的值为 .16.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为 .17.如图,在矩形ABCD 中,4AB =,6BC =,若点P 在AD 边上,连接BP ,PC ,BPC △是以PB 为腰的等腰三角形,则PB 的长为 .18.一个底面直径为10cm .母线长为15cm 的圆锥,它的侧面展开图圆心角是度.19.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF AC ⊥于点F ,连接EC ,3AF =,EFC △的周长为l2,则EC 的长为 .20.如图,在ABC △中,45AB AC =,AD 为ABC △的角平分线,点E 在BC 的延长线上,EF AD ⊥于点F ,点G 在AF 上,FG FD =,连接EG 交AC 于点H ,若点H 是AC 的中点,则AGFD的值为 .三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分6分) 先化简,再求代数式2222322x y x yx y x y++---的值,其中2cos452x =+,2y =.22.(本小题满分6分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E 在BC 边上,且点E 在小正方形的顶点上,连接AE .(1)在图中画出AEF △,使AEF △与AEB △关于直线AE 对称,点F 与点B 是对称点;(2)请直接写出AEF △与四边形ABCD 重叠部分的面积.23.(本小题满分6分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;数学试卷 第5页(共32页) 数学试卷 第6页(共32页)(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名.24.(本小题满分6分)如图,AB ,CD 为两个建筑物,建筑物AB 的高度为60米,从建筑物AB 的顶部A 点测得建筑物CD 的顶部C 点的俯角EAC ∠为30,测得建筑物CD 的底部D 点的俯角EAD ∠为45.(1)求两建筑物底部之间水平距离BD 的长度; (2)求建筑物CD 的高度(结果保留根号).25.(本小题满分8分) 如图,O 是ABC △的外接圆,弦BD 交AC 于点E ,连接CD ,且AE DE =,BC CE =.(1)求ACB ∠的度数;(2)过点O 作OF AC ⊥于点F ,延长FO 交BE 于点G ,3DE =,2EG =,求AB 的长.26.(本小题满分8分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的—半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元;(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共32页) 数学试卷 第8页(共32页)27.(本小题满分10分)如图,在平面直角坐标系中,点O 为坐标原点,直线4y x =-+与x 轴交于点A ,过点A 的抛物线2y ax bx =+与直线4y x =-+交于另一点B ,且点B 的横坐标为1.备用图(1)求a ,b 的值;(2)点P 是线段AB 上一动点(点P 不与点A ,B 重合),过点P 作PM OB ∥交第一象限内的抛物线于点M ,过点M 作MC x ⊥轴于点C ,交AB 于点N ,过点P 作PF MC ⊥于点F .设PF 的长为t ,MN 的长为d ,求d 与t 之间的函数关系式(不要求写自变量t 的取值范围);(3)在(2)的条件下,当ACN PMN S S =△△时,连接ON ,点Q 在线段BP 上,过点Q 作QR MN ∥交ON 于点R ,连接MQ ,BR ,当45MQR BRN ∠-∠=时,求点R 的坐标.28.(本小题满分10分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,且有AC BD ⊥,ADB CAD ABD ∠=∠+∠,3BAD CBD ∠=∠.(1)求证:ABC △为等腰三角形;(2)M 是线段BD 上一点,:3:4BM AB =,点F 在BA 的延长线上,连接FM ,BFM ∠的平分线FN 交BD 于点N ,交AD 于点G ,点H 为BF 中点,连接MH ,当GN GD =时,探究线段CD ,FM ,MH 之间的数量关系,并证明你的结论.备用图黑龙江省哈尔滨市2014年初中升学考试数学答案解析第Ⅰ卷5 / 16随x 的增大而减小;当反比例函数的系数小于0时,在同一个象限,y 随x 的增大而增大.所以当反比例函数的系数大于0时,在每一支曲线上,y 都随x 的增大而减小,可得10k ->,解可得k 的取值范围. 【考点】反比例函数的性质 6.【答案】D【解析】从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D. 【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【考点】三视图 7.【答案】B 【解析】∵AC 是O 的切线,∴90OAC ∠=︒,∵40C ∠=︒,∴50AOC ∠=︒,∵O B O D =∴ABD BDO ∠=∠,∵ABD BDO AOC ∠+∠=∠,∴25ABD ∠=︒,故选:B.【提示】根据切线的性质求出OAC ∠,求出AOC ∠,根据等腰三角形性质求出B BDO ∠=∠,根据三角形外角性质求出即可.【考点】切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用 8.【答案】D【解析】将抛物线221y x =-+向右平移1个单位,再向上平移2个单位后所得到的抛物线为2213y x =--+(),故选:D.【提示】根据图像右移减,上移加,可得答案. 【考点】二次函数图像,几何变换 9.【答案】A【解析】∵在Rt ABC △中,90ACB ∠=︒,60B ∠=︒,2BC =∴30CAB ∠=︒,故4AB =,∵A B C ''△可以由ABC △绕点C 顺时针旋转得到,其中点A '与点A 是对应点,点B '与点B 是对应点,连接AB ',且A 、B '、A '在同一条直线上∴4AB AB=''=,AC AC =',∴30CAA A ∠'=∠'=︒,∴30ACB B AC ∠'=∠'=︒,∴2AB B C '='=,∴246AA '=+=.故选:A.【提示】利用直角三角形的性质得出4AB =,再利用旋转的性质以及三角形外角的性质得出2AB '=,进而得出答案.【考点】旋转的性质以及直角三角形的性质 10.【答案】C【解析】①由图可知打电话时,小刚和妈妈的距离为1 250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过515323++=分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是12505100150÷-=米/分,走的路程为1505750⨯=米,回家的速度是7501550÷=米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为7501531002550()米,所以是正确的.正确的答案有①②④.故选:C.++⨯=【提示】根据函数的图像和已知条件分别分析探讨其正确性,进一步判定得出答案即可.【考点】一次函数的应用第Ⅱ卷7 / 16如图2,当6BP BC ==时,BPC △也是以PB 为腰的等腰三角形.综上所述,PB 的长度是5或6.解:四边形又EF AC ⊥45AEF ∠=EFC △的周长为12,FC ∴在Rt EFC △【考点】正方形的性质,勾股定理,等腰直角三角形AB h ABACAC h==连接DM.在△MN MH23FD3FD9 / 1622补全条形统计图,如图所示:6tanAF FAC∠60,【提示】(1)根据题意得:BD AE∥,从而得到45BAD ADB∠=∠=︒,利用60BD AB==,求得两建筑物11 / 16【提示】(1)首先得出AEB DEC ∠≌△,进而得出EBC △为等边三角形,即可得出答案;S=PMN∠CAN13 / 16⊥AC BD∠∴GDN=GN GD∠∴GND∠∴NGD∠=∴AGF15 / 16ABC ∠=∴RM BC ∥CAD ∠=RBM ∠=∴BR BM CD AC =∵BR BF =4【提示】(1)根据等式的性质,可得APE ADE ∠=∠,根据等腰三角形的性质,可得2PAD β∠=,根据直。

哈尔滨南岗中学2014-2015学年度九年级上调研测试数学样题

哈尔滨南岗中学2014-2015学年度九年级上调研测试数学样题

8. 若⊙O 的半径为5cm,OA= 4cm 则点 A 与⊙O 的位置关系是( )
(A)点 A 在⊙O 内
(B)点 A 在⊙O 上 (C)点 A 在⊙O 外


9.下列说法中,正确的是( )
(A)长度相等的弧是等弧
(B)平分弦的直径垂直于弦,并且平分弦所对的两条弧
(C)经过半径并且垂直于这条半径的直线是圆的切线
(第 26 题 (第 25题图) 27. (本题 10 分)如图,已知抛物线 y=﹣x2+bx+c 与一直线相交于 A(﹣1,0),C(2,3) 两点. (1)求抛物线的解析式; (2)点 P 是抛物线上位于直线 AC 上方的一个动点,连接 AP、CP,设点 P 的横坐标为 t,
△APC 的面积为 S,求 S 与 t 的函数关系式; (3)在(2)的条件下,当△APC 的面积最大时,在抛物线上一点 R,在射线 AO 上是否存
5.将二次函数 y x 2
达式是(
) 的图象向右平移 1 个单位,再向上平移 2 个单位后,所得图象的函数表
(A) y ( x 1)2 2
(B) y (x 1)2 2
(C) y (x 1)2 2
(D) y (x 1)2 2
6.已知 Rt△ABC中,∠BAC=90°,将△ABC绕点 A 顺时针旋转,使点 D 落 在射线 CA上,DE
(D)在同圆或等圆中 90°的圆周角所对的弦是这个圆的直径
10.
在平面直角坐标系中,函数
y

x 1与 y


3 2
(
x

1)
2
的图象大致是(

y
y
y
y

2014年哈尔滨市中考调研测试南岗区一模(数学试卷及答案)

2014年哈尔滨市中考调研测试南岗区一模(数学试卷及答案)

2014年中考调研测试(一)数学试卷参考答案与评分标准二、(每小题3分,共计30分) 三、解答题(共计60分)21.解:xx x -+-24224............22)2)(2(2424222'+=--+=--=---=x x x x x x x x x∵x =2sin 60°-2tan 45°=1 (23122)32'-=⨯-⨯∴1 (3223224)22'=+-=+=-+-x x x x 22. 解:(1)画图正确2....................' 1.....).........1,2(1'--C (2)画图正确1.....).........4,2(2....................2''C 23. 证明:过点A 作BG AM ⊥交GB 的延长线于M , 作DG AN ⊥于N ︒=∠=∠=∠∴90AND ANG AMG DE BG ⊥ ︒=∠∴90BGD∴四边形AMGN 为矩形 ︒=∠∴90MAN '2....................................∵四边形ABCD 为正方形MAN BAD ∠=︒=∠∴90 AD AB =BAN BAD BAN MAN ∠-∠=∠-∠∴即DAN BAM ∠=∠....................................1' DAN BAM ∆∆∴≌....................................1'\AN AM =∴ ....................................1'M∴GA 平分BGD ∠ ....................................1'24. 解:(1)1410616450=----=x ,图形略3....................................' (2)70分以上的频率为:64.05010616=++, 由样本估计总体可知:)(38460064.0人=⨯∴估计该校学生时事政治掌握情况良好的人数约为384人. 3....................................'25.(1)证明:连接OE ,在⊙O 中,OB OE OA ==,2.........,//,'∠=∠=∠=∠∴∠=∠∴EOD OEB OBE AOD BE OD OEB OBE1..................,,'∠=∠∴∆∆∴==OED OAD EOD AOD OD OD OE OA ≌又∵AM 是⊙O 的切线,切点为A , ∴AM ⊥BA , ∴DE OE OED OAD ⊥∴︒=∠=∠,90∵OE 是⊙O 的半径 是DE ∴⊙O 的切线.1................' (2)解:过点D 作BC 的垂线,垂足为H. ∵BN 切⊙O 于点B ,∴BHDBAD ABC ∠=∠=︒=∠90∴四边形ABHD是矩形,2........................................,1'===∴DH AB BH AD314=-=-=∴BH BC CH AD 、CB 、CD 分别切⊙O 于点A 、B 、E ,1...............541,4,1'=+=+=∴====∴CE DE DC CE BC ED AD在 DHC Rt ∆中,1.....................435,22222'=-==∴+=DH AB CH DH DC 26. 解:(1)设甲种商品每件的进价是x 元,则乙种商品每件的进价为x 3元.依题意可得8031200400=+xx ,解得'2........................................10=x 经检验10=x 为原分式方程的解,∴301033=⨯=x '2.................................................答:甲、乙两种商品的进价分别为每件10元、30元.(2)设六月份再次购进甲种商品a 件,则购进乙种商品)80(a -件,依题意可得3.............................................600)80)(3040()1015('≥--+-a a 解得40≤a ,a 的最大值是40答:该超市六月份最多购进甲种商品40件....................................1' 27. 解:(1) 令0=x ,则33,02=++==+=+-=bx ax y n n n x y,3n OC ==∴令,0=y 则1....................................).........0,3(,3,03'∴===+-B OB x x在AOC ∆中, 1.........).........0,1(,1,33t an ,90'-∴=∴===∠︒=∠A OA OAOA CO CAO AOC 将A(-1,0),B(3,0)代入32++=bx ax y , 得⎩⎨⎧=+-=++030339b a b a 解得:⎩⎨⎧=-=21b a∴抛物线的解析式:'1 (322)++-=x x y (2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|=| t 2-3t | ∴ d=-t 2+3t (0<t<3)2.............................' d=t 2-3t (t>3) 1........................................' (3) ∵e d ,是y 2-(m+3)y+41(5m 2-2m+13)=0(m 为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×41(5m 2-2m+13)≥0 整理得:△= -4(m -1)2≥0,∵-4(m -1)2≤0,∴△=0,m=1,1.........................................' ∴ PQ 与PH 是y 2-4y+4=0的两个实数根,解得y 1=y 2=2∴ PQ=PH=2, ∴-t+3=2,∴t=1 ,1.....................................' ∴此时Q 是抛物线的顶点,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2, ∵LP=MP ,PQ=PH ,∴四边形LQMH 是平行四边形, ∴LH ∥QM ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴LH=MH ,∴平行四边形LQMH 是菱形,∴PM ⊥QH ,∴点M 的纵坐标与P 点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x 2=1-2综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2) 2...........................................' 28.(1)证明:如图1,延长AG 至M ,使得MG=AG∵DG=EG ,∠AGD=∠EGM∴△ADG ≌△MEG .............................................................................1' ∴∠DAG=∠M ,AD=EM..................................................................1' ∵∠DAG=∠B ∴∠M=∠B...............................................................1' ∵∠EAG=∠C ,∴△AME ∽△CBA.................................................1'∴54===AE AD AE EM AC AB ∴AB=54AC.................................................................1' (2)○1∵∠EAG=∠ACB ,∠DAG=∠B,∴∠EAD+∠BAC=180°,又∵∠EAD=∠AFD ∴∠AFD+∠BAC=180°∴DF ∥AB..................1'∴△CDF ∽△CKA ∴CD:CK=CF:AC=1:2,∴DQ ∥BC ,∴△KDQ ∽△KCB,KCKDBC DQ KB KQ ==∴∵CD=DK,∴QK=BQ BC=2QD ∴点Q 为BK 的中点LHM(如图2)(图1)M○2BE 与DQ 的数量关系为DQ BE 167= 延长BA 至R ,使AR=AB ,连接CR 、DR,∴AC ARAE AD = ∵∠EAD+∠BAC=180° ∠CAR+∠BAC=180° ∴∠EAD=∠CAR,∴∠EAD+∠CAD=∠CAD+∠CAR ,即∠EAC=∠DAR ∴△DAR ∽△EAC,∴∠DRA=∠ACB54==AE AD CE DR 即DR=54CE ∵DQ ∥BC ∴∠AQD=∠B,∴△ABC ∽△DQR54==∴AC AB DR DQ 即DR=45DQ.........................................1'∴54CE=45DQ ,∴CE=DQ 1625DQ BC 2= DQ DQ DQ CE BC BE 16716252=-=-=∴∴DQ BE 167=................1'(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

2014年黑龙江省哈尔滨市中考数学试卷-答案

2014年黑龙江省哈尔滨市中考数学试卷-答案

黑龙江省哈尔滨市2014年初中升学考试数学答案解析第Ⅰ卷【提示】根据反比例函数的性质:①当反比例函数的系数大于0时,图像分别位于第一、三象限;当反比例函数的系数小于0时,图像分别位于第二、四象限.②当反比例函数的系数大于0时,在同一个象限内,y 随x 的增大而减小;当反比例函数的系数小于0时,在同一个象限,y 随x 的增大而增大.所以当反比例函数的系数大于0时,在每一支曲线上,y 都随x 的增大而减小,可得10k ->,解可得k 的取值范围.【考点】反比例函数的性质6.【答案】D【解析】从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【考点】三视图7.【答案】B【解析】∵AC 是O 的切线,∴90OAC ∠=︒,∵40C ∠=︒,∴50AOC ∠=︒,∵OB OD =∴ABD BDO ∠=∠,∵ABD BDO AOC ∠+∠=∠,∴25ABD ∠=︒,故选:B.【提示】根据切线的性质求出OAC ∠,求出AOC ∠,根据等腰三角形性质求出B BDO ∠=∠,根据三角形外角性质求出即可.【考点】切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用8.【答案】D【解析】将抛物线221y x =-+向右平移1个单位,再向上平移2个单位后所得到的抛物线为2213y x =--+(),故选:D.【提示】根据图像右移减,上移加,可得答案.【考点】二次函数图像,几何变换9.【答案】A【解析】∵在Rt ABC △中,90ACB ∠=︒,60B ∠=︒,2BC =∴30CAB ∠=︒,故4AB =,∵A B C ''△可以由ABC △绕点C 顺时针旋转得到,其中点A '与点A 是对应点,点B '与点B 是对应点,连接AB ',且A 、B '、A '在同一条直线上∴4AB AB=''=,AC AC =',∴30CAA A ∠'=∠'=︒,∴30ACB B AC ∠'=∠'=︒,∴2AB B C '='=,∴246AA '=+=.故选:A.【提示】利用直角三角形的性质得出4AB =,再利用旋转的性质以及三角形外角的性质得出2AB '=,进而得出答案.【考点】旋转的性质以及直角三角形的性质10.【答案】C【解析】①由图可知打电话时,小刚和妈妈的距离为1 250米是正确的;②因为打完电话后5分钟两人相遇++=分后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过515323钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是12505100150÷-=米/分,走的路程为1505750÷=米/分,所以回家的速度为150米/分是错误的;④⨯=米,回家的速度是7501550小刚家与学校的距离为7501531002550()米,所以是正确的.正确的答案有①②④.故选:C.++⨯=【提示】根据函数的图像和已知条件分别分析探讨其正确性,进一步判定得出答案即可.【考点】一次函数的应用第Ⅱ卷如图2,当6BP BC ==时,BPC △也是以PB 为腰的等腰三角形.综上所述,PB 的长度是5或6.解:四边形⊥又EF AC∠=45AEF∴△的周长为12,FCEFC△在Rt EFC【考点】正方形的性质,勾股定理,等腰直角三角形AB h AB==ACAC h连接DM.在△22补全条形统计图,如图所示:6∠tanAF FAC60,S=PMN ∠CAN77AC BD⊥∴GDN∠GN GD=∴GND∠∴NGD∠ABC∠=∴RM BC∥CAD∠=RBM ∠=∴BR BM CD AC= BR BF=。

2014年黑龙江省哈尔滨市南岗区中考一模数学试卷(解析版)

2014年黑龙江省哈尔滨市南岗区中考一模数学试卷(解析版)

2014年黑龙江省哈尔滨市南岗区中考数学一模试卷一、选择题(每小题3分,共计30分)1.(3分)的相反数是()A.﹣B.C.﹣D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy3.(3分)下面的图案中,是轴对称图形而不是中心对称图形的是()A.B.C.D.4.(3分)如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.5.(3分)抛物线y=(x+3)2+4的对称轴是()A.直线x=3B.直线x=﹣3C.直线x=D.直线x=﹣6.(3分)在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为()A.B.C.D.7.(3分)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角的度数为()A.180°B.150°C.120°D.60°8.(3分)下列命题正确的是()A.若两个三角形相似,则它们的面积之比等于相似比B.若三角形的两个内角互为余角,则这个三角形是直角三角形C.等腰三角形的角平分线既是高线也是中线D.矩形对角线的夹角是直角9.(3分)已知点P1(x1,y1),P2(x2,y2)均在双曲线y=上,当x1<x2<0时,y1<y2,那么m的取值范围是()A.m>B.m>﹣C.m<D.m<﹣10.(3分)小成从家出发,骑电动自行车到江北度假村办事,途中遇到从江北度假村步行锻炼回家的哥哥小军.小成在江北度假村办完事后,在返回家的途中又遇到哥哥小军,便用电动自行车载上哥哥小军,一同回到家中,结果小成比预计时间晚到1分钟.假设小成和哥哥小军都是沿直线行进的,且二人与家的距离S(千米)和小成从家出发后所用的时间t(分)之间的函数关系如图.有如下的结论:①小成出发时,哥哥小军已经离开江北度假村2千米;②小成去江北度假村的速度比返回时的速度快了千米/分;③小成返回途中载着哥哥小军返回家的速度是千米/分;④哥哥小军比预计时间早到15分钟.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.(3分)李克强总理在2014年政府工作报告中指出“今年要淘汰燃煤小锅炉5万台,推进燃煤电厂脱硫改造1500万千瓦、脱硝改造1.3亿千瓦、除尘改造180000000千瓦”.其中数字180000000用科学记数法可以表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把3x3﹣6x2y+3xy2分解因式的结果是.14.(3分)化简:=.15.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6厘米,DC=7厘米.把三角板DCE绕点C顺时针旋转15°得到△D1CE1,如图(2),这时AB与CD1相交于点O,与D1E1相交于点F.则AD1=cm.16.(3分)小红、小明在一起做游戏,需要确定做游戏的先后顺序,他们约定用“剪刀、包袱、锤子”的方式确定.在一个回合当中两个人都出“包袱”的概率是.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为.18.(3分)▱ABCD在平面直角坐标系中的位置如图,其中A(﹣4,O),B(2,0),C(3,m),反比例函数y=的图象经过点C.将▱ABCD沿x轴翻折得到□AD′C′B′,则点D′的坐标为.19.(3分)如图,△ABC中,AB=AC,AD⊥BC于点D,点E在AC上,CE=2AE,AD=9,BE=10,AD与BE交于点F,则△ABC的面积是.20.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图的直角梯形,其中三边长分别为2、3、3,则原直角三角形纸片的斜边长是.三、解答题(其中21-24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(6分)先化简,再求代数式+的值,其中x=2sin60°﹣2tan45°.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣2,1),C(﹣2,4).(1)画出△ABC沿着y轴向下平移5个单位得到的△A1B1C1,并直接写出点C 的对应点C1的坐标;(2)画出△ABC关于y轴对称的△AB2C2,并直接写出点C的对应点C2的坐标.23.(6分)如图,点E是正方形ABCD边BC上的一点,连接DE,过点B作直线DE的垂线,垂足为G,连接GA.求证:GA平分∠BGD.24.(6分)某中学为了了解学校600名学生的时事政治的掌握情况,举行了一次“两会”时事政治知识测试,并随机抽取了部分学生的成绩作为样本,绘制了下面尚未完成的频数分布表和频数分布直方图.频数分布表请解答下列问题:(1)求出x的值,并补全频数分布直方图;(2)若成绩在70分以上(不含70分)为学生时事政治掌握情况良好,请估计该校学生时事政治掌握情况良好的人数.25.(8分)如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E 是⊙O上一点,点D是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.26.(8分)某超市销售甲、乙两种商品,五月份该超市同时购进甲、乙两种商品共80件,购进甲种商品用去400元,购进乙种商品用去1200元.(1)已知每件甲种商品的进价是每件乙种商品的进价的,求甲、乙两种商品每件的进价;(2)由于甲、乙这两种商品受到市民欢迎,六月份超市决定再次购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价15元,乙种商品每件的售价40元.要使六月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?(利润=售价一进价)27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y 为未知数的一元二次方程:y2﹣(m+3)y+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.28.(10分)在△ABC与△ADE中,点E在BC边上,AD=AE,AG为△ADE 的中线,且∠EAG=∠ACB,∠DAG=∠B.(1)如图1,求证:AB=AC;(2)如图2,点F是AC中点,连接DF,∠AFD=∠DAE,连接CD并延长交AB于点K,过点D作DQ∥BC交BK于点Q.①求证:点Q为BK的中点;②试探究线段BE与DQ的数量关系,并证明你的结论.2014年黑龙江省哈尔滨市南岗区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)的相反数是()A.﹣B.C.﹣D.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选:A.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy【解答】解:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.3.(3分)下面的图案中,是轴对称图形而不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:C.4.(3分)如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.【解答】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选:D.5.(3分)抛物线y=(x+3)2+4的对称轴是()A.直线x=3B.直线x=﹣3C.直线x=D.直线x=﹣【解答】解:∵抛物线的解析式为:y=(x+3)2+4,∴此抛物线的对称轴方程是直线x=﹣3.故选:B.6.(3分)在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为()A.B.C.D.【解答】解:∵AB=2,AC=1,∴CB==,∴tan A==,故选:D.7.(3分)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角的度数为()A.180°B.150°C.120°D.60°【解答】解:如图:l=2π×1=2π,∵lR=2π,∴×2πR=2π,∴R=2,∴=2π,∴=2π,∴n=180°,故选:A.8.(3分)下列命题正确的是()A.若两个三角形相似,则它们的面积之比等于相似比B.若三角形的两个内角互为余角,则这个三角形是直角三角形C.等腰三角形的角平分线既是高线也是中线D.矩形对角线的夹角是直角【解答】解:A、相似三角形的面积的比等于相似比的平方,故错误;B、若三角形的两个内角互为直角,则这两个三角形是直角三角形,正确;C、等腰三角形的顶角的平分线既是底边的高也是底边的中线,故错误;D、矩形的对角线的夹角是直角时,矩形为正方形,故错误,故选:B.9.(3分)已知点P1(x1,y1),P2(x2,y2)均在双曲线y=上,当x1<x2<0时,y1<y2,那么m的取值范围是()A.m>B.m>﹣C.m<D.m<﹣【解答】解:∵x1<x2<0时,y1<y2,∴反比例函数图象分布在第二、四象限,∴2m+3<0,∴m<﹣.故选:D.10.(3分)小成从家出发,骑电动自行车到江北度假村办事,途中遇到从江北度假村步行锻炼回家的哥哥小军.小成在江北度假村办完事后,在返回家的途中又遇到哥哥小军,便用电动自行车载上哥哥小军,一同回到家中,结果小成比预计时间晚到1分钟.假设小成和哥哥小军都是沿直线行进的,且二人与家的距离S(千米)和小成从家出发后所用的时间t(分)之间的函数关系如图.有如下的结论:①小成出发时,哥哥小军已经离开江北度假村2千米;②小成去江北度假村的速度比返回时的速度快了千米/分;③小成返回途中载着哥哥小军返回家的速度是千米/分;④哥哥小军比预计时间早到15分钟.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:①由图象可知,小成30分钟后离家6千米,所以两人相遇时,哥哥小军已经离开江北度假村6﹣20×=2千米,①错误;②由图象可知,小成去江北度假村用了30分钟,返回途中,在未遇见小军时小成回家1千米需=4分钟,预计需用6×4=24分钟,又因结果小成比预计时间晚到1分钟,所以返回时用了25分钟;因为去时的时间比返回时的时间多,而路程相同,所以去时的速度比返回时的速度慢,②错误;③小成返回途中载着哥哥小军返回家的速度是=千米/分,③错误;④由图象可知,小军80﹣20=60分钟步行4﹣1=3千米,所以小军步行的速度为=千米/分,步行1千米所用的时间为=20分,所以哥哥小军比预计时间早到20﹣5=15分钟,④正确.故选:A.二、填空题(每小题3分,共计30分)11.(3分)李克强总理在2014年政府工作报告中指出“今年要淘汰燃煤小锅炉5万台,推进燃煤电厂脱硫改造1500万千瓦、脱硝改造1.3亿千瓦、除尘改造180000000千瓦”.其中数字180000000用科学记数法可以表示为 1.8×108.【解答】解:180 000 000=1.8×108.故答案为:1.8×108.12.(3分)函数y=中,自变量x的取值范围是x≠﹣1.【解答】解:根据题意得:x+1≠0;解得x≠﹣1;故答案为x≠﹣1.13.(3分)把3x3﹣6x2y+3xy2分解因式的结果是3x(x﹣y)2.【解答】解:3x3﹣6x2y+3xy2=3x(x2﹣2xy+y2)=3x(x﹣y)2.故答案为:3x(x﹣y)2.14.(3分)化简:=.【解答】解:原式=3﹣2=.故答案为:.15.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6厘米,DC=7厘米.把三角板DCE绕点C顺时针旋转15°得到△D1CE1,如图(2),这时AB与CD1相交于点O,与D1E1相交于点F.则AD1=5cm.【解答】解:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°﹣∠ACO﹣∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=3.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1﹣OC=4,由勾股定理得:AD1=5.16.(3分)小红、小明在一起做游戏,需要确定做游戏的先后顺序,他们约定用“剪刀、包袱、锤子”的方式确定.在一个回合当中两个人都出“包袱”的概率是.【解答】解:列表得:可以得出一共有27种情况,在一回合中两个人都出“布”的概率是:=.故答案为:.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为.【解答】解:在Rt△ABC中,AC=3,BC=4;根据勾股定理,得AB=5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∵S△ABC∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AE=2AM=.故答案为:.18.(3分)▱ABCD在平面直角坐标系中的位置如图,其中A(﹣4,O),B(2,0),C(3,m),反比例函数y=的图象经过点C.将▱ABCD沿x轴翻折得到□AD′C′B′,则点D′的坐标为(﹣3,﹣3).【解答】解:∵反比例函数y=的图象经过点C(3,m),∴m==3,∴C点坐标为(3,3),∵A(﹣4,O),B(2,0),∴AB=2﹣(﹣4)=6,∴D点坐标为(﹣3,3),∵▱ABCD沿x轴翻折得到□AD′C′B′,即点D′和点D关于x轴对称,∴点D′的坐标为(﹣3,﹣3).故答案为(﹣3,﹣3).19.(3分)如图,△ABC中,AB=AC,AD⊥BC于点D,点E在AC上,CE=2AE,AD=9,BE=10,AD与BE交于点F,则△ABC的面积是54.【解答】解:如图,取CE的中点G,连接DG.∵△ABC中,AB=AC,AD⊥BC,∴BD=CD,即点D是BC的中点,∴GD是△BCE的中位线,∴DG∥BE,DG=BE=5.又∵CE=2AE,∴AE=GE,即点E是AG的中点,∴点F是AD的中点,∴AF=DF=4.5,EF是△ADG的中位线,∴EF=DG=2.5,∴BF=BE﹣EF=7.5.则在直角△BFD中,由勾股定理易求BD=6.∴BC=12.则△ABC的面积是:BC•AD=×12×9=54.故答案是:54.20.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图的直角梯形,其中三边长分别为2、3、3或.【解答】解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:或.三、解答题(其中21-24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(6分)先化简,再求代数式+的值,其中x=2sin60°﹣2tan45°.【解答】解:原式===x+2,∵x=2sin60°﹣2tan45°=2×﹣2×1=﹣2,∴原式=﹣2+2=.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣2,1),C(﹣2,4).(1)画出△ABC沿着y轴向下平移5个单位得到的△A1B1C1,并直接写出点C 的对应点C1的坐标;(2)画出△ABC关于y轴对称的△AB2C2,并直接写出点C的对应点C2的坐标.【解答】解:(1)△A1B1C1如图所示,C1(﹣2,﹣1);(2)△AB2C2如图所示,C2(2,4).23.(6分)如图,点E是正方形ABCD边BC上的一点,连接DE,过点B作直线DE的垂线,垂足为G,连接GA.求证:GA平分∠BGD.【解答】证明:如图,过点A作AM⊥BG交GB的延长线于M,作AN⊥DG于N,∴∠AMG=∠ANG=∠AND=90°∵BG⊥DE∴∠BGD=90°∴四边形AMGN为矩形∴∠MAN=90°∵四边形ABCD为正方形∴∠BAD=90°=∠MAN,AB=AD∴∠MAN﹣∠BAN=∠BAD﹣∠BAN即∠BAM=∠DAN∴△BAM≌△DAN∴AM=AN∴GA平分∠BGD.24.(6分)某中学为了了解学校600名学生的时事政治的掌握情况,举行了一次“两会”时事政治知识测试,并随机抽取了部分学生的成绩作为样本,绘制了下面尚未完成的频数分布表和频数分布直方图.频数分布表请解答下列问题:(1)求出x的值,并补全频数分布直方图;(2)若成绩在70分以上(不含70分)为学生时事政治掌握情况良好,请估计该校学生时事政治掌握情况良好的人数.【解答】解:(1)x=50﹣4﹣16﹣6﹣10=14(人),频率是:14÷10=1.4.;(2)70分以上的频率为:,由样本估计总体可知:0.64×600=384(人);∴估计该校学生时事政治掌握情况良好的人数约为384人.25.(8分)如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E 是⊙O上一点,点D是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.【解答】(1)证明:连接OE,在⊙O中,OA=OE=OB,∴∠OBE=∠OEB,∵OD∥BE,∴∠AOD=∠OBE=∠OEB=∠EOD,在△AOD和△EOD中,,∴△AOD≌△EOD(SAS),∴∠OAD=∠OED,∵AM是⊙O的切线,切点为A,∴BA⊥AM,∴∠OAD=∠OED=90°,∴OE⊥DE,∵OE是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作BC的垂线,垂足为H,∵BN切⊙O于点B,∴∠ABC=90°=∠BAD=∠BHD,∴四边形ABHD是矩形,∴AD=BH=1,AB=DH,∴CH=BC﹣BH=4﹣1=3,∵AD、CB、CD分别切⊙O于点A、B、E,∴AD=ED=1,BC=CE=4,∴DC=DE+CE=1+4=5,在Rt△DHC中,DC2=DH2+CH2,∴AB=DH==4.26.(8分)某超市销售甲、乙两种商品,五月份该超市同时购进甲、乙两种商品共80件,购进甲种商品用去400元,购进乙种商品用去1200元.(1)已知每件甲种商品的进价是每件乙种商品的进价的,求甲、乙两种商品每件的进价;(2)由于甲、乙这两种商品受到市民欢迎,六月份超市决定再次购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价15元,乙种商品每件的售价40元.要使六月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?(利润=售价一进价)【解答】解:(1)设甲种商品每件的进价是x元,则乙种商品每件的进价为3x 元,依题意可得:,解得:x=10,经检验:x=10为原分式方程的解,且符合题意,则3x=3×10=30,答:甲、乙两种商品的进价分别为每件10元、30元;(2)设六月份再次购进甲种商品a件,则购进乙种商品(80﹣a)件,依题意可得:(15﹣10)a+(40﹣30)(80﹣a)≥600,解得:a≤40,即a的最大值是40.答:该超市六月份最多购进甲种商品40件.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y 为未知数的一元二次方程:y2﹣(m+3)y+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.【解答】解:(1)当x=0,则y=﹣x+n=0+n=n,y=ax2+bx+3=3,∴OC=3=n.当y=0,∴﹣x+3=0,x=3=OB,∴B(3,0).在△AOC中,,∴OA=1,∴A(﹣1,0).将A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得:∴抛物线的解析式:y=﹣x2+2x+3;(2)如图1,当点P在线段CB上时.∵P点的横坐标为t且PQ垂直于x轴,∴P点的坐标为(t,﹣t+3),Q点的坐标为(t,﹣t2+2t+3).∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t.如图3,当点P在射线BN上时.∵P点的横坐标为t且PQ垂直于x轴,∴P点的坐标为(t,﹣t+3),Q点的坐标为(t,﹣t2+2t+3).∴PQ=﹣t+3﹣(﹣t2+2t+3)=t2﹣3t.∵BO=3,∴d=﹣t2+3t(0<t<3),d=t2﹣3t(t>3),答:当0<t<3时,d与t之间的函数关系式为:d=﹣t2+3t,当t>3时,d与t之间的函数关系式为:d=t2﹣3t;(3)∵d,e是y2﹣(m+3)y+(5m2﹣2m+13)=0(m为常数)的两个实数根,∴△≥0,即△=(m+3)2﹣4×(5m2﹣2m+13)≥0整理得:△=﹣4(m﹣1)2≥0.∵﹣4(m﹣1)2≤0,∴△=0,∴﹣4(m﹣1)2=0∴m=1,∴y2﹣4y+4=0.∵PQ与PH是y2﹣4y+4=0的两个实数根,解得:y1=y2=2∴PQ=PH=2,∴﹣t+3=2,∴t=1,∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴抛物线的顶点坐标是(1,4).∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3.∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=﹣x2+2x+3中,当y=2时,∴x2﹣2x﹣1=0,∴x1=1+,x2=1﹣.综上所述:t值为1,M点坐标为(1+,2)或(1﹣,2).28.(10分)在△ABC与△ADE中,点E在BC边上,AD=AE,AG为△ADE 的中线,且∠EAG=∠ACB,∠DAG=∠B.(1)如图1,求证:AB=AC;(2)如图2,点F是AC中点,连接DF,∠AFD=∠DAE,连接CD并延长交AB于点K,过点D作DQ∥BC交BK于点Q.①求证:点Q为BK的中点;②试探究线段BE与DQ的数量关系,并证明你的结论.【解答】解:(1)如图1,延长AG至M,使得MG=AG,在△ADG与△MEG中,,∴△ADG≌△MEG(SAS),∴∠DAG=∠M,AD=EM,∵∠DAG=∠B,∴∠M=∠B,∵∠EAG=∠C,∴△AME∽△CBA,∴===,∴AB=AC;(2)①∵∠EAG=∠ACB,∠DAG=∠B,∴∠EAD+∠BAC=180°,又∵∠EAD=∠AFD,∴∠AFD+∠BAC=180°,∴DF∥AB,∴△CDF∽△CKA,∴CD:CK=CF:AC=1:2,∴DK=CD,∵DQ∥BC,∴△KDQ∽△KCB,∴==,∵CD=DK,∴QK=BQ BC=2QD,∴点Q为BK的中点;②延长BA至R,使AR=AB,连接CR、DR,则=,∵∠EAD+∠BAC=180°∠CAR+∠BAC=180°,∴∠EAD=∠CAR,∴∠EAD+∠CAD=∠CAD+∠CAR,即∠EAC=∠DAR,∴△DAR∽△EAC,∴∠DRA=∠ACB,==,即DR=CE,∵DQ∥BC,∴∠AQD=∠B,∴△ABC∽△DQR,∴==,即DR=DQ,∴CE=DQ,∴CE=DQ,∵BC=2DQ,∴BE=BC﹣CE=2DQ﹣DQ=DQ,∴BE=DQ.。

【数学】2014年黑龙江省哈尔滨市南岗区中考一模数学试卷含解析

【数学】2014年黑龙江省哈尔滨市南岗区中考一模数学试卷含解析

16. (3 分)小红、小明在一起做游戏,需要确定做游戏的先后顺序,他们约定 用“剪刀、包袱、锤子”的方式确定.在一个回合当中两个人都出“包袱” 的概率是 .
17. (3 分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 C 为圆心, CA 为半径的圆与 AB、BC 分别交于点 E、D,则 AE 的长为 .
2. (3 分)下列运算中,正确的是( A.2x+2y=2xy C. (xy)2÷
3. (3 分)下面的图案中,是轴对称图形而不是中心对称图形的是(
A.
B.
C.
D. )
4. (3 分)如图所示的由六个小正方体ຫໍສະໝຸດ 成的几何体的俯视图是(A.
B.
C. )
D.
5. (3 分)抛物线 y=(x+3)2+4 的对称轴是( A.直线 x=3 B.直线 x=﹣3
B.150° )
C.120°
D.60°
8. (3 分)下列命题正确的是(
A.若两个三角形相似,则它们的面积之比等于相似比 B.若三角形的两个内角互为余角,则这个三角形是直角三角形 C.等腰三角形的角平分线既是高线也是中线 D.矩形对角线的夹角是直角 9. (3 分)已知点 P1(x1,y1) ,P2(x2,y2)均在双曲线 y= <0 时,y1<y2,那么 m 的取值范围是( A.m> B.m>﹣ ) D.m<﹣ 上,当 x1<x2
C.直线 x=
D.直线 x=﹣ )
6. (3 分) 在 Rt△ABC 中, ∠C=90°, 若 AB=2, AC=1, 则 tanA 的值为 ( A. B. C. D.
7. (3 分)圆锥的底面半径是 1,侧面积是 2π,则这个圆锥的侧面展开图的圆心 角的度数为( )

2014年黑龙江省哈尔滨市中考一模数学试卷(解析版)

2014年黑龙江省哈尔滨市中考一模数学试卷(解析版)

2014年黑龙江省哈尔滨市中考数学一模试卷一、选择题(共10小题,每小题3分,共计30分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m 2.(3分)用科学记数法表示537万正确的是()A.5.37×104B.5.37×105C.5.37×106D.5.37×107 3.(3分)下列各式中,计算正确的是()A.2x+3y=5xy B.x6÷x2=x3C.x2•x3=x5D.(﹣x3)3=x6 4.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(3分)已知一个圆锥形零件的母线长为5,底面半径为2,则这个圆锥形零件的侧面积为()A.5πB.10πC.3πD.6π6.(3分)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小7.(3分)六个大小一样的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大8.(3分)已知二次函数y=ax2﹣1的图象的开口向下,则直线y=ax﹣1的图象经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.(3分)如图,△ABC是一张直角三角形的纸片,∠C=90°,AC=6,BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.B.3C.D.410.(3分)甲乙两人在同一条笔直的公路上骑自行车从A地去往B地.已知AB 两地的距离为40千米,乙比甲晚出发1小时,他们在途中均休息了0.5小时,甲出发2小时后,此时乙的速度是此时甲的速度的1.2倍,甲乙两人离A地的距离y(千米)与甲行驶是时间t(小时)的函数关系图象如图所示,下列说法中正确的个数为()①甲休息之前的速度为15千米/小时;②乙休息之前的速度为20千米/小时;③甲出发2小时的时候,甲乙两人的距离为千米;④乙比甲晚到B地0.5小时.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.(3分)计算:÷=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把多项式3x2y+12xy2+12y3分解因式的结果是.14.(3分)不等式组的解集为.15.(3分)如图,⊙O的直径AB过弦CD的中点M,∠ABD=27°,则∠AOC =度.16.(3分)方程﹣1=的解为.17.(3分)在一个不透明的袋子中装有红、绿各一个小球,它们只有颜色上的区别,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个,则两次都摸到红球的概率为.18.(3分)等腰△ABC两边的长分别是一元二次方程x2﹣5x+6=0的两个解,则这个等腰三角形的周长是.19.(3分)如图,在矩形ABCD中,点E为BC边上一点,连接AE,DE,若AE平分∠BED,DE:AE=5:6,CD=4,则EC的长为.20.(3分)如图,在等边△ABC中,D为AB上一点,连接CD,在CD上取一点E,连接BE,且∠BED=60°,若CE=5,△ACD的面积为,则线段DB的长为.三、解答题(其中21-24题各6分,25-26题各8分,27-28题各10分,共计60分)21.(6分)先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.(6分)图①,图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,点B和点C在小正方形的顶点上,请在图①、图②中各画一个四边形,满足以下要求:(1)在图①中以AB和BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形只有一组角相等;(2)在图②中以AB和BC为边画四边形ABCE,点E在小正方形的顶点上,且此四边形有两组角相等;(3)图①所画的四边形与图②所画的四边形不全等.23.(6分)某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.24.(6分)如图,一艘轮船位于灯塔C的北偏东30°方向上的A处,且A处距离灯塔C80海里,轮船沿正南方向匀速航行一段时间后,到达灯塔C的东南方向上的B处.(1)求灯塔C到航线AB的距离;(2)若轮船的速度为20海里/时,求轮船从A处到B处所用的时间(结果仅保留根号).25.(8分)如图,在Rt△ABC中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA相切于点G,且AG=4,将Rt△ABC绕点A顺时针旋转135°后得到Rt△ADE,点B,C的对应点分别是点D,E.(1)求证:DE为⊙F的切线;(2)求出Rt△ADE的斜边AD被⊙F截得的弦PQ的长度.26.(8分)某机械厂甲、乙两个生产车间承担生产同一种零件的任务.甲、乙两车间共有50人,甲车间平均每人每天生产零件30个,乙车间平均每人每天生产零件20个,甲车间每天生产零件总数与乙车间每天生产零件总数之和为1300个.(1)求甲、乙两车间各有多少人?(2)该机械厂改进了生产技术,在甲、乙两车间总人数不变的情况下,从甲车间调出一部分人到乙车间,调整后甲车间平均每人每天生产零件35个,乙车间平均每人每天生产零件25个,若甲车间每天生产零件总数与乙车间每天生产零件总数之和不少于1480个,求从甲车间最多调出多少人到乙车间?27.(10分)如图,在平面直角坐标系中,点O是坐标原点,抛物线y=x2+bx+c 与x轴交于A,B两点,与y轴交于点C,过点C的直线y=﹣x+2与x轴交于点D,与抛物线交于点E,且点E到x轴的距离为1.(1)求抛物线的解析式;(2)点P为第一象限线段CD上一点,点Q为线段CD延长线上一点,CP=DQ.点M为x轴下方抛物线上一点,当△PQM是以PQ为斜边的等腰直角三角形时,求点M的坐标;(3)在(2)的条件下,N(m,m)为平面直角坐标系内一点,直线MN交直线CD于点F,且NF=2FM,求出m的值,并判断点N是否在(1)中的抛物线上.28.(10分)在Rt△ABC中,∠ACB=90°,sin B=,作CH⊥AB于点H,D,K分别为边AB,AC上的点,连接CD,DK,在射线DK上取一点E,使∠DCE=∠B,且BC•CK=CD•CE.(1)如图,求证:∠CED=90°;(2)连接AE并延长交直线BC于点G,探究线段BC,BG,DH之间的数量关系,并证明你的结论.2014年黑龙江省哈尔滨市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共计30分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【解答】解∵水位升高0.8 m时水位变化记作+0.8 m,∴水位下降0.5 m时水位变化记作﹣0.5 m,故选:D.2.(3分)用科学记数法表示537万正确的是()A.5.37×104B.5.37×105C.5.37×106D.5.37×107【解答】解:将537万用科学记数法表示为5.37×106.故选:C.3.(3分)下列各式中,计算正确的是()A.2x+3y=5xy B.x6÷x2=x3C.x2•x3=x5D.(﹣x3)3=x6【解答】解:A、由于2x和3y不是同类项,不能合并,故本选项错误;B、由于x6÷x2=x4≠x3,故本选项错误;C、由于x2•x3=x2+3=x5,故本选项正确;D、由于(﹣x3)3=﹣x9≠x6,故本选项错误.故选:C.4.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.(3分)已知一个圆锥形零件的母线长为5,底面半径为2,则这个圆锥形零件的侧面积为()A.5πB.10πC.3πD.6π【解答】解:这个圆锥形零件的侧面积=•2π•2•5=10π.故选:B.6.(3分)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小【解答】解:设B(x,y).∴S=0A•y;△OAB∵OA是定值,点B是双曲线(x>0)上的一个动点,双曲线(x>0)在第一象限内是减函数,∴当点B的横坐标x逐渐增大时,点B的纵坐标y逐渐减小,∴S=0A•y会随着x的增大而逐渐减小.△OAB故选:C.7.(3分)六个大小一样的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大【解答】解:观察图形可知,几何体的正视图由4个正方形组成,俯视图由5个正方形组成,左视图由4个正方形组成,所以俯视图的面积最大.故选:B.8.(3分)已知二次函数y=ax2﹣1的图象的开口向下,则直线y=ax﹣1的图象经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【解答】解:∵二次函数y=ax2﹣1的图象的开口向下,∴a<0,∴直线y=ax﹣1的图象经过的象限是第二、三、四象限.故选:D.9.(3分)如图,△ABC是一张直角三角形的纸片,∠C=90°,AC=6,BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.B.3C.D.4【解答】解:∵AC=6,BC=8,∴AB==10,tan B=,由折叠的性质得,∠B=∠DAE,tan B=tan∠DAE=,AE=EB=AB=5,∴DE=AE tan∠DAE=.故选:C.10.(3分)甲乙两人在同一条笔直的公路上骑自行车从A地去往B地.已知AB 两地的距离为40千米,乙比甲晚出发1小时,他们在途中均休息了0.5小时,甲出发2小时后,此时乙的速度是此时甲的速度的1.2倍,甲乙两人离A地的距离y(千米)与甲行驶是时间t(小时)的函数关系图象如图所示,下列说法中正确的个数为()①甲休息之前的速度为15千米/小时;②乙休息之前的速度为20千米/小时;③甲出发2小时的时候,甲乙两人的距离为千米;④乙比甲晚到B地0.5小时.A.1个B.2个C.3个D.4个【解答】解:根据图象可得甲开始1小时行驶了15千米,15÷1=15(千米/小时),故①正确;根据图象可得乙开始0.5小时行驶了10千米,则10÷(1.5﹣1)=20(千米/小时),故②正确;甲休息0.5小时后的速度:(40﹣15)÷1.5=(千米/小时),×(2﹣1.5)=(千米),+15﹣10=千米,故③正确;乙休息0.5小时后的速度:×1.2=20(千米/小时),时间:(40﹣10)÷20=1.5(小时),乙比甲晚到B地时间:1.5+2﹣3=0.5(小时),故④正确,故选:D.二、填空题(共10小题,每小题3分,共计30分)11.(3分)计算:÷=3.【解答】解:÷==3.故答案为:3.12.(3分)在函数y=中,自变量x的取值范围是x≠2.【解答】解:由题意得,3x﹣6≠0,解得x≠2.故答案为:x≠2.13.(3分)把多项式3x2y+12xy2+12y3分解因式的结果是3y(x+2y)2.【解答】解:原式=3y(x2+4xy+4y2)=3y(x+2y)2.故答案是:3y(x+2y)2.14.(3分)不等式组的解集为2<x≤2.5.【解答】解:原不等式组可化简为:,∴解集为2<x≤2.5.15.(3分)如图,⊙O的直径AB过弦CD的中点M,∠ABD=27°,则∠AOC =54度.【解答】解:∵⊙O的直径AB过弦CD的中点M,由垂径定理知弧AC=弧AD,由圆周角定理知∠AOC=2∠B=54°.16.(3分)方程﹣1=的解为x=.【解答】解:方程的两边同乘2(3x﹣1),得4﹣2(3x﹣1)=3,解得x=.检验:把x=代入2(3x﹣1)=1≠0.∴原方程的解为:x=.故答案为x=.17.(3分)在一个不透明的袋子中装有红、绿各一个小球,它们只有颜色上的区别,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个,则两次都摸到红球的概率为.【解答】解:列表如下:所有等可能的情况有4种,其中两次摸到红球的情况有1种,则P=.故答案为:18.(3分)等腰△ABC两边的长分别是一元二次方程x2﹣5x+6=0的两个解,则这个等腰三角形的周长是7或8.【解答】解:解方程x2﹣5x+6=0得x1=2,x2=3,当2是腰时,2+2>3,可以构成三角形,周长为7;当3是腰时,3+2>3,可以构成三角形,周长为8;所以周长是7或8.19.(3分)如图,在矩形ABCD中,点E为BC边上一点,连接AE,DE,若AE平分∠BED,DE:AE=5:6,CD=4,则EC的长为.【解答】解:如图,过点A作AF⊥DE于F,在矩形ABCD中,AB=CD=4,∵AE平分∠BED,∴AF=AB=4,设DE=5k,AE=6k,=DE•AF=×5k•4=10k,∵S△ADE=BC•CD=4BC=2•10k,∴S矩形ABCD解得BC=5k,由勾股定理得,BE==,EC==,∵BE=BC﹣EC,∴=5k﹣,解得k=,∴EC==.故答案为:.20.(3分)如图,在等边△ABC中,D为AB上一点,连接CD,在CD上取一点E,连接BE,且∠BED=60°,若CE=5,△ACD的面积为,则线段DB的长为.【解答】解:如图,延长BE交AC边于点F,因为∠FCD+∠DCB=60°,∠DEB=∠EBC+∠ECB=60°,∴∠ACD=∠FBC,在△ACD和△CBF中,∴△ACD≌△CBF,∴BF=CD,S△ACD==S△CBF=CE•EF•sin60°+CE•BE•sin60°=CE•BF•sin60°,∴BF=7,则DE=2,∠DBE=∠DCB,∠DEB=∠DBC=90°,△BED∽△CBD,∴BD2=DE•CD=14,∴BD=.三、解答题(其中21-24题各6分,25-26题各8分,27-28题各10分,共计60分)21.(6分)先化简,再求代数式的值,其中a=tan60°﹣6sin30°.【解答】解:原式=÷(﹣)=÷=×=﹣,∵a=tan60°﹣6sin30°=﹣6×=﹣3,∴原式=﹣=﹣=﹣.22.(6分)图①,图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,点B和点C在小正方形的顶点上,请在图①、图②中各画一个四边形,满足以下要求:(1)在图①中以AB和BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形只有一组角相等;(2)在图②中以AB和BC为边画四边形ABCE,点E在小正方形的顶点上,且此四边形有两组角相等;(3)图①所画的四边形与图②所画的四边形不全等.【解答】解:(1)如图所示:四边形ABCD即为所求;(2)如图所示:四边形ABCD即为所求.23.(6分)某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.【解答】解:(1)正确补全(2)由图可知==3(小时)可以估计该校全体学生每天完成作业所用总时间=3×1800=5400(小时),所以该校全体学生每天完成作业所用总时间5400小时.24.(6分)如图,一艘轮船位于灯塔C的北偏东30°方向上的A处,且A处距离灯塔C80海里,轮船沿正南方向匀速航行一段时间后,到达灯塔C的东南方向上的B处.(1)求灯塔C到航线AB的距离;(2)若轮船的速度为20海里/时,求轮船从A处到B处所用的时间(结果仅保留根号).【解答】解:(1)过C作CD⊥AB于D.∴∠A=30°,∠BCD=45°,在Rt△ACD中,AC=80,∠A=30°,∴CD=AC=40海里,答:灯塔C到AB的距离为40海里;(2)在Rt△ACD中,AD=AC•cos30°=80×=40.在Rt△BCD中,∠BCD=∠B=45°,∴BD=CD=40(海里).∴AB=AD+BD=40+40(海里).∴轮船所用的时间为:=2+2(小时).答:轮船从A处到B处所用的时间为(2+2)小时.25.(8分)如图,在Rt△ABC中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA相切于点G,且AG=4,将Rt△ABC绕点A顺时针旋转135°后得到Rt△ADE,点B,C的对应点分别是点D,E.(1)求证:DE为⊙F的切线;(2)求出Rt△ADE的斜边AD被⊙F截得的弦PQ的长度.【解答】(1)证明:作FM⊥DE于M,连结FG,如图,∵∠C=90°,CB=CA=6,∴∠BAC=45°,∵将Rt△ABC绕点A顺时针旋转135°后得到Rt△ADE,点B,C的对应点分别是点D,E.∴∠CAE=135°,DE=EA=6,∠AED=∠ACB=90°∴∠ABC+∠CAE=180°,即点C、A、E共线,∵⊙F与射线BA相切于点G,∴FG⊥AE,∴四边形FGEM为矩形,∴FM=GE=AE﹣AG=6﹣4=2,∵⊙F的半径为2,即FM为⊙F的半径,∴DE为⊙F的切线;(2)解:延长EF交PQ于N,连结FP,如图,∵FM=FG=2,∴四边形FGEM为正方形,∴EF平分∠AED,EF=FM=2,而△EAD为等腰直角三角形,∴EN⊥PQ,EN=AB=×6=3∴PN=QN,在Rt△PFN中,FP=2,FN=EN﹣EF=3﹣2=,∴PN==,∴PQ=2PN=2.26.(8分)某机械厂甲、乙两个生产车间承担生产同一种零件的任务.甲、乙两车间共有50人,甲车间平均每人每天生产零件30个,乙车间平均每人每天生产零件20个,甲车间每天生产零件总数与乙车间每天生产零件总数之和为1300个.(1)求甲、乙两车间各有多少人?(2)该机械厂改进了生产技术,在甲、乙两车间总人数不变的情况下,从甲车间调出一部分人到乙车间,调整后甲车间平均每人每天生产零件35个,乙车间平均每人每天生产零件25个,若甲车间每天生产零件总数与乙车间每天生产零件总数之和不少于1480个,求从甲车间最多调出多少人到乙车间?【解答】解:(1)设甲车间有x人,乙车间有y人,由题意得,,解得:,答:甲车间有30人,乙车间有20人.(2)设从甲车间调出a人到乙车间,则甲车间有(30﹣a)人,乙车间有(20+a)人,35(30﹣a)+25(20+a)≥1480解得:a≤7答:从甲车间最多调出7人到乙车间.27.(10分)如图,在平面直角坐标系中,点O是坐标原点,抛物线y=x2+bx+c 与x轴交于A,B两点,与y轴交于点C,过点C的直线y=﹣x+2与x轴交于点D,与抛物线交于点E,且点E到x轴的距离为1.(1)求抛物线的解析式;(2)点P为第一象限线段CD上一点,点Q为线段CD延长线上一点,CP=DQ.点M为x轴下方抛物线上一点,当△PQM是以PQ为斜边的等腰直角三角形时,求点M的坐标;(3)在(2)的条件下,N(m,m)为平面直角坐标系内一点,直线MN交直线CD于点F,且NF=2FM,求出m的值,并判断点N是否在(1)中的抛物线上.【解答】解:(1)∵y=﹣x+2,∴C(0,2),由题意可得出:点E的纵坐标为:﹣1,∵y=﹣x+2,则﹣1=﹣x+2,解得;x=3,∴E(3,﹣1),又∵C(0,2),E(3,﹣1)在抛物线y=x2+bx+c上,∴,解得:,∴抛物线y=x2﹣4x+2;(2)如图1,∵y=﹣x+2,∴OC=OD=2,∴∠OCD=∠ODC=45°,∴CD=2,∵CP=DQ,∴PQ=CD=2,∵△PMQ是以PQ为斜边的等腰直角三角形,∴∠MPQ=45°,∴∠OCD=∠MPQ,∴PM∥y轴,设P(t,﹣t+2),由PQ=2得,PM=2,∴M点的坐标为:(t,﹣t),将M(t,﹣t)代入抛物线y=x2﹣4x+2,得﹣t=t2﹣4t+2,解得:t1=﹣1,t2=2,当t=2时,P与D点重合,故t2=2(舍去),∴M(1,﹣1);(3)过点N作NH∥PM交直线CD于H,则∠MPE=∠PHN,∠PMF=∠MNH,∴△FNH∽△FMP,∴=,∵NF=2MF,∴NH=2PM,∴NH=4,①如图2,当N在H点上方时,H(m,m﹣4),把点H(m,m﹣4)代入y=﹣x+2中,得m﹣4=﹣m+2,解得:m=4,∴N(4,2),抛物线y=x2﹣4x+2,∴N点在抛物线上;②如图3,当点N在H点下方时,同理可得出:H(m,m+4),把点H(m,m+4)代入y=﹣x+2中,m+4=﹣m+2,解得:m=﹣,∴N(﹣,﹣),抛物线y=x2﹣4x+2,当x=﹣时,y=≠﹣,∴N点不在抛物线上.综上所述N(4,2)在抛物线上.28.(10分)在Rt△ABC中,∠ACB=90°,sin B=,作CH⊥AB于点H,D,K分别为边AB,AC上的点,连接CD,DK,在射线DK上取一点E,使∠DCE=∠B,且BC•CK=CD•CE.(1)如图,求证:∠CED=90°;(2)连接AE并延长交直线BC于点G,探究线段BC,BG,DH之间的数量关系,并证明你的结论.【解答】(1)证明:如图1,∵CH⊥AB,∴∠BHC=90°.又∠ACB=90°,∴∠B=∠ACH,∴∠DCE=∠B,∴∠DCE=∠ACH,∴∠DCH=∠KCE.又sin B==,∵BC•CK=CD•CE,∴CH•CK=CD•CE,即=,∴△CEK∽△CHD,∴∠DEC=∠DHC=90°,∴∠CED=90°;(2)BG﹣BC=DH.理由如下:①如图2,当点D在线段BH上时.故点D作DC的垂线交CE的延长线于点M,连接AM.由(1)可知,∠DCM=∠ACH.∴cos∠DCN=cos∠ACH,∴=.又∵∠DCH=∠MCA,∴△CDH∽△CMA,∴==,∠MAC=∠DHC=90°,∴∠MAC+∠BCA=180°,∴MA∥BC,∴∠AME=∠GCE,又∠AEM=∠CEG.∴△AME∽△GCE,∴=.又tan∠DCE=tan∠MDE=,∴==,∴=,∴=,∴BG﹣BC=DH;②如图3,当点D在线段AH上时,同理可得BG﹣BC=DH.。

2014—2015学年度(上)南岗九年级调研测试题及答案

2014—2015学年度(上)南岗九年级调研测试题及答案

2014—2015学年度(上)九年级调研测试数学试卷参考答案及评分标准二、填空题(每小题3分,共计30分)三、解答题(其中21—22题各7分,23—24题各8分,25—27题各10分,共计60分)21.(本题满分7分) 解:11)2(1)1)(1(2132)1()1)(1(2)1321(122+-=---∙-+-=-+--÷-+-=---÷--a a a a a a a a a a a a a a a a .….5′∵ 12-=a∴原式=22211)12(1-=-=+--………………………….....2′ 22.(本题满分7分) .(1)画图正确 (3)′,)3,8(A ' ………………………….....2′(2)BC =10132=+.…................................................................................................................1′ 弧BB '的长是ππ2101801090=.............................................................................................1′ 23.(本题满分8分) (1)证明:由旋转可知,△ABD≌△ACD'………............................................................….1′∴AD=AD',∠BAD=∠D'AC ∴∠BAD+∠DAC=∠D'AC+∠DAC即∠BAC=∠DAD' ∵∠BAC=120°,∠DAE=60°∴∠D'AE=∠DAE=60°…..................1′ 又∵AE=AE∴△ADE≌△AD'E∴DE=D'E .....................….….......................................1′ (2)结论:∠DAE =21∠BAC .......................................................................................................1′由(1)可知,AD=AD' 又∵AE=AE DE=D'E ∴△ADE ≌△AD'E ....................1′∴∠D'AE=∠DAE ∴∠DAE=21∠DAD' =21∠BAC .......................................................1′ (3)22 (2)′24.(本题满分8分) (1)...............................................3′(2)由表格可以看出,从甲、乙两种品牌中各选购一种型号的电脑可能出现的结果有6种,并且它们被选中的可能性相同,A 型号电脑被选中(记为事件A )的结果有2种,即(A,D)(A,E),所以P(A)3162==.....................................................................................3′ (3)购买A 型号电脑的方案有两种,设购买A 型号电脑x 台.若用(A,E )方案,则购买E 型号电脑(36-x )台,依题意可知6000x +2000(36-x )=100000解得x =7 .....................................................................................1′若用(A,D )方案,则购买D 型号电脑(36-x )台,依题意可知6000x +5000(36-x )=100000,解得x =-80<0不合题意,舍(第23题图1)ED(第23题图1)(第23题图2)ED(第23题图2)去. .......................................................................................1′答:购买的A 型号电脑有7台. 25.(本题满分10分)(1)解:DC //BF ..................................................................................................1′在⊙O 中,∵AB 是直径,CD 是弦,DE=CE ∴AB ⊥CD∵BF 切⊙O 于 B ∴AB ⊥BF ∴∠AED =∠ABF =90° ∴DC //BF ................................2′(2)∵HG ⊥BC ∴∠EGC=90°=∠BEC ∴∠C+∠CEG=90° ∠CEG+∠BEG=90° ∴∠BEG=∠C.................................................................................1′ ∵∠BEG=∠HEA,∠A=∠ C ∴∠A=∠HEA. ......................................................................1′ 同理可证∠ADE=90°-∠A,∠HED=90°-∠HEA ∴∠HDE=∠HED.........................................1′ ∴AH=HE=HD,即EH 是△ADE的中线 .............................................................1′ (3)过点D 作BF 的垂线,垂足为K.由(2)可知,DH=HE=EC=DE ∴△DHE 为等边三角形∴∠ADE =60°=∠F ∴∠FDK =30° ∴FK =2921==DF在Rt △DKF 中,DK =239)29(92222=-=-FK DF ........................................................1′∵∠DEB=∠EBK=∠BKD=90° ∴四边形DEBK 为矩形 ∴DK=BE =239 ∵AB为直径∴∠ADB=90°∴∠A=∠BDE=90°-60°=30°..............................................1′ 在Rt △DBE 中,BD=2BE=39 在Rt△ABD中,AB=2BD=318∴OA=39 .................................................................1′26.(本题满分10分) 解:(1)16822+-=x x S ………………………………………………………4′(2)128016080)(8060)4(214120222+-=-⨯+⨯-⨯+=x x x S x x x W .....................3′080>=a ∴ 当18021602=⨯--=-=a b x 时, ..................................1′W 有最小值1200804)160(12808044422=⨯--⨯⨯=-a b ac (元).............................................2′27.(本题满分10分)解:(1)点A 、B 的坐标分别为(1,0)、(0,3) .在△AOB 中,OA=1,OB =3, ∴2)3(12=+=AB............................................................................................................1′取斜边AB 的中点W,连接OW,则OW=AW=21AB=1=OA ∴△AOW 为等边三角形∴∠A=60° ∠ABO=90°-60°=30°在△BEF 中,令EF=x ,则BF=2x由勾股定理得 222)2()3(x t x =+ 可求x=t ∴AD=EF=t∵AD//EF ∴四边形ADEF 为平行四边形 ..........................................................................1′∴tt t t OE AD S 33)33(2+-=-=⨯=(10<<t ). .......................................................1′(2)∵∠ADF=90° EF//OD ∴∠DFE=∠ADF=90°=∠ODF=∠DOE∴四边形ODFE是矩形∴EF=OD∴t t -=1 解得21=t .....................................................1′∴BE=23,点E 的坐标为(0,23),点G 的坐标为(2,23)....................................................1′ 设对称轴l 与EG 的交点为S ∵MS//BE 点E 与点G 关于直线l 对称 ∴ES=SG 点M 在斜边BG 上,可得MS=21BE=43∴顶点M 的坐标为(1,433)...............................1′ ∴抛物线的解析式为433)1(2+-=x a y ∵经过点E (0,23) ∴43433)10(232-=∴+-=a a 所求抛物线的解析式为433)1(432+--=x y .............................................................................1′ 即2323432++-=x x y (3)平移后新抛物线的解析式为433432+-=x y ,新抛物线与x 轴的交点坐标为)0,3(),0,3(Q R -.延长RN 至点T ,使NT=RN ,连接TQ. 又∵OR=OQ ∴ON//TQ 且 ON=21TQ ∵四边形PKNH 为平行四边形 ∴ON//PK NH=PK∴TQ//PK ∴∠CPK=∠CQT ∠CKP=∠CTQ又∵CP=CQ ∴△PCK ≅△QCT ∴PK=TQ=2ON ∴NH=2ON ∵点H是新抛物线与y轴的交点 ∴OH=433∴PK=NH=32OH=23...........................................1′ 设满足要求的点P 的坐标为)43343,(2+-p p ,则点K 的横坐标为p .设直线RN 的解析式为b kx y +=则⎪⎩⎪⎨⎧+⨯=+-⨯=b k b k 0433)3(0,解得⎪⎪⎩⎪⎪⎨⎧==4341b k∴ 直线RN 的解析式为4341+=x y ∴点K的纵坐标为4341+p .......................................................................1′∴PK=23)4341()43343(2=+-+-p p ,解得0,3321=-=p p∵点P在第二象限∴点P的坐标为)332,33(-...................................................................1′(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

2024年黑龙江省哈尔滨南岗区数学九年级第一学期开学调研试题【含答案】

2024年黑龙江省哈尔滨南岗区数学九年级第一学期开学调研试题【含答案】

2024年黑龙江省哈尔滨南岗区数学九年级第一学期开学调研试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)边长为4的等边三角形的面积是()A.4B.C.D.2、(4分)在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则布袋中白色球的个数可能是()A.24B.18C.16D.63、(4分)不等式组21112xx+>⎧⎪⎨≤⎪⎩的解集在数轴上可表示为()A.B.C.D.4、(4分)如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm5、(4分)某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。

若设每人每小时绿化的面积为x平方米,根据题意下面所列方程正确的是()A .()1801803662x x -=+B .()1801803626x x -=+C .()1801802636x x -=-D .()1801803626x x +=+6、(4分)时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A .B .10-1)C .D .-17、(4分)已知249x mx ++是完全平方式,则m 的值为()A .6B .6±C .12D .12±8、(4分)如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A .74cm B .64cm C .54cm D .44cm 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在中,,,点分别是边的中点,则的周长是__________.10、(4分)如图,圆柱体的高为8cm ,底面周长为4cm ,小蚂蚁在圆柱表面爬行,从A 点到B 点,路线如图所示,则最短路程为_____.11、(4分)在□ABCD 中,∠A +∠C =80°,则∠B 的度数等于_____________.12、(4分)如图,在ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结OE .若60ABC ∠=︒,80BAC ∠=︒,则1∠的度数为_______.13、(4分)命题“对角线相等的平行四边形是矩形”的逆命题为________________________三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC 是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC 的中点M .②连接BM ,并延长到D ,使MD =MB ,连接AD ,CD .(2)求证(1)中所作的四边形ABCD 是菱形.15、(8分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A ,B ,C ,D 四个等级,其中A 等级得分为100分,B 等级得分为85分,C 等级得分为75分,D 等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.(1)把一班比赛成统计图补充完整;(2)填表:平均数(分)中位数(分)众数(分)一班a b 85二班8475c 表格中:a=______,b=______,c=_______.(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:①从平均数、众数方面来比较一班和二班的成绩;②从B 级以上(包括B 级)的人数方面来比较-班和二班的成绩.16、(8分)在Rt △ABC 中,∠C =90°,AC =6,BC =1.在CB 上找一点E ,使EB =EA (利用尺规作图,保留作图痕迹),并求出此时CE 的长.17、(10分)如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.18、(10分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某病毒的直径为0.00000016m,用科学计数法表示为______________.20、(4分)已知m 是一元二次方程240x x --=的一个根,则代数式22m m +-的值是_____21、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.22、(4分)如图,直线l 1∶y =ax 与直线l 2∶y =kx+b 交于点P ,则不等式ax >kx+b 的解集为_________.23、(4分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为秒.二、解答题(本大题共3个小题,共30分)24、(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.25、(10分)根据下列条件求出相应的函数表达式:(1)直线y=kx+5经过点(-2,-1);(2)一次函数中,当x=1时,y=3;当x=-1时,y=1.26、(12分)如图,矩形ABCD 中,∠ABD、∠CDB 的平分线BE、DF 分别交边AD、BC 于点E、F.(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】如图,根据等边三角形三线合一的性质可以求得高线AD 的长度,根据BC 和AD 即可求得三角形的面积.【详解】解:如图,∵△ABC 是等边三角形,AD ⊥BC ,∴BD=DC=2,在Rt △ABD 中,AB=4,BD=2,∴AD==,∴S △ABC =12BC·AD=142⨯⨯,故选C .本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.2、C 【解析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C .大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.3、A 【解析】试题分析:解不等式x+2>2得:x >﹣2;解不等式112x ≤得:x≤2,所以次不等式的解集为:﹣2<x≤2.故选A .考点:2.在数轴上表示不等式的解集;2.解一元一次不等式组.4、A 【解析】首先根据菱形的性质可得BO =DO ,AC ⊥DB ,AO =CO ,然后再根据勾股定理计算出AO 长,进而得到答案.【详解】解:∵四边形ABCD 是菱形,∴BO =DO ,AC ⊥DB ,AO =CO ,∵BD =6cm ,∴BO =3cm ,∵AB =5cm ,∴AO =4(cm ),∴AC =2AO =8cm .故选:A .本题考查菱形的性质,要注意菱形的对角线互相垂直,有直角即可用勾股定理求某些边的长.5、A 【解析】设每人每小时的绿化面积为x 平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x 平方米,由题意得,()1801803662x x -=+故选:A .本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6、B 【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零.于是,先将原来显示的结果左端的数字“11-.为了使该结果的整数部分不为零,再将该结果的小数点向右移动一位,即计算)101.这样,位于原来显示的结果左端的数字消失了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.根据以上分析,为了满足要求,应该在这个计算器中计算)101的值.故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识.本题解题的关键在于理解计算器显示数字的特点和规律.本题的一个难点在于如何构造满足题目要求的算式.解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失.只有当整数部分不为零时,左端的零才不显示.另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.7、D 【解析】根据完全平方式的结构特征,即可求出m 的值.【详解】解:∵249x mx ++是完全平方式,∴22312m =±⨯⨯=±;故选择:D.此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b )1=a 1±1ab+b 1.8、B【解析】首先过A 作AM 垂直PC 于点M ,过点B 作BN 垂直DQ 于点N ,再利用三角函数计算AM 和BN ,从而计算出MN.【详解】解:根据题意过A 作AM 垂直PC 于点M ,过点B 作BN 垂直DQ 于点N 54AC BD cm ==30ACP BDQ ︒∠=∠=MC ND =∴AMC BDN ∆≅∆1sin 3054272AM BN AC ︒∴===⨯=所以2271064MN =⨯+=故选B.本题主要考查直角三角形的应用,关键在于计算AM 的长度,这是考试的热点问题,应当熟练掌握.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt △ABC 中,∠C=90°,AC=3,BC=4,∴AB===5,∵点D 、E 、F 分别是边AB 、AC 、BC 的中点,∴DE=BC ,DF=AC ,EF=AB ,∴C △DEF =DE+DF+EF=BC +AC +AB =(BC+AC+AB)=(4+3+5)=6.故答案为:6.本题考查了勾股定理和三角形中位线定理.10、10cm 【解析】将圆柱沿过点A 和点B 的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于1.5个底面周长,从而求出解题中的AC ,连接AB ,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB 的长,然后根据勾股定理即可求出结论.【详解】解:将圆柱沿过点A 和点B 的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于1.5个底面周长,如下图所示:AC=1.5×4=6cm ,连接AB ,根据两点之间线段最短,∴小蚂蚁爬行的最短路程为此时AB 的长∵圆柱体的高为8cm ,∴BC=8cm 在Rt △ABC 中,10=cm 故答案为:10cm .此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.11、140°【解析】根据平行四边形的性质可得∠A 的度数,再利用平行线的性质解答即可.【详解】解:如图,∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD ∥BC ,∵∠A +∠C =80°,∴∠A =40°,∵AD ∥BC ,∴∠A +∠B =180°,∴∠B =140°.故答案为:140°.本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.12、40°【解析】直接利用三角形内角和定理得出BCA ∠的度数,再利用三角形中位线定理结合平行线的性质得出答案.【详解】解:60ABC ∠=︒,80BAC ∠=︒,180608040BCA ∴∠=︒-︒-︒=︒,对角线AC 与BD 相交于点O ,E 是边CD 的中点,EO ∴是DBC ∆的中位线,//EO BC ∴,140ACB ∴∠=∠=︒.故答案为:40︒.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是DBC ∆的中位线是解题关键.13、矩形是对角线相等的平行四边形【解析】把命题的条件和结论互换就得到它的逆命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南岗区2014届九年级上学期期末调研测试
数学试卷参考答案及评分标准
一、选择题
二、填空题
21. 解:由题可得:⎪⎩
⎪⎨⎧-=+⨯-+=+-⨯-+-11)1(15
)1()1()1(22c b c b ………………… 3分 解得⎩⎨⎧=-=12
c b ………………… 3分
22.(1)略(画图正确) . ………………… 3分
(2) 213
………………… 3分
23.证明:由题可知∠A 1CA=∠B 1CB=α ,AC=BC= A 1C=B 1C
∴△A 1AC ≌△B 1CB ∴A 1A= B 1B ………………… 2分
AC=BC ∴∠CBA=∠CAB=45°
又∵∠A 1B 1C=∠CBA=45°
又∵∠C B 1B=∠CA A 1 ………………… 2分
∴∠A 1AE=∠E B 1B
又∵∠A 1EA=∠BE B 1
∴△A 1AE ≌△BB 1E ………………… 2分
24.解: 1 2 3
………………… 2分
共有9种情况,它们出现的可能性相同,
小球的标号相同的情况有3种. ………………… 2分
P (标号相同)=93
=31
………………… 2分
25.(1)连接AO ,则∠AOC=2 ∠B=2×60°=120°
∵OA=OC ∴∠OAC=∠OCA==︒
-︒212018030°
又∵PA=AC ,∴∠P=∠ACP=30°
又∵∠AOP=180°-120°=60° ………………… 1分
∴∠PAO=180°-30°-60°=90° ………………… 1分
∴OA ⊥AP ………………… 1分
∴AP 是⊙O 的切线 ………………… 1分
(2)连AD ,∵CD 为直径 ∴∠DAC=90° ………………… 1分
∴33330tan tan AD
ACD AC AD ==︒=∠= ∴AD=3 …………… 1分
又∵∠PAD=60°-30°=30° ………………… 1分
∴∠P=∠PAD
∴AD=PD=3 ………………… 1分
26.(1)设抛物线的解析式为y=ax 2+c (a ≠0)
∵C(0,3) D(50,8)代入
⎩⎨⎧==+382500c c a 解得:⎪⎩⎪⎨⎧
==3
5001
c a ………………… 3分
∴y=5001
x 2+3 … ……………… 1分
(2)令y=83
∴83=5001
x 2+3 x 2=40000
1 2 3 1 2 3 1 2 3
∴x=±200 ………………… 2分
∴E(-200,0) F(200,0)
∴ EF=400
t=400÷0.8=500 ………………… 2分
答:从点E 到F 所用时间为500秒.
27.(1) y=- x 2+2x+3 令x=0 y=3 ∴B(0,3)
又∵BC ∥x 轴 ∴令y=3,- x 2+2x+3=3 x 1=0,(舍)x 2=2
∴C (2,3) ………………… 2分
(2)令y=0,则:- x 2+2x+3=0 x 1=-1,x 2=3 ∴A(-1,0) ,D(3,0)
设AC 的解析式为y=kx+b
则⎩⎨⎧=+=+-320b k b k ⎩⎨⎧==11
b k ∴ y=x+1 ………… 1分
∵P(t,-t 2+2t+3) , M(t,t+1)
∴d=y p -y m =- t 2+2t+3-(t+1)
∴d=- t 2+t+2 ………………… 2分
(3) ∵a=-1<0 ∴d 有最大值 ……………… 1分
当t=-a b
2=-)1(21
-⨯=21
时,d 最大
E 1(-3,-23
) , E 2(4,9)
28.(1) 证明:连接DF
∵AD ∥BC ∴∠DAO=∠ABC=45°
又∵∠DCF=45°, ∴∠DAO=∠DCF
又∵∠AOD=∠COB
∴△AOD ∽△CDF ………………… 1分 ∴CO AO =OF OD
∴OD OA =OF OC
又∵∠AOC=∠DOF
∴△AOC ∽△DOF ………………… 2分 ∴∠CAO=∠CDF=45°
∴∠CFD=90, 又∵CD=DE
∴CF=EF ………………… 2分
(2)过C 作CE 的垂线交ED 的延长线于K ,连接KA
可证△EBC ≌△KAC ………………… ..1分
∴CE=CK ,∠CKA=∠CEB
∴∠CKD=45°,即∠CEB+∠AKD=45°
又∵DG ⊥BE ∴∠DGE=90°
∴∠DEG+∠DGE=90°又∵∠DEC=45°
∴∠EDG+∠BEC=45°
∴∠AKD=∠GDE ………………… 1分 ∴DH ∥AK ∴DK ED =HA EH
………………… 1分
∴EH=EA ∴HF ∥AC ,H F=21
AC
又∵BC=AC ∴ H F=21
BC .………………… 1分
延长HF 交BC 于点N, HN//AC,AC ⊥BC ∴∠ACB=∠HNB=90° ∴HF ⊥BC. …………… 1分
E。

相关文档
最新文档