通信原理实验报告1~4
通信原理实验报告
实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。
2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。
分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。
(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
分析为什么采用一般的示波器不能进行有效的观察。
(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。
此时由该模块产生一个1KHz的测试信号,送入PCM编码器。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。
分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。
4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。
此时将PCM输出编码数据直接送入本地译码器,构成自环。
通信原理实训报告
一、实训背景随着信息技术的飞速发展,通信技术在各个领域都发挥着越来越重要的作用。
为了使学生更好地理解通信原理,提高实践能力,我们选择了通信原理实训课程。
通过本次实训,我们深入学习了通信系统的基本原理、信号传输与处理技术,以及通信设备的使用与维护。
二、实训目的1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。
2. 熟悉通信设备的使用与维护方法,提高实际操作能力。
3. 培养团队协作精神,提高解决实际问题的能力。
三、实训内容本次实训主要包括以下内容:1. 通信系统基本原理:学习通信系统的基本概念、组成、工作原理等,了解通信系统的发展历程和趋势。
2. 信号传输与处理技术:学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
3. 通信设备的使用与维护:学习通信设备的操作方法、维护技巧以及故障排除方法。
四、实训过程1. 通信系统基本原理实训(1)通过课堂讲解和实验演示,了解通信系统的基本组成和功能。
(2)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
(3)通过实验验证通信系统的基本原理,如模拟通信系统的调制解调、数字通信系统的编码解码等。
2. 信号传输与处理技术实训(1)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。
(2)通过实验验证信号传输与处理技术的实际应用,如AM、FM、PM调制解调、数字信号编码解码等。
3. 通信设备的使用与维护实训(1)学习通信设备的操作方法、维护技巧以及故障排除方法。
(2)通过实际操作,掌握通信设备的操作方法,如调制解调器、路由器、交换机等。
(3)学习故障排除方法,提高实际解决问题的能力。
五、实训成果1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。
2. 熟悉通信设备的使用与维护方法,提高实际操作能力。
3. 培养团队协作精神,提高解决实际问题的能力。
六、实训总结通过本次通信原理实训,我们收获颇丰。
通信原理实验报告
通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。
本次实验主要涉及到调制解调和频谱分析。
调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。
通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。
实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。
在实验中,我们使用了模拟调制技术。
首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。
接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。
实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。
在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。
首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。
然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。
实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。
通过实验三,我们可以了解到这些技术在通信领域中的具体应用。
例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。
同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。
这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。
结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。
调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。
这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。
通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。
总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。
通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。
通信原理的实验报告
一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。
2. 掌握模拟通信和数字通信的基本技术。
3. 熟悉调制、解调、编码、解码等基本过程。
4. 培养实际操作能力和实验技能。
三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。
1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。
模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。
2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。
数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。
五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。
2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。
(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。
2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。
(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。
通信原理信号源实验报告(共五篇)
通信原理信号源实验报告(共五篇)第一篇:通信原理信号源实验报告信号源实验实验报告(本实验包括CPLD 可编程数字信号发生器实验与模拟信号源实验,共两个实验。
)一、实验目的1、熟悉各种时钟信号的特点及波形。
2、熟悉各种数字信号的特点及波形。
3、熟悉各种模拟信号的产生方法及其用途。
4、观察分析各种模拟信号波形的特点。
二、实验内容 1、熟悉 CPLD 可编程信号发生器各测量点波形。
2、测量并分析各测量点波形及数据。
3、学习CPLD 可编程器件的编程操作。
4、测量并分析各测量点波形及数据。
5、熟悉几种模拟信号的产生方法,了解信号的来源、变换过程与使用方法。
三、实验器材 1、信号源模块一块 2、连接线若干 3、20M 双踪示波器一台四、实验原理((一))D CPLD 可编程数字信号发生器实验实验原理CPLD 可编程模块用来产生实验系统所需要的各种时钟信号与各种数字信号。
它由 CPLD可编程器件 ALTERA 公司的 EPM240T100C5、下载接口电路与一块晶振组成。
晶振JZ1 用来产生系统内的32、768MHz 主时钟。
1、CPLD 数字信号发生器包含以下五部分: 1)时钟信号产生电路将晶振产生的32、768MH Z 时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。
通过拨码开关 S4 与 S5 来改变时钟频率。
有两组时钟输出,输出点为“CLK1”与“CLK2”,S4控制“CLK1”输出时钟的频率,S5 控制“CLK2”输出时钟的频率。
2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。
它又可分为线性反馈移存器与非线性反馈移存器两类。
由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为 m 序列。
以 15 位 m 序列为例,说明 m 序列产生原理。
在图 1-1 中示出一个 4 级反馈移存器。
若其初始状态为(0 1 2 3, , ,a a a a)=(1,1,1,1),则在移位一次时 1 a 与 0 a 模 2 相加产生新的输入41 1 0 a =⊕=,新的状态变为(1 2 3 4, , , a a a a)=(0,1,1,1),这样移位15 次后又回到初始状态(1,1,1,1)。
通信原理实验_实验报告
一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实习报告
通信原理实习报告在当今信息高速发展的时代,通信技术的重要性日益凸显。
为了更深入地理解和掌握通信原理的相关知识,我参加了一次通信原理的实习。
通过这次实习,我不仅巩固了课堂上学到的理论知识,还获得了许多宝贵的实践经验。
本次实习的主要内容包括通信系统的基本组成、模拟通信和数字通信的原理、调制解调技术以及信道编码等方面。
我们在实验室中使用了专业的通信实验设备,进行了一系列的实验操作。
在实习的初始阶段,我们对通信系统的基本组成进行了深入的学习。
通信系统通常由信源、发送设备、信道、接收设备和信宿等部分组成。
信源产生需要传输的信息,发送设备对信源输出的信号进行处理和变换,使其适合在信道中传输。
信道是信号传输的媒介,会对信号产生各种干扰和衰减。
接收设备从信道中接收信号,并进行处理和恢复,最终将信息传递给信宿。
在模拟通信方面,我们重点研究了幅度调制(AM)和频率调制(FM)。
通过实验,我们观察到了不同调制深度下 AM 信号的波形变化,以及 FM 信号的频率随调制信号的变化情况。
同时,我们还了解到模拟通信存在着抗干扰能力差、保密性不好等缺点。
相比之下,数字通信具有许多优势。
在数字通信的实验中,我们学习了脉冲编码调制(PCM)和增量调制(ΔM)。
PCM 通过采样、量化和编码将模拟信号转换为数字信号,而ΔM 则是一种简单的差值编码方式。
通过对这两种编码方式的实验,我们深刻理解了数字通信的高效性和可靠性。
调制解调技术是通信系统中的关键环节。
我们对常见的调制方式如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)进行了实验。
通过观察调制前后的信号频谱,我们直观地感受到了调制的作用和效果。
解调过程则是将调制信号恢复为原始信号,这需要准确的同步和滤波处理。
信道编码是为了提高通信系统的可靠性。
我们学习了纠错编码的基本原理,如汉明码和循环码。
通过编码,可以在接收端检测和纠正传输过程中产生的错误,从而提高通信质量。
在实习过程中,我遇到了不少问题和困难。
通信原理实验报告(优秀范文5篇)
通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
她通信原理实验报告(3篇)
第1篇一、实验目的1. 理解通信系统的基本组成和原理。
2. 掌握模拟通信和数字通信的基本知识。
3. 通过实验,验证通信系统中的调制、解调、编码、解码等基本过程。
二、实验器材1. 通信原理实验平台2. 信号发生器3. 示波器4. 数字信号发生器5. 计算机及实验软件三、实验原理通信原理实验主要涉及模拟通信和数字通信两个方面。
模拟通信是将模拟信号通过调制、传输、解调等过程实现信息传递;数字通信则是将数字信号通过编码、传输、解码等过程实现信息传递。
四、实验内容及步骤1. 模拟通信实验(1)调制实验① 打开通信原理实验平台,连接信号发生器和示波器。
② 设置信号发生器输出正弦波信号,频率为1kHz,幅度为1V。
③ 将信号发生器输出信号接入调制器,选择调幅调制方式。
④ 通过示波器观察调制后的信号波形,记录调制信号的幅度、频率和相位变化。
⑤ 调整调制参数,观察调制效果。
(2)解调实验① 将调制后的信号接入解调器,选择相应的解调方式(如包络检波、同步检波等)。
② 通过示波器观察解调后的信号波形,记录解调信号的幅度、频率和相位变化。
③ 调整解调参数,观察解调效果。
2. 数字通信实验(1)编码实验① 打开数字信号发生器,生成二进制信号序列。
② 将信号序列接入编码器,选择相应的编码方式(如曼彻斯特编码、差分曼彻斯特编码等)。
③ 通过示波器观察编码后的信号波形,记录编码信号的时序和幅度变化。
(2)解码实验① 将编码后的信号接入解码器,选择相应的解码方式。
② 通过示波器观察解码后的信号波形,记录解码信号的时序和幅度变化。
五、实验结果与分析1. 模拟通信实验结果(1)调制实验:调制信号的幅度、频率和相位发生了变化,实现了信息的传递。
(2)解调实验:解调信号的幅度、频率和相位与原始信号基本一致,验证了调制和解调过程的有效性。
2. 数字通信实验结果(1)编码实验:编码后的信号波形符合编码方式的要求,实现了信息的编码。
(2)解码实验:解码后的信号波形与原始信号基本一致,验证了编码和解码过程的有效性。
通信原理实验报告设想(3篇)
第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。
通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。
二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。
通信原理基础实验报告
一、实验目的1. 理解通信系统的基本组成和工作原理。
2. 掌握信号调制与解调的基本方法。
3. 熟悉MATLAB在通信系统仿真中的应用。
4. 分析通信系统性能,评估信号传输质量。
二、实验原理通信系统通常由信源、信道、信宿和传输介质组成。
信源产生待传输的信息,信道负责传输信号,信宿接收并处理信号,传输介质是信号传输的物理通道。
本实验主要研究以下通信原理:1. 模拟调制与解调:包括调幅(AM)、调频(FM)和调相(PM)。
2. 数字调制与解调:包括幅度键控(ASK)、频率键控(FSK)和相位键控(PSK)。
3. 信号频谱分析:利用傅里叶变换分析信号频谱,了解信号带宽和能量分布。
三、实验内容1. 模拟调制与解调:(1)使用MATLAB生成模拟信号,如正弦波、方波等。
(2)进行调幅、调频和调相调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始信号。
(4)分析调制和解调过程中的信号质量。
2. 数字调制与解调:(1)使用MATLAB生成数字信号,如二进制序列。
(2)进行ASK、FSK和PSK调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始数字信号。
(4)分析调制和解调过程中的信号质量。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
(2)分析信号带宽和能量分布,评估信号传输质量。
四、实验步骤1. 模拟调制与解调:(1)在MATLAB中生成模拟信号,如正弦波、方波等。
(2)进行调幅调制,观察调制后的信号波形。
(3)对调幅信号进行解调,恢复原始信号。
(4)重复步骤2和3,进行调频和调相调制与解调。
2. 数字调制与解调:(1)在MATLAB中生成数字信号,如二进制序列。
(2)进行ASK调制,观察调制后的信号波形。
(3)对ASK信号进行解调,恢复原始数字信号。
(4)重复步骤2和3,进行FSK和PSK调制与解调。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
通信原理实习报告
一、实习目的本次通信原理实习旨在通过实际操作和理论联系实践,使我对通信原理有一个更深入的理解,提高我的动手能力,为今后的学习和工作打下坚实的基础。
二、实习内容1. 实验室环境及设备介绍本次实习在XX大学通信实验室进行,实验室配备了丰富的通信实验设备,如信号发生器、示波器、频谱分析仪、网络分析仪等。
实验室环境整洁,设备齐全,为我们的实习提供了良好的条件。
2. 通信原理实验(1)基带信号传输实验实验目的:验证基带信号传输的原理,分析信号在传输过程中的失真和畸变。
实验内容:使用信号发生器产生基带信号,通过传输线路(如电缆、光纤等)传输,在接收端用示波器观察信号波形,分析信号失真和畸变。
(2)调制解调实验实验目的:验证调制解调原理,分析不同调制方式对信号传输的影响。
实验内容:使用调制器将基带信号调制为高频信号,通过传输线路传输,在接收端使用解调器将高频信号解调为基带信号,观察解调效果。
(3)多路复用实验实验目的:验证多路复用原理,分析不同复用方式对信号传输的影响。
实验内容:使用多路复用器将多个基带信号复用为一个高频信号,通过传输线路传输,在接收端使用多路解复用器将高频信号解调为多个基带信号,观察解调效果。
(4)差错控制实验实验目的:验证差错控制原理,分析不同差错控制方法对信号传输的影响。
实验内容:使用差错控制设备(如纠错编码器、解码器等)对信号进行编码和解码,分析差错控制对信号传输的影响。
三、实习收获1. 深入理解通信原理通过本次实习,我对通信原理有了更深入的理解,包括信号传输、调制解调、多路复用、差错控制等方面的知识。
2. 提高动手能力在实习过程中,我学会了使用通信实验设备,掌握了实验操作技能,提高了自己的动手能力。
3. 培养团队协作精神实习过程中,我与同学们相互协作,共同完成实验任务,培养了团队协作精神。
4. 拓宽知识面通过实习,我了解了通信行业的最新技术和发展趋势,拓宽了自己的知识面。
四、实习总结本次通信原理实习让我受益匪浅,不仅加深了我对通信原理的理解,还提高了我的动手能力和团队协作精神。
通信原理实验报告
实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。
2.观测数字基带信号的码型变换测量点波形。
二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。
2).便于从信号中提取定时信息。
3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。
4).以上特性不受信息源统计特性的影响,即适应信息源的变化。
5).编译码设备要尽可能简单。
1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。
6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。
通信原理实验报告实验一
实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。
并掌握Commsim的常用使用方法。
2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。
其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。
通信原理实验报告
通信原理实验报告【通信原理实验报告】一、实验目的:本实验旨在通过实际操作,加深对通信原理相关知识的理解,掌握通信原理实验的基本步骤和方法,以及熟悉通信原理实验仪器的使用。
二、实验仪器与器件:1. 信号发生器:用于产生模拟信号。
2. 示波器:用于观测和测量信号波形。
3. 电阻、电容、电感等元件:用于构建电路。
4. 数字示波器:用于观测和测量数字信号。
5. 串口线:用于连接计算机和实验设备。
三、实验内容:1. 模拟信号的产生与观测1.1 使用信号发生器产生正弦信号,并观测信号波形。
1.2 调节信号频率和幅度,观察信号波形的变化。
1.3 通过示波器测量信号的频率和幅度。
2. 模拟信号的调制与解调2.1 使用信号发生器产生载波信号。
2.2 使用示波器观测载波信号波形。
2.3 将调制信号与载波信号进行混合,观察调制信号对载波信号的影响。
2.4 使用解调器对调制信号进行解调,观察解调后的信号波形。
3. 数字信号的产生与观测3.1 使用信号发生器产生矩形脉冲信号,并观测信号波形。
3.2 调节脉冲宽度和周期,观察信号波形的变化。
3.3 通过数字示波器测量信号的脉宽和周期。
4. 数字信号的调制与解调4.1 使用信号发生器产生调制信号。
4.2 使用数字示波器观测调制信号波形。
4.3 将调制信号与载波信号进行混合,观察调制信号对载波信号的影响。
4.4 使用解调器对调制信号进行解调,观察解调后的信号波形。
四、实验步骤与结果:1. 模拟信号的产生与观测1.1 连接信号发生器和示波器。
1.2 设置信号发生器的频率和幅度,产生正弦信号。
1.3 使用示波器观测信号波形,并记录频率和幅度。
实验结果:产生的正弦信号频率为1000Hz,幅度为5V。
2. 模拟信号的调制与解调2.1 连接信号发生器、示波器和调制解调器。
2.2 设置信号发生器产生载波信号,并使用示波器观测载波信号波形。
2.3 将调制信号与载波信号进行混合,并观察调制后的信号波形。
典型通信原理实验报告
一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统的基本组成和功能。
3. 学习通信信号的调制与解调方法。
4. 掌握通信系统性能的评估方法。
二、实验内容1. 通信系统基本组成与功能(1)实验器材:示波器、信号发生器、频谱分析仪等。
(2)实验步骤:①观察通信系统的基本组成,包括信源、信道、信宿等。
②分析各组成部分的功能,如信源产生信号、信道传输信号、信宿接收信号等。
2. 通信信号调制与解调(1)实验器材:示波器、信号发生器、调制解调器等。
(2)实验步骤:①观察调制信号和解调信号的波形,分析调制方法。
②比较不同调制方法(如AM、FM、PM)的特点和适用场景。
③通过实验验证调制和解调过程,观察调制信号和解调信号的关系。
3. 通信系统性能评估(1)实验器材:示波器、信号发生器、频谱分析仪、误码率测试仪等。
(2)实验步骤:①设置通信系统参数,如调制方式、传输速率、信噪比等。
②测量通信系统的误码率,分析误码率与信噪比的关系。
③评估通信系统的性能,如带宽利用率、传输速率等。
三、实验结果与分析1. 通信系统基本组成与功能实验结果显示,通信系统由信源、信道、信宿三部分组成。
信源产生信号,信道传输信号,信宿接收信号。
各部分相互配合,实现信息的有效传输。
2. 通信信号调制与解调实验结果表明,不同调制方法具有不同的特点。
AM调制具有较好的抗干扰性能,适用于短距离通信;FM调制具有较高的频带宽度和抗干扰性能,适用于长距离通信;PM调制适用于高速率、低误码率的通信。
3. 通信系统性能评估实验结果显示,通信系统的误码率与信噪比存在密切关系。
随着信噪比的提高,误码率逐渐降低。
通过调整通信系统参数,可以优化系统性能,提高传输速率和带宽利用率。
四、实验总结通过本次实验,我们了解了通信原理的基本概念和原理,掌握了通信系统的基本组成和功能,学习了通信信号的调制与解调方法,以及通信系统性能的评估方法。
实验过程中,我们对通信系统的各个组成部分进行了实际操作,加深了对通信原理的理解。
通信原理实验报告
通信原理实验报告1. 实验简介该实验旨在探究通信原理中的基础概念和技术,通过实际操作和数据收集,加深对通信原理的理解和应用。
2. 实验目的通过实验,达到以下目的:- 理解调制、解调、信道传输等基本通信原理- 学习并应用相关通信原理工具和设备- 分析实验结果,总结出相关规律和结论- 提高实验操作能力和数据处理能力3. 实验过程3.1 实验设备和器材预备准备以下设备和器材:- 调制解调器- 信号发生器- 示波器- 噪声源- 电缆和连接线3.2 实验步骤步骤1:使用信号发生器产生载波信号,并将其连接到调制解调器的输入端口。
步骤2:将待发送的消息信号连接到调制解调器的输入端口。
步骤3:通过示波器观察并记录调制解调器输出的调制信号。
步骤4:使用示波器观察并记录解调器输出的解调信号。
步骤5:将噪声源连接到调制解调器的输入端口,并观察解调器输出的抗噪性能。
步骤6:根据实验结果进行数据分析和总结。
4. 实验结果与讨论4.1 调制信号观察与记录通过示波器观察到的调制信号波形如下图所示:(可以插入图片)4.2 解调信号观察与记录通过示波器观察到的解调信号波形如下图所示:(可以插入图片)4.3 抗噪性能观察与分析连接噪声源后,示波器观察到的解调信号波形相对于无噪声的情况产生了一定程度的畸变。
通过分析解调信号的信噪比和误码率等指标,可以进一步评估抗噪性能,并提出改进建议。
5. 结论通过本次实验,我们深入探讨了通信原理相关的调制、解调和信道传输等基本概念。
通过观察实验结果和数据分析,得出以下结论:- 调制技术可以将消息信号转换为适合传输的载波信号,进而实现有效的数据传输。
- 解调技术可以将接收到的调制信号还原为原始的消息信号。
- 通信系统在存在噪声的情况下,解调信号的质量和抗噪能力会受到一定影响。
6. 改进建议根据实验结果和结论,我们提出以下改进建议:- 进一步优化调制和解调算法,提高传输效率和抗噪性能。
- 使用更先进的设备和器材,提升实验数据的准确性和稳定性。
通信原理系统实验报告
一、实验目的1. 理解通信系统的基本组成和工作原理;2. 掌握通信系统实验设备的使用方法;3. 学习通信系统性能指标的测量方法;4. 分析实验数据,提高对通信原理的理解。
二、实验设备与仪器1. 通信原理实验箱;2. 双踪示波器;3. 数字信号发生器;4. 信号分析仪;5. 矢量网络分析仪;6. 网络分析仪;7. 通信原理实验指导书。
三、实验原理通信系统是利用电磁波或其他介质,将信息从一个地方传输到另一个地方的技术。
通信系统主要包括信源、信道、信宿和通信控制四个部分。
本实验主要研究通信系统的基本组成、工作原理以及性能指标的测量。
四、实验内容及步骤1. 通信系统基本组成实验(1)观察通信原理实验箱,了解其组成和功能;(2)熟悉实验设备的使用方法,如数字信号发生器、示波器等;(3)搭建通信系统实验模型,观察信源、信道、信宿和通信控制各部分的工作情况。
2. 通信系统性能指标测量实验(1)信源输出信号:使用数字信号发生器生成不同类型的信号,如正弦波、方波等,观察信源输出信号;(2)信道传输特性:使用示波器观察信号在信道中的传输过程,测量信道的传输延迟、带宽等指标;(3)信宿接收信号:观察信宿接收信号,分析信号质量,如信噪比、误码率等;(4)通信控制实验:观察通信控制过程,如调制、解调、编码、解码等,分析通信控制对系统性能的影响。
3. 通信系统性能指标分析实验(1)分析信源输出信号、信道传输特性、信宿接收信号等实验数据;(2)计算信噪比、误码率等通信系统性能指标;(3)对比不同通信系统模型的性能,分析系统优化方法。
五、实验结果与分析1. 实验数据记录(1)信源输出信号:频率、幅度、波形等;(2)信道传输特性:传输延迟、带宽、衰减等;(3)信宿接收信号:信噪比、误码率、波形等;(4)通信控制性能:调制、解调、编码、解码等效果。
2. 实验数据分析(1)信源输出信号质量良好,满足通信要求;(2)信道传输特性稳定,传输延迟、带宽等指标符合预期;(3)信宿接收信号信噪比较高,误码率较低,信号质量较好;(4)通信控制效果明显,调制、解调、编码、解码等过程顺利进行。
数字通信原理实验一、二、四报告
中南大学数字通信原理实验报告目录实验一:数字基带信号 (3)实验二:数字调制 (7)实验四:数字调解和眼图 (11)实验内容:实验一、实验二、实验四实验一:数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1.熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2.用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西北农林科技大学通信原理实验报告
学院(系):机械与电子工程学院
专业年级:电信11级
学生姓名:
学号:2011********
指导教师:***
实验一数字基带信号实验
一、实验目的
掌握AMI、HDB3码的编码规则。
二、实验内容
用示波器观察AMI、HDB3码。
三、实验步骤
1、打开电源PW1,示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极
管的发光状态,判断数字信号源单元是否正常工作(’1‘对应亮;’0‘对应熄)。
2、将K4、K2、K3置于全’1’状态,示波器CH1接NRZ-OUT,CHI接AMI(HDB3),
观察波形。
3、将K
4、K2、K3置于全’0’状态,示波器接法同上,观察波形。
4、将K4、K2、K3置于0111 0010 0000 1100 0000状态,示波器CH1接NRZ-OUT,
CHI接AMI(HDB3),观察波形。
四、波形记录与分析
在数字信号源单元正常工作的条件下,记录图形如下:
(1)K4、K2、K3置于全’1’状态时,NRZ码和AMI码波形如图1-1所示。
图1-1
(2)K4、K2、K3置于全’0’状态时,NRZ码和AMI码波形如图1-2所示。
图1-2
(3)K4、K2、K3置于0111 0010 0000 1100 0000状态时,NRZ码和AMI(HDB3)波形如图1-3所示。
图1-3
五、实验总结
归零码波形是指它的有电平宽度τ小于码元宽度T s,即信号电压在一个码元终止时刻前总要回到零电平,而不归零码它的有电平宽度τ等于码元宽度T s,即占空比为100%。
AMI码是将消息码的“1”(传号)交替的变换为“+1”和“-1”,而“0”(空号)保持不变。
而HDB3码是AMI码的一种改进型,其编码规则为:①当连“0”数目小于等于3时HDB3码和AMI码一样;②当连“0”数目超过3时,将每四个连“0”化作一个小节,定义为“B00V”;③V与前一个相邻的非“0”脉冲的极性相同,且要求相邻的V码之间极性必须交替,V取值为+1或-1;④B的取值可选0、+1、-1,以使V满足③的要求;⑤V码后面的传号码极性也要交替。
实验二数字调制实验
一、实验目的
1、掌握绝对码、差分码概念及它们之间的变换关系;
2、掌握用键控法产生2ASK、2PSK、2FSK、2DPSK信号的方法;
3、掌握差分码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。
二、实验内容
1、用示波器观察绝对码波形、相对码波形;
2、用示波器观察2ASK、2PSK、2FSK、2DPSK信号波形。
三、实验步骤
1、连线:信源单元的CLK、BS-OUT、NRZ-OUT分别连至调制单元的CLK、BS-IN、NRZ-IN。
打开电源PW1、PW10。
2、将信源单元的K2、K4、K3置于0011001100110011……,示波器CH1接AK,CH2接BK,观察记录AK、BK波形并总结变换规律。
3、CH1接2DPSK-OUT(2PSK-OUT),CH2分别接AK、BK,观察记录波形并总结2DPSK信号相位变化与差分码的关系。
4、示波器CH1接AK,CH2分别接2PSK-OUT,观察并记录波形。
四、实验结果及分析
(1)信源单元的K2、K4、K3置于0011001100110011……时,AK、BK波形如图2-1所示。
图2-1
波形分析:由上图可知AK、BK波形变化规律是码元1对应高电平1,码元0对应低电平0。
(2)信源单元的K2、K4、K3仍置于0011001100110011……,CH1接2DPSK-OUT (2PSK-OUT),CH2接AK时波形如图2-2所示。
图2-2
CH2接BK波形如图2-3所示。
图2-3
(3)信源单元的K不变的情况下,示波器CH1接AK,CH2分别接2PSK-OUT,AK、
2PSK波形如图2-4所示。
图2-4
波形分析:由以上图形可知,当AK或BK信号电平发生跳转时,2DPSK信号相位改变180
度,而对于2PSK信号来说,当AK或BK信号为低电平时对应的2PSK信号的相位为0度,
当AK或BK信号为高电平时对应的2PSK信号的相位为180度。
五、实验总结
差分码是用绝对码前后相邻码元相位差来确定的,2DPSK信号的产生方法是先对二进制数字基带信号进行差分编码,即把表示数字信息的序列的绝对码变换成相对码(差分码),然后再相对码进行绝对调相,从而产生二进制差分相移键控信号。
相移键控是用载波的相位变化来传递数字信息,而振幅和频率保持不变。
当发送二进制符号“0”时2PSK信号取0相位;当发送二进制符号“1”时2PSK信号取π相位;而2DPSK 信号波形是当遇到二进制符号“0”时2DPSK信号相位不变;当发送二进制符号“1”时2DPSK信号相位改变180度。
实验三数字解调实验
一、实验目的
掌握2FSK过零检测解调原理
二、实验内容
用示波器观察2FSK过零检测解调器各点波形
三、实验步骤
1、连线
将数字信源单元:CLK、BS_OUT、NRZ_OUT分别连接到数字调制单元:CLK、BS_IN、NRZ_IN;
将数字信源单元:BS_OUT连接到2FSK解调单元:BS_IN;
数字调制单元:2FSK_OUT连接到2FSK解调单元:2FSK_IN;
打开电源PW1、PW10。
2、示波器CH1接2FSK_OUT,观察2FSK已调信号波形;
3、示波器CH1接数字调制单元的AK(或2FSK_OUT),CH2分别接2FSK解调单元中的
FD、LPF、CM及AK_OUT,观察并记录2FSK过零检测解调器的解调过程。
四、记录与分析
1.设信息代码为10101010,2FSK的两个载频分别为码速率的四倍和两倍,根据实验观察得到的规律,画出2FSK过零检测解调器输入的2FSK波形如图3-1所示。
图3-1
分析:2FSK的两个载频分别为码速率的6倍和3倍。
2. FD波形如图3-2所示(设低通滤波器及整形2都无倒相作用)。
图3-2
波形分析:示波器CH1接数字调制单元的AK,CH2接2FSK解调单元中的FD。
在2FSK
信号过零点处,FD信号会产生一个矩形脉冲。
3.LPF波形如图3-3所示。
图3-3
波形分析:经低通滤波之后,显示出的波形如上图,LPF不是TTL电平信号且不是标准的非归零码,必须进行抽样判决处理。
4. CM波形如图3-4所示。
波形分析:抽样判决之后输出波形为方波。
5. AK波形如图3-5所示。
图3-5
波形分析:AK波形与CM波形关于x轴对称。
五、实验总结
过零检测基于2FSK信号的过零点数随不同频率而已,通过检测过零点数目的多少,从而区分两个不同频率的信号码元。
2FSK信号经过限幅、微分、整流后形成与频率变化相对应的尖脉冲序列,尖脉冲的密集程度反映了信号频率的高低,尖脉冲的个数就是信号过零点数。
把这些尖脉冲经过变换成较宽的矩形脉冲然后经过低通滤波去除其直流分量从而还原出数字信号呢“1”和“0”。
实验四PAM调制解调实验
一、实验目的
1、熟悉脉冲振幅调制的工作原理
2、加深对抽样定理的理解
二、实验内容
对正弦信号进行抽样,用示波器观察在不同的抽样脉冲下抽样信号的输出波形及解调波形。
三、实验步骤
1、连线
正弦信号源:OUT2(输出低频正弦波)连接到PAM调制单元:A_IN;PDM&ADPCMA 编译单元:PULSE_OUT连接到PAM解调单元:PAM_IN
打开相应单元的电源。
2、用示波器分别测量PAM调制单元A_IN和PULSE_IN端口的输出波形。
3、调整正弦信号源的可调电阻(OUT2对应RP7),将其输出频率为一整数值(OUT2为
3KHz,即截止频率f H为3KHz)
4、将DM&ADPCMA编译单元的拨码单元开关S1的6拨向ON位置(此位置使
PULSE_OUT得频率为4KHz,即抽样频率fs为4KHz),记录并观察PAM_OUT的输出波形及PAM解调单元的输出端口A_OUT的输出波形,并将A_OUT的输出波形与原始波形进行比较,检查失真度。
5、分别将S1的5、4、3、2、1拨向ON的位置(脉冲PULSE_OUT频率逐渐提高),重
复第4步。
四、记录与分析
PAM调制单元A_IN和PULSE_IN端口的输出波形如图4-1所示
图4-1
其他波形如下图:
五、实验总结
把周期性脉冲序列看作是非正弦波,而抽样过程可以看作是用模拟信号对它进行振幅调制,这种调制方式为脉冲振幅调制(PAM)。
抽样定理是当抽样频率f s≥2f H时,采用一个截止频率为f H的低通滤波器仍可以分离出原模拟信号。
在PAM调制中得到的已调信号的脉冲顶部和原模拟信号的波形相同。