相似三角形单元测试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 3
相似三角形单元测试卷(共100分)
一、填空题:(每题5分,共35分)
1、已知a =4,b =9,c 是a b 、的比例中项,则c = .
2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).
3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则
S S ADE ∆=四边形DBCE : .
图1 图2 图3
4、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)
5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.
图4 图5 图6
6、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则
DE = .
7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分) 8、若
k b
a
c a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在
9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=(

A 、
21 B 、31
C 、32
D 、4
1
图7 图8 图9
10、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,
则FG 的长为( )
A 、8cm
B 、6cm
C 、64cm
D 、26cm 11、下列说法中不正确的是( )
A .有一个角是30°的两个等腰三角形相似;
B .有一个角是60°的两个等腰三角形相似;
C .有一个角是90°的两个等腰三角形相似;
D .有一个角是120°的两个等腰三角形相似.
12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中
2 / 3
三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:4
13、两个相似多边形的面积之比为1∶3,则它们周长之比为( )
A .1∶3
B .1∶9
C .1
D .2∶3 14、下列3个图形中是位似图形的有( )
A 、0个
B 、1个
C 、2个
D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、B
E 是△ABC 的两条高,试说明AD ·BC=BE ·AC
16、如图所示,小华在晚上由路灯A 走向路灯B,
当他走到点
P 时, 发现他身后
影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现
他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离; (2)当小华走到路灯B 时,他在路灯A 下的影长是多少?
17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为
S (cm 2)
(1)当t=1秒时,S 的值是多少?
(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;
(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.
参考答案
一、 填空题:
(1)、1或4或16;(2)、±6;(3)、-
9
4
;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2 A B
C E
D
三、作图题:
23、(略)
四、解答题:
24、证明:∵AD、BE是△ABC的高
∴∠ADC=∠BEC
∵∠C=∠C
∴△ADC∽△BEC
∴AD:BE=AC:BC
∴AD×BC=BE×AC
25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10,
∴AB:EF=AC:ED=BC:DF=5:2
∴△ABC∽△DEF
26、解:过点C作C E∥AD交AB于点E,则CD=AE=2m,△BCE∽△B/BA/
∴A/ B/:B/B=BE:BC 即,1.2:2= BE:4
∴BE=2.4
∴AB=2.4+2=4.4
答:这棵树高4.4m。

27、1.(1)18m. (2)3.6m.
3 / 3。

相关文档
最新文档