3.1.2复数的几何意义 学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的几何意义

[学习目标] 1.理解用复平面内的点或以原点为起点的向量表示复数,及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模表示复数的模的方法.

知识点一 复平面的概念和复数的几何意义 1.复平面的概念

根据复数相等的定义,任何一个复数z =a +b i ,都可以由一个有序实数对(a ,b )唯一确定.因为有序实数对(a ,b )与平面直角坐标系中的点一一对应,所以复数与平面直角坐标系中的点之间可以建立一一对应.

如图所示,点Z 的横坐标是a ,纵坐标是b ,复数z =a +b i 可用点Z (a ,b )表示.这个建立了直角坐标系来表示复数的平面叫做 ,x 轴叫做 ,y 轴叫做 .显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.

2.复数的几何意义

按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.因此,复数集C 和复平面内所有的点所成的集合是一一对应的,即复数z =a +b i

复平面内的点 ,这是复数的一种几何意义.

3.复数集与复平面中的向量的一一对应关系

在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的.这样,我们还可以用平面向量来表示复数.

如图所示,设复平面内的点Z 表示复数z =a +b i ,连接OZ ,显然向量OZ →

由点Z 唯一确定;反过来,点Z (相对于原点来说)也可以由向量OZ →

唯一确定.因此,复数集C 与复平面内的向量所成的集合也是一一对应的(实数0与零向量对应),即复数z =a +b i 平面向量OZ →

这是复数的另一种几何意义.

思考 (1)虚轴上的点都对应着唯一的纯虚数吗? (2)象限内的点与复数有何对应关系? 答案 (1)不是.

(2)第一象限的复数特点:实部为正,且虚部为正; 第二象限的复数特点:实部为负,且虚部为正; 第三象限的复数特点:实部为负,且虚部为负; 第四象限的复数特点:实部为正,且虚部为负. 知识点二 复数的模

1.如图所示,向量OZ →

的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|.如果b =0,

那么z =a +b i 是一个实数a ,它的模等于|a |(就是a 的绝对值).由模的定义可知:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ).

2.复数的模的性质,设z 1,z 2是任意两个复数,则

(1)|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪z 1z 2=|z 1|

|z 2|(|z 2|≠0)(复数的乘、除法将在下节学习到).

(2)|z n 1|=|z 1|n (n ∈N *).

(3)|||z 1|-|z 2|≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是:①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线;②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.

(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是:①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②当||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线. 思考 复数的模的几何意义是什么?

答案 复数z 在复平面内对应的点为Z ,复数z 0在复平面内对应的点为Z 0,r 表示一个大于0的常数,则:

①满足条件|z |=r 的点Z 的轨迹为以原点为圆心,r 为半径的圆,|z |<r 表示圆的内部,|z |>r 表示圆的外部;

②满足条件|z -z 0|=r 的点Z 的轨迹为以Z 0为圆心,r 为半径的圆,|z -z 0|<r 表示圆的内部,|z -z 0|>r 表示圆的外部.

题型一 复数与复平面内的点

例1 在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点:(1)在虚轴上;(2)在

第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围. 解 复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10. (1)由题意得m 2-2m -8=0. 解得m =-2或m =4.

(2)由题意,⎩⎪⎨⎪⎧

m 2-2m -8<0,

m 2+3m -10>0,

∴2<m <4.

(3)由题意,(m 2-2m -8)(m 2+3m -10)<0, ∴2<m <4或-5<m <-2.

(4)由已知得m 2-2m -8=m 2+3m -10,故m =2

5

.

反思与感悟 复数实部、虚部分别对应了复平面内相应点的横坐标和纵坐标,在复平面内复数所表示的点所处的位置,决定了复数实部、虚部的取值特征.

跟踪训练1 实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i. (1)对应的点在x 轴上方; (2)对应的点在直线x +y +4=0上.

解 (1)由m 2-2m -15>0,得m <-3或m >5,所以当m <-3或m >5时,复数z 对应的点在x 轴上方.

(2)由(m 2+5m +6)+(m 2-2m -15)+4=0, 得m =1或m =-52,所以当m =1或m =-5

2时,

复数z 对应的点在直线x +y +4=0上. 题型二 复数的模的几何意义

例2 设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形. (1)|z |=2; (2)1≤|z |≤2.

解 (1)方法一 |z |=2说明复数z 在复平面内对应的点Z 到原点的距离为2,这样的点Z 的集合是以原点O 为圆心,2为半径的圆.

方法二 设z =a +b i ,由|z |=2,得a 2+b 2=4.故点Z 对应的集合是以原点O 为圆心,2为半径的圆.

相关文档
最新文档