青岛版数学九年级上册1.2《怎样判定三角形相似(3、4)》参考教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
36
54
45
F
E
C
B
A
1.2 怎样判定三角形相似(3、4)
学习目标 知识目标:
通过激励—引导—类比—讨论,发现、总结相似三角形判定的第二预备定理和三角形相似的判定定理1.
能力目标:
在课堂教学过程中,培养学生深入思考,适当变式和思维发散的能力,使学生感受数学对称美,发展学生创造性.
情感、态度与价值观:
培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.
重难点、关键
1.重点:会应用相似三角形的两个判定方法.
2.难点:怎样选择合格的判定方法来判定两个三角形相似.
3.关键:抓住判定方法的条件,通过已知条件的分析,把握图形的结构特点.
学习过程 一、自主探究
1、阅读教材14页观察与思考,总结相似三角形的判定方法二:
______________________________________________________________________________________________________________________________ .
2、证明图中△AEB 和△FEC 相似.
二、自我训练
在△ABC 中,E 是AB 上一点,D 是AC 上一点,AE=6cm,AC=15cm ,AD=8cm ,AB=20cm.求证:△AED ∽△ACB.
三、合作互动
阅读教材16页观察与思考,总结相似三角形的判定方法三:
四、精讲例题
自学17页例3,写出解题过程.
五、拓展延伸
如图,已知Q是正方形ABCD中CD边的中点,P是BC边上一点,且BP=3PC,请问∠DAQ是否与∠PQC相似?说明理由.
A
D
Q
B
C
P
当堂达标训练Array
一、填空题
1、如图,在△ABC中,点D、E分别在边AB、AC上,
已知AB=6,AC=9,BC=12,AD=3,AE=2. 那么
DE= .
2、一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 相似.(填“一定”、“不一定”或“一定不”).
二、选择题
1、已知相同时刻的物高与影长成比例.如果一电线杆在地面上的影长为50m ,同时,高为1m 的测杆的影长为2m ,那么电线杆的高度为( )
A.100m
B.50m
C.48m
D.25m 2、在△ABC 中,BC=5cm,CA=45cm,AB=46cm,另一个与它相似的三角形的最短边是15cm ,则最长边是( )
A.138cm
B.
3
46
cm C.135cm D.不确定 3、△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( )
A.
DB AD =EC BF B.AC AB =FC EF C.DB AD =FC BF D.EC AE =BF
AD
4、在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( )
A.△ABD ∽△BCD
B.△ABC ∽△BDC
C.△ABC ∽△ABD
D.不存在 5、下列判断中,正确的是( ) A.有一个角为30°的两个等腰三角形相似 B.邻边之比都等于2的两个平行四边形相似 C.底角为40°的两个等腰梯形相似 D.有一个角为120°的两个等腰三角形相似 三、解答题
1、已知:∠ABC=∠CDB=90°,AC=a ,BC=b ,当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?(10分)
2、以各小正方形的顶点为顶点的三角形称为格点三角形,如图中的△ABC,请在图中画出与△ABC 相似但不全等的三角形.
课堂总结,提高认识 1.教师提问:
(1)相似三角形的判定有几种方法?如何选择这些方法? (2)相似三角形具有哪些性质?通常可以用来证明哪些问题? (3)你通过这两节课内容的学习,在推理方面是否有提高? 2.归纳:判定三角形相似的主要思路:
(1)有两对边成比例的,一般有两个途径:一是夹角相等;二是找第三边成比例.
(2)有一对等角的,一般有两个途径:一是找另一对等角;二是找到夹边成比例.
教(学)后感:
B
A
C。