甘肃省武威第十八中学高三数列的概念复习专题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184
B .174
C .188
D .160
2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1
B .3
C .2
D .3-
3.已知数列{}n a 满足12a =,11
1n n
a a +=-,则2018a =( ). A .2
B .
12 C .1-
D .12
-
4.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
5.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511
B .513
C .1025
D .1024
6.数列{}n a 的前n 项和记为n S ,()
*
11N ,2n n n a a a n n ++=-∈≥,12018a =,
22017a =,则100S =( )
A .2016
B .2017
C .2018
D .2019
7.已知数列{}n a 中,11a =,122
n
n n a a a +=+,则5a 等于( ) A .
25
B .
13 C .
23
D .
12
8.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列
{}n a 为周期数列,周期为T .
已知数列{}n a 满足()111,1
0,{1
,01n n n n n
a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数;
B
.若m =
,则数列{}n a 是周期为3的数列;
C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;
D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 9.
3
…
…
,则 ) A .第8项
B .第9项
C .第10项
D .第11项
10.设数列{},{}n n a b 满足*172
700,,105
n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >
B .43<b b
C .33>a b
D .44<a b
11.已知数列{}n a 的前5项为:12a =,232a =,343
a =,454a =,56
5a =,可归纳得
数列{}n a 的通项公式可能为( ) A .1
+=
n n a n
B .2
1
n n a n +=
+ C .3132
n n a n -=-
D .221
n n
a n =
- 12.已知数列{}n a 满足11a =,12
2
n n a a n n
+=++,则10a =( ) A .
259
B .
145 C .
3111
D .
176
13.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( )
A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
14.数列1111
,,,
57911
--,…的通项公式可能是n a =( ) A .1(1)32
n n --+
B .(1)32
n n -+
C .1(1)23
n n --+
D .(1)23
n
n -+
15.数列1
2,16,112,120
,…的一个通项公式是( ) A .()1
1n a n n =-
B .()1
221n a n n =
-
C .111
n a n n =
-+ D .11n a n
=-
16.已知数列{}n a 满足1N a *
∈,1,2+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
,若{}n a 为周期数列,则1a 的
可能取到的数值有( )
A .4个
B .5个
C .6个
D .无数个
17.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
18.下列命题中错误的是( ) A .()(
)21f n n n N
+
=-∈是数列的一个通项公式
B .数列通项公式是一个函数关系式
C .任何一个数列中的项都可以用通项公式来表示
D .数列中有无穷多项的数列叫作无穷数列 19.已知数列{}n a 的前n 项和为n S ,已知1
3n n S +=,则34a a +=( )
A .81
B .243
C .324
D .216
20.已知数列{}n a 的首项为2,且数列{}n a 满足11
1
n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504
B .294
C .294-
D .504-
二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列
数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数
C .202020182022
3a a a =+
D .123a a a +++…20202022a a +=
22.已知数列{}n a 满足()
*11
1n n
a n N a +=-∈,且12a =,则( ) A .31a =- B .201912
a =
C .332
S =
D . 2 0192019
2
S =
23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
24.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
15
B .
25
C .
45
D .
65
25.已知数列{}n a 满足112
a =-,11
1n n a a +=-,则下列各数是{}n a 的项的有( )
A .2-
B .
2
3
C .
32
D .3
26.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( )
A .数列{}n a 的前n 项和为1
S 4n n
=
B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 27.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )
A .数列{}n a 的公差d <0
B .数列{}n a 中S n 的最大项为S 10
C .S 10>0
D .S 11>0
28.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
29.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )
A .若100S =,则50a >,60a <;
B .若412S S =,则使0n S >的最大的n 为15;
C .若150S >,160S <,则{}n S 中7S 最大;
D .若89S S <,则78S S <.
30.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有
m n m n a a a +=+,则下列结论正确的是( )
A .11285a a a a +=+
B .56110a a a a <
C .若该数列的前三项依次为x ,1x -,3x ,则10103
a = D .数列n S n ⎧⎫
⎨
⎬⎩⎭
为递减的等差数列
31.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d > D .数列
{}n
a 也是等差数列
32.定义11222n n
n a a a H n
-++
+=
为数列{}n a 的“优值”.已知某数列{}n a 的“优
值”2n
n H =,前n 项和为n S ,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .
20202023
20202
S = D .2S ,4S ,6S 成等差数列
33.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
34.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <
D .613S S =
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.B 解析:B 【分析】
根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】
3,4,6,9,13,18,24,1,2,3,4,5,6,
所以()1112,3n n a a n n a --=-≥=,
所以()()()112211n n n n n a a a a a a a a ---=-+-++-+
()()1213n n =-+-+
++()()()1111332
2
n n n n -+⋅--=
+=+.
所以191918
31742
a ⨯=+=. 故选:B 【点睛】
本小题主要考查数列新定义,考查累加法,属于基础题.
2.C
解析:C 【分析】
根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得
2019a 的值.
【详解】
数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】
本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.
3.B
解析:B 【分析】
利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,
11
1n n
a a +=-,且12a =, 211112
a a ∴=-
=, 32
1
1121a a =-=-=- , ()413
1
1112a a a =-
=--== ∴数列{}n a 是以3为周期的周期数列,
201867232=⨯+,
201821
2
a a ∴==.
故选:B 【点睛】
本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.
4.A
解析:A 【分析】
根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】
{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,
充分性:
1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,
0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,
10n a +<,则1n n S S +<,不合乎题意;
若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.
所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;
必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.
所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.
因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】
本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.
5.B
解析:B 【分析】
根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】
因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,
所以
11
21
n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,
所以112n n a --=,所以121n n a -=+,所以9
1021513a =+=,
故选:B. 【点睛】
本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足
()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方
法进行求解.
6.A
解析:A 【分析】
根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】
解:因为12018a =,22017a =,()
*
11N ,2n n n a a a n n +-=-∈≥,
则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-,
543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,
…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以
()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++
12342016a a a a =+++=.
故选:A . 【点睛】
本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.
7.B
解析:B 【分析】
根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】
在数列{}n a 中,11a =,122n n n a a a +=
+,则12
122122123
a a a ⨯===++,2322
2213222
23
a a a ⨯
===++, 3431
222212522a a a ⨯
===++,45
422215223
25
a a a ⨯===++. 故选:B. 【点睛】
本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.
8.C
解析:C 【解析】
试题分析:A:当01m <≤时,由34a =得1;125m m =
<≤时,由34a =得5
4
m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .
B:234111,11,1,m a a a =>∴==
==> 所以3T =,正
确.
C :命题较难证明,先考察命题
D .
D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.
【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.
9.D
解析:D 【解析】 【分析】
根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】
根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+
而=
所以4541n =+ 解得11n = 故选:D 【点睛】
本题考查了等差数列通项公式的求法及简单应用,属于基础题.
10.C
解析:C 【分析】 由题意有13
28010
n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:13
28010
n n a a +=
+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】
本题考查了根据数列间的递推关系比较项的大小,属于简单题.
11.A
解析:A 【分析】
将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =
,343
a =,454a =,565a =,
故可得1223,12a a =
=, 343
a =,454a =,56
5a =, 故可归纳得1
+=n n a n
. 故选:A. 【点睛】
本题考查简单数列通项公式的归纳总结,属基础题.
12.B
解析:B 【分析】 由122n n a a n n +=++转化为11
121n n a a n n +⎛⎫-=- ⎪+⎝⎭
,利用叠加法,求得23n
a n =-,即可求解. 【详解】 由12
2n n a a n n +=+
+,可得121
12(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭
, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+
11111
111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫
=-+-+-+
+-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭
⎝⎭
122113n n ⎛⎫
=-+=- ⎪⎝⎭
,
所以102143105
a =-=. 故选:B. 【点睛】
数列的通项公式的常见求法:
1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;
2、对于递推关系式可转化为1
()n n
a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1
n n a pa q +=+的数列,可采用构造法求解数列的通项公式.
13.C
解析:C 【分析】
根据“等差比”数列的定义,得到数列1n n a a +⎧⎫
⎨
⎬⎩⎭
的通项公式,再利用202020202019201820192019a a a a a a =⨯求
解. 【详解】
由题意可得:3
23a a =,211a a = ,
3221
1a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫
⎨⎬⎩⎭
是首先为1,公差为2的等差数列,
则()1
11221n n
a n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,2019
2018
220181a a =⨯-, 所以
()()2202020202019
201820192019
220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】
本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.
14.D
解析:D 【分析】
根据观察法,即可得出数列的通项公式. 【详解】
因为数列1111
,,,
, (57911)
--可写成 ()()()()234
2322311111,1,1,12,..24.333
-⨯
-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213
n
n
n a n n -=-=
++⨯. 故选:D.
15.C
解析:C 【分析】
根据选项进行逐一验证,可得答案. 【详解】 选项A. ()
1
1n a n n =-,当1n =时,无意义.所以A 不正确.
选项B. ()1221n a n n =
-,当2n =时,()2
111
22221126
a ==≠⨯⨯⨯-,故B 不正确.
选项C.
11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯ 所以11
1
n a n n =
-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111
1012
a =-=≠,故D 不正确. 故选:C
16.B
解析:B 【分析】
讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】
已知数列{}n a 满足1N a *
∈,1,2
+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
. ①若11a =,则24a =,32a =,41a =,54a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
②若12a =,则21a =,34a =,42a =,51a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
③若13a =,则26a =,33a =,46a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,此时,{}n a 为周期数列;
④若14a =,则22a =,31a =,44a =,52a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意
的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,
此时,{}n a 为周期数列;
⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.
下面说明,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
(1)当(
34
12,2a ⎤∈⎦
且1N a *
∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(
()1
12,23,k k a k k N +*⎤∈≥∈⎦
且1N a *∈时,数列{}n a 不是周期数列,那么当(
()1
212
,23,k k a k k N ++*
⎤∈≥∈⎦
时. 若1a 为正偶数,则(11
22,22
k k a a +⎤=
∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(
(1
213
2132
3,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,
由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.
综上所述,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】
本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.
17.B
解析:B 【分析】
先由题中条件,得到2
12
21i i i a a a +-=+,由累加法得到20
2211
221k k a a ==-∑
,根据00a =,
()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.
【详解】
由11i i a a +=+得()2
221121i i i i a a a a +=+=++,
则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,
……,
2202022121a a a -=+,
以上各式相加可得:()21120
2
21
0221
2 (20202)
k
k a a a a a a
=-
=+++++=∑,
所以20
22121
1220
k k a a a ==--∑
,
又00a =,所以2
12
0211a a a =++=,则20
2211
221k k a a ==-∑
,
因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或
2,
所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或
4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,
以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或
21±,
因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,
所以2211
2
2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,
170,210;
则
20
1
k
k a
=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,
即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:
求解本题的关键在于将题中条件平方后,利用累加法,得到20
22121
1220
k k a a a ==--∑
,将问题
转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.
18.C
解析:C 【分析】
根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】
数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,
故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,
它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,
至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的.
故选:C. 【点睛】
本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.
19.D
解析:D 【分析】
利用项和关系,1n n n a S S -=-代入即得解. 【详解】
利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,
34216a a ∴+=
故选:D 【点睛】
本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.
20.C
解析:C 【分析】
根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】
∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112
a --==--+, 又12
11
1
111
1111
n n n n n n n n a a a a a a a a +++---+===--+++,所以42
1n n n a a a ++=-
=, ∴数列{}n a 的周期为4,且123476
a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫
=⨯-=- ⎪⎝⎭
. 故选:C. 【点睛】
本题主要考查数列周期性的应用,属于常考题型.
二、多选题 21.AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,,,,故A 正确;
对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加
解析:AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;
对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,
32121,a a a a a ⋅⋅⋅=+=,
各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】
关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.
22.ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本
解析:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .
【详解】
由题意211122a =-=,31
1112a =-=-,A 正确,313
2122
S =+-=,C 正确;
41
121
a =-
=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;
201932019
67322
S =⨯=,D 正确.
故选:ACD . 【点睛】
本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.
23.AB 【分析】
由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,
上述式子累加可得:,, 对于任意的恒成立
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
24.ABC 【分析】
利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列满足,,依次取代入计算得, ,,,,因此继续下去会循环
解析:ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
25.BD 【分析】
根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;
数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要
解析:BD 【分析】
根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】
因为数列{}n a 满足112
a =-,11
1n n a a +=-,
2121
31()
2
a ∴=
=--;
32
1
31a a =
=-; 41311
12
a a a =
=-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-
,2
3
,3; 故选:BD . 【点睛】
本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.
26.AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】
因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;
解析:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
1104n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以
1144(1)44n n n n S S n
=+-=∴=,即A 正确; 当2n ≥时1111
44(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)
n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.
27.AC 【分析】
由,可得,且,然后逐个分析判断即可得答案 【详解】
解:因为,所以,且,
所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,
所以C 正确,D 错误, 故选:AC
解析:AC 【分析】
由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】
解:因为564S S S >>,所以650,0a a ,且650a a +>,
所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()
5()02a a S a a +=
=+>,11111611()1102
a a S a +==<, 所以C 正确,D 错误, 故选:AC
28.BD 【分析】
由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.
因为,,所以公差. 故选:BD
解析:BD 【分析】
由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为1937538a a a a +=+=+=, 所以()199998
3622
a a S +⨯=
==. 因为35a =,73a =,所以公差731
732
a a d -==--. 故选:BD
29.ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且,所以公差, 所以,即,
根据等差数列的性质可得,又, 所以,,故A 正
解析:ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()
02
a a S +=
=,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,
所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯=
==>,116891616()16()
022
a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为1158
15815()15215022
a a a S a +⨯=
==>,则80a >, 116891616()16()022
a a a a S ++=
==,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;
对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】
解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.
30.AC 【分析】
令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】
令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;
解析:AC 【分析】
令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由2
56110200a a a a d -=>,可
判定B 错误;根据等差数列的性质,可判定C 正确;
122n d d n a n S ⎛
⎫=+- ⎪⎝
⎭,根据02>d ,
可判定D 错误. 【详解】
令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;
由(
)()22
2256110111
19209200a a a a a a d d
a
a d d -=++-+=>,所以56110a a a a >,故B
错误;根据等差数列的性质,可得()213x x x -=+,所以1
3x =,213
x -=, 故101110
9333
a =
+⨯=,故C 正确; 由()111222n
n n na d
S d d n a n
n -+
⎛⎫=
=+- ⎪⎝
⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭
是递增的等差数列,故D 错误. 故选:AC . 【点睛】
解决数列的单调性问题的三种方法;
1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;
2、作商比较法:根据1
(0n n n
a a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.
31.AB 【分析】
根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列中,即, .
对于A 选项,,所以A 选项正确. 对于C 选项,,,所以,
解析:AB 【分析】
根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,
1149249,2
a d a d =-=-
. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,149
2
a d =-
,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛
⎫=+-=-
+-=- ⎪⎝
⎭,令0n a ≥得5151
0,22n n -
≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列
{}n
a 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.
故选:AB 【点睛】
等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.
32.AC 【分析】
由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出,判断C ,D 的正误. 【详解】 解:由, 得, 所以时,, 得时,, 即时,, 当时,由
解析:AC 【分析】 由题意可知112222n n n
n a a a H n
-++
+==,即112222n n n a a a n -+++=⋅,则2
n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数
列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n n
n a a a H n
-++
+=
=,
得112222n n n a a a n -+++=⋅,①
所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②
得2n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,
即2n ≥时,1n a n =+,
当1n =时,由①知12a =,满足1n a n =+.
所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()
32
n n n S +=
,所以2020202320202S =,故C 正确.
25S =,414S =,627S =,故D 错,
故选:AC . 【点睛】
本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.
33.BD 【分析】
由,即,进而可得答案. 【详解】 解:, 因为
所以,,最大, 故选:. 【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.
解析:BD 【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】
解:1167891011950S S a a a a a a -=++++==, 因为10a >
所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.
34.AD 【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.
解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:
解析:AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.
35.AD 【分析】
由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】 解:,,故正确A.
由,当时,,有最小值,故B 错误. ,所以,故C 错误. , ,故D 正确.
【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】
考查等差数列的有关量的计算以及性质,基础题.。