2020届高三理数一轮讲义:8.5-直线、平面垂直的判定及其性质(含答案)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识梳理两直线垂直于同一个平面,
1.判断下列结论正误
表示两条不同的直线,
考点一线面垂直的判定与性质
2MB,求点C到平面
,O为AC的中点,
⊥平面POM.
的距离.
=2
3BC=
42
3,∠ACB
上的一点,若三棱锥E-ABC的体积为
;
-BCD的体积为
SAD,可得BD⊥SD
多维探究PCD;
AD的中点,
,使得AC⊥BM,若存在点
,所以MN⊥AC.
⊥平面MBN.
所成角的余弦值;
PDC,
的正切值.
PD2=25,∴PA=5. [思维升华]
证明线面垂直时,易忽视面内两条线为相交线这一条件
基础巩固题组
如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知六个点共面,直线BD1与平面EFMNQG
中的平面与这个平面重合,不满足题意,只有选项D
不垂直,满足题意,故选D.
B.直线AB上D.△ABC内部
,所以PC垂直于直线
AB⊥平面PAC,又因为
BD,因为PA⊥
PAC,所以BD⊥PC
C1D1中,AB=BC
________.
AC1与平面A1B1
AC=22,
的中点,求证:BD⊥平面AOF.
G,连接FG,AG
是梯形CDPE的中位线,
;
PB上是否存在点F
C,所以DC⊥平面
AC,所以AB⊥AC
B.AH⊥平面EFH
D.HG⊥平面AEF AH⊥HE,AH⊥HF不变,又HE
C.4
上的射影为E,连接D1E
C1DF,
ADC;
与其在平面ABD内的正投影所成角的正切值为。