2021固体物理复习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021固体物理复习题及答案
固体物理卷(A)
第一部分:名词解释(每小题5分,共40分)
1.原胞:在完整晶体中,晶格在空间的三个方向上都具有一定的周期对称性,这样可以取一个以结点为顶点,边长等于这三个方向上的周期的平行六面体作为最小的重复单元,来概括晶格的特征,这样的重复单元称为初基原胞或简称原胞。

2.晶面指数:一个晶面得取向可以由这个晶面上的任意三个不共线的点确定,如果这三个点处在不同的晶轴上,则通过有晶格常量a1,a2,a3表示这些点的坐标就能标定它们所决定的晶面,它们具有相同比率的最小整数称为晶面指数
3.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。

在这种类似镜子的镜面反射中,其反射角等于入射角。

当来自平行原子平面的反射发生相长干涉时,就得出衍射束。

考虑间距为d的平行晶面,入射辐射线位于纸面平面内。

相邻平行晶面反射的射线行程差是2dsinx,式中从镜面开始量度。

当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。

这就是布拉格定律。

布拉格定律用公式表达为:2dsinx=n*λ(d为平行原子平面的间距,λ为入射波波长,x为入射光与晶面之夹角) ,布拉格定律的成立条件是波长小于等于2d。

布拉格定律是晶格周期性的直接结果。

4.简述三维空间的晶系种类及其所包括的晶格类型
三斜1,单斜2,正交 4,四角 2,立方3,三角1,六角1。

5.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。

固体的能带理论中,各种电子态按照它们波矢的分类。

在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一
系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;各布里渊区体积相等,都等于倒易点阵的元胞体积。

周期结构中的一切波在布里渊区界面上产生布喇格反射,对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。

根据这一特点,1930年L.-N.布里渊首先提出用倒易点阵矢量的中垂面来划分波矢空间的区域,从此被称为布里渊区。

6.惰性气体晶体:惰性气体所形成的晶体是最简单的晶体,其晶态原子的电子分布非常接近于自由态原子的电子分布,在晶体中,这些惰性气体原子尽可能紧密地堆积在一起。

惰性气体原子具有闭合电子壳层,电荷分布是对称的。

7.德拜模型:德拜模型是德拜提出的计算固体热容的原子振动模型。

1912年,德拜改进了爱因斯坦模型,考虑热容应是原子的各种频率振动贡献的总和,得到了同实验结果符合得很好的固体热容公式。

德拜模型把原子排列成晶体点阵的固体看作是一个连续弹性媒质,原子间的作用力遵从胡克定律,组成固体的 n个原子在三维空间中集体振动的效果相当于3n个不同频率的独立线性振子的集合。

8.费米能等于费米子系统在趋于绝对零度时的化学势;但是在半导体物理和电子学领域中,费米能级则经常被当做电子或空穴化学势的代名词。

费米能级的物理意义是,该能级上的一个状态被电子占据的几率是1/2。

费米能级在半导体物理中是个很重要的物理参数,只要知道了他的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

它和温度,半导体材料的导电类型,杂质的含量以及能量零点的选取有关。

9.内聚能:所谓晶体的内聚能,是指在绝对零度下将晶体分解为相距无限远的、静止的中性自由原子所需要的能量。

10.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。

在这种类似镜子的镜面反射中,其反射角等于入射角。

当来自平行原子平面的反射发生相长干涉时,就得出衍射束。

考虑间距为d的平行晶面,入射辐射线位于纸面平面内。

相邻平行晶面反射的射线行程差是2dsinx,式中从镜面开始量度。

当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。

这就是布拉格定律。

布拉格定律用公式表达为:2dsinx=n*λ(d为平行原子平面的间距,λ为入射波波长,x
为入射光与晶面之夹角) ,布拉格定律的成立条件是波长小于等于2d。

布拉格定律是晶格周期性的直接结果。

11.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。

固体的能带理论中,各种电子态按照它们波矢的分类。

在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;各布里渊区体积相等,都等于倒易点阵的元胞体积。

周期结构中的一切波在布里渊区界面上产生布喇格反射,对于电子德布罗意波,这一反射可能使电
子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。

根据这一特点,1930年L.-N.布里渊首先提出用倒易点阵矢量的中垂面来划分波矢空间的区域,从此被称为布里渊区。

12.离子晶体:由正、负离子或正、负离子集团按一定比例组成的晶体称作离子晶体。

离子晶体中正、负离子或离子集团在空间排列上具有交替相间的结构特征,离子间的相互作用以库仑静电作用为主导。

13.金属晶体:晶格结点上排列金属原子-离子时所构成的晶体。

金属中的原子-离子按金属键结合,因此金属晶体通常具有很高的导电性和导热性、很好的可塑性和机械强度,对光的反射系数大,呈现金属光泽,在酸中可替代氢形成正离子等特性
14.氢键晶体的定义:在一定条件下一个氢原子同时与两个原子相结合的力。

氢键晶体以氢键结合的晶体,结合力主要依靠氢原子与电负性很大而原子半径较小的两个原子结合成X—H…Y形式。

氢键晶体的结合能一般比较低、氢键具有饱和性。

15.德拜模型:德拜模型是德拜提出的计算固体热容的原子振动模型。

1912年,德拜改进了爱因斯坦模型,考虑热容应是原子的各种频率振动贡献的总和,得到了同实验结果符合得很好的固体热容公式。

德拜模型把原子排列成晶体点阵的固体看作是一个连续弹性媒质,原子间的作用力遵从胡克定律,组成固体的 n个原子在三维空间中集体振动的效果相当于3n个不同频率的独立线性振子的集合。

16.霍尔效应:固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。

正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。

平行电场和电流强度之比就是电阻率。

大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。

17.能带理论是研究固体中电子运动规律的一种近似理论。

固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。

为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。

能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。

18.爱因斯坦模型把晶体中的N个原子视为N个频率相同的各自独立的三维谐振子,完全不考虑使这些原子在平衡位置附近振动,并使它们结合成晶体的原子间相互作用.正是因为忽略了这种由于原子间相互作用而造成的晶体中原子振动的相干性,导致了爱因斯坦模型晶体热容计算结果与实验结果间的系统误差. 18. 万尼尔函数可用孤立原子波函数来近似的根据是什么? [解答]
万尼尔函数可表示为
.
紧束缚模型适用于原子间距较大的晶体. 在这类晶体中的电子有两大特点: (1) 电子被束缚在原子附近的几率大, 在原子附近它的行为同在孤立原子的行为相近, 即当r?Rn时, 电子波函数
kW?(Rn, r)?1N???(k, r?Rn)??(k, r?Rn)与孤立原子波函数??(r?Rn)相近. (2) 它远离原子的几率很小, 即r偏离R较n
at大时, ??(k, r?Rn)at2很小. 考虑到r偏离Rn较大时,
at??(r?Rn)at2也很小, 所以用
??(r?Rn)来描述??(k, r?Rn)是很合适的. 取
??(k, r?Rn=?(k)??(r?Rn).
将上式代入万尼尔函数求和中, 再利用万尼尔函数的正交性, 可得
W?(Rn, r)???(r?Rn).
at也就是说, 万尼尔函数可用孤立原子波函数来近似是由紧束缚电子的性质来决定的.
19. 紧束缚模型电子的能量是正值还是负值? [解答]
紧束缚模型电子在原子附近的几率大, 远离原子的几率很小, 在原子附近它的行为同在孤立原子的行为相近. 因此,紧束缚模型电子的能量与在孤立原子中的能量相近. 孤立原子中电子的能量是一负值, 所以紧束缚模型电子的能量是负值. s态电子能量(5.60)表达式
Es(k)?Es?Cs?Js?enatik?Rn
即是例证. 其中孤立原子中电子的能量
atEs是主项, 是一负值, ?Cs和?Js是小量, 也是负值.。

相关文档
最新文档