2016-2017年江苏省无锡市锡山区九年级上学期期中数学试卷及参考答案
2017届九年级上期中考试数学试题含答案
2016-2017学年第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是()A .9B .C .D .2.下列一元二次方程中,两实数根的积为4的是()A .2x 2-5x +4=0B .3x 2-5x +4=0C .x 2+2x +4=0D .x 2-5x +4=0 3.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4:则该日这6个时刻的PM2.5的众数和中位数分别是()A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为()A .27530(1%)8120x -=B .27530(1%)8120x +=C.27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与x 轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,k ),且0< k < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是().第5题图第6题图 第8题图A.C或E B.B或D C.A或E D.B或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x++-=是关于x的一元二次方程,则m的取值范围是.13.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5x(x-3)=2(3-x).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角第9题图第15题图第16题图第17题图第18题图形称为“格点三角形”,如图,△ABC 是一个格点三角形.(1)请你在所给的方格纸中,以O 为位似中心,将△ABC 放大为原来的2倍,得到一个△A 1B 1C 1. (2)若每一个方格的面积为1, 则△A 1B 1C 1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) (1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点, AD 交BC 于E 点,2AE =,4ED =. (1)求证:△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC•CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH•AF 与AE•AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐第24题图第26题图第25题图第23题图标为(-2,-2),半径为2.函数y =-x +2图象与x 轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在x 轴的上方)分别过点A 、点B 向x 轴作垂线,垂足分别为O 1,O 2.(1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到x 轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在x 轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案2016.11(时间:120分钟满分:130分)一、选择题(每题3分,共30分)BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一;12.m-2___;13.2__;14.___150゜;15.__25゜;16.__50_;17._π__;18.___(x>0).三、解答题19.(1)(2)20.(1)x1=3,x2=-0.4(2)x1=-2+,x2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴2CF2=AC•CD.25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成x米2,根据题意﹣=4解得:x=2000经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去). 答:人行道的宽为2米. 26.(1)∵直径AB ⊥CD ,∴∴∠F=∠ACH ,又∠CAH=∠FAC,∴△ACH ∽△AFC (2)AH ·AF=AE ·AB ,连接FB ,∵AB 是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB , ∴Rt △AEH ∽Rt △AFB ,∴AH ·AF=AE ·AB ;(3)27.解:(1)延长CO 交AB 于D ,过点C 作CG⊥x轴于点G .∵易得A(2,0),B(0,2),∴AO =BO =2.又∵∠AOB =90°, ∴∠DAO =45°.∵C(-2,-2),∴∠COG =45°,∠AOD =45°,∴∠ODA =90°. ∴OD ⊥AB ,即CO ⊥AB .(2)当直线PO 与⊙C 相切时,设切点为K ,连接CK ,则CK ⊥OK .由点C 的坐标为(-2,-2),易得CO =∴∠POD =30°,又∠AOD =45°, ∴∠POA=75°,同理可求得∠POA 的另一个值为15°. (3)∵M 为EF 的中点,∴CM ⊥EF ,又∵∠COM =∠POD ,CO ⊥AB ,∴△COM ∽△POD ,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO = DO st =4.但PO 过圆心C 时,MO =CO =PO =DO即MO ·PO =4,也满足st =4.∴s =4t t(4)28.解:(1)△ACO1与△BCO2全等如图①,∵∠ACB=90°,∴∠ACO1+∠BCO2=90°,∵AO1⊥OC,BO2⊥OC,∴∠AO1C=∠BO2C=90°,∴∠BCO2+∠CBO2=90°,∴∠ACO1=∠CBO2,在△ACO1和△CBO2中,,∴△ACO1≌△CBO2,如图2,同①的方法可证;(2)①∵PQ是⊙C的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB,∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM,∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB,∴QP=QM,②不变,理由:同(1)连接CQ,在Rt△CPQ中,PQ2=CQ2﹣CP2,∵CP是⊙C的半径,∴CP为定值是2,∴CQ最小时,PQ最小,∵点Q在y轴上,点C在x轴,∴点Q在点O处时,CQ最小,最小值为CO=4,=2,∴PQ最小=第28题图。
江苏省无锡市滨湖区2016届九年级上学期期中考试数学试题解析(解析版)
2015年秋学期期中考试试题初三数学一、选择题(本大题共10小题,每小题3分,共30分).1.关于x 的一元二次方程x 2+px -2=0的一个解为2,则p 的值……………………… ( ). A .1 B .2 C .-1 D .-2 【答案】C. 【解析】试题分析:把x=2代入此方程得:4+2P-2=0,解得:P=-1.故选C. 考点:一元二次方程解的意义.2.已知 a 2=b 5,则b -aa的值为……………………………………………………………… … ( ).A .32B .23C .25D .52【答案】A. 【解析】试题分析:由已知得:5a=2b ,将所求式子分子分母扩大5倍得:b -a a =a a b 55-5=5-2b 322b b =.故选A.考点:求代数式的值.3.已知等腰三角形的底和腰是方程x 2-6x +8=0的两根,则这个三角形的周长为…… ( ).A .8B .10C .8或10D .无法确定 【答案】B. 【解析】试题分析:先解方程x 2-6x +8=0得:(x-2)(x-4)=0,解得:x 1=2,x 2=4,因为2,2,4不符合三角形三边关系,所以三角形的三边应该是2,4,4,故周长为10.选B. 考点:1.三角形三边关系;2.解一元二次方程.4.如图,在△ABC 中,E 、F 分别是AB 、AC 上的点,EF ∥BC ,且AE EB =12,若△AEF 的面积为2,则四边形EBCF的面积为 ……………………………………………………………… ( ). A .4B .6C .16D .185.如图,添加下列一个条件,不能..使△ADE ∽△ACB 的是…………………………………( ). A .DE ∥BC B .∠AED =∠B C .AD AC =AEABD .∠ADE =∠C【答案】A. 【解析】试题分析:相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似。
2016-2017学年上学期九年级期中考试数学参考答案
∴易求得 A(k-2,k2-2k),B(k+2,k2+2k)……..……9 分 直线 x=1 上有一点 P,可设 P(1,m) ∵△PAB 是一个以 AB 为斜边的等腰直角三角形 ∴AM=PN,PM=BN
图2 y
x=1
∴k2-2k-m=k+2-1,1-(k-2)=k2+2k-m……..……11 分
∴ k 1 , m 17 ……..……12 分
3
9
B
O
A
M
PN
图3
x x
3
三角形,且∠AEC=90°.
………………………………4 分
所以 CD= DE2 CE2 62 52 61 .所以 BC 的长是 2 61 .………………6 分
设点 A 到 BC 的距离为 h,由面积公式得
1 2
BC
h
SABC
,
1 2
2
61h 1 125 2
解得 h= 30 61 . 61
………………8 分
在△DCE 和△DAF 中,∵CD=AD,∠C=∠DAF,CE=AF ∴△DCE≌△DAF(SAS)……7 分 ∴DE=DF.……8 分 19、解:(1)∵原方程有两个不相等的实数根,
∴ (2k 1)2 4(k 2 1) 4k 3 0 ,……3 分
解得: k 3 . 4
……………………4 分
1
20、(1)如下图:
………………………………2 分 [来源:学*科*网Z*X*X*K]
(2)①2(2.1 到 1.7 之间都正确)
………………………………5 分
②该函数有最大值 4(其他正确性质都可以,比如从增减性的角度). ……8 分
20.(1)作出△CDE;
2016-2017学年最新苏教版九年级数学上册期中测试卷及答案
(满分为 150 分,考试时间为 120 分钟) 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四 个选项中, 恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置 上) ....... 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是 ( ▲ ).
\
三、解答题(本大题共 10 小题,共 96 分.请在答题卡指定区域 内作答,解答时应写出文字说明、证明 ....... 过程或演算步骤) 19.(本小题满分 10 分) (1)解方程:x2+10x=3 (2) 解方程: 6+3x=x(x+2) 20.(本小题满分 8 分) 关于 x 的一元二次方程 x2﹣x﹣(m +1)=0 有两个不相等的实数根. (1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 21. (本小题满分 8 分) 电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商 1 至 3 月份统计,该品牌电动自行车 1 月份销售 150 辆,3 月销售 216 辆。 (1)求该品牌电动车销售量的月平均增长率; (2)若该品牌电动自行车的进价为 2300 元,售价 2800 元,则 y A 该经销商 1 月至 3 月共盈利多少元? 4 22.(本小题满分 8 分) 画图:在平面直角坐标系中, ΔO A B 的位置如图所示,且点 A(-3,4) ,B(0,3) . (1)画出 ΔOAB 绕点 O 顺时针旋转 90° 后 得到的 ΔOAB ; (2)写出点 A ,B 的对应点 A , B 的坐标; (3)求点 A 在旋转过程中所走过的路径长.
A
B
CD.Biblioteka 10.如图,在矩形 ABCD 中,已知 AB=4,BC=3,矩形在直线 l 上绕其右下角的顶点 B 向右旋转 90° 至 图①位置,再绕右下角的顶点继续向右旋转 90° 至图②位置,…,以此类推,这样连续旋转 2015 次后, 顶点 A 在整个旋转过程中所经过的路程之和是( ▲ ) .
【精品】2017年江苏省无锡市锡山区九年级上学期期中数学试卷带解析答案
2016-2017学年江苏省无锡市锡山区九年级(上)期中数学试卷一、选择题(本大题共有10小题,每题3分,共30分.每小题只有一个选项是正确的,请将正确选项前的字母代号写在答题卷的相应位置上.)1.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.ax2+bx+c=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=02.(3分)如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°3.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个4.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.35.(3分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=54007.(3分)下列命题是真命题的是()A.垂直于圆的半径的直线是圆的切线B.经过半径外端的直线是圆的切线C.直线上一点到圆心的距离等于圆的半径的直线是圆的切线D.到圆心的距离等于圆的半径的直线是圆的切线8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.4﹣πC.πD.(4﹣π)a210.(3分)如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A.B.﹣1 C.D.二、填空题(本大题共8小题,每空2分,共16分.请把答案直接填写在答题卷相应位置上)11.(2分)已知=,则=.12.(2分)近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为.13.(2分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.14.(2分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=°.15.(2分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.16.(2分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(2分)如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x﹣2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a的取值范围是.18.(2分)如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC 在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为.三、解答题(本大题共有10小题,共84分.请在答题卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(12分)(1)3y(y﹣1)=2(y﹣1)(2)(x﹣1)(x+2)=70(3)2y2﹣3=4y(配方法)20.(6分)小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.(6分)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为(结果保留根号);②的长为(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.(6分)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O 的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.(8分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.(8分)某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)26.(10分)如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标.27.(10分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.(10分)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.(1)当r=4时,①在P1(0,﹣3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是;②若点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y 轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是.2016-2017学年江苏省无锡市锡山区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每题3分,共30分.每小题只有一个选项是正确的,请将正确选项前的字母代号写在答题卷的相应位置上.)1.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.ax2+bx+c=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2﹣x﹣1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选:C.2.(3分)如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°【解答】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.3.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个【解答】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选:D.4.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.5.(3分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选:A.6.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=5400【解答】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.7.(3分)下列命题是真命题的是()A.垂直于圆的半径的直线是圆的切线B.经过半径外端的直线是圆的切线C.直线上一点到圆心的距离等于圆的半径的直线是圆的切线D.到圆心的距离等于圆的半径的直线是圆的切线【解答】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选:D.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【解答】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.4﹣πC.πD.(4﹣π)a2【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1﹣)=4﹣π.故选:B.10.(3分)如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A.B.﹣1 C.D.【解答】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO﹣OP=﹣1.故选:B.二、填空题(本大题共8小题,每空2分,共16分.请把答案直接填写在答题卷相应位置上)11.(2分)已知=,则=.【解答】解;由=,得=.由合比性质,得=.=,故答案为:.12.(2分)近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为7000(1+x)2=8500.【解答】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.13.(2分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.14.(2分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=67.5°.【解答】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°﹣∠ACO﹣∠OCD=67.5°.故答案是:67.5°.15.(2分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.16.(2分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.【解答】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.17.(2分)如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x﹣2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a的取值范围是1﹣≤a≤1+.【解答】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x﹣2,∴B(1,0),D(0,﹣2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1﹣≤a≤1+,故答案为:1﹣≤a≤1+.18.(2分)如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC 在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为(﹣,).【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴==,即==.∴DF=,AF=.∴OF=﹣1=.∴点D的坐标为(﹣,).故答案为:(﹣,).三、解答题(本大题共有10小题,共84分.请在答题卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(12分)(1)3y(y﹣1)=2(y﹣1)(2)(x﹣1)(x+2)=70(3)2y2﹣3=4y(配方法)【解答】解:(1)∵3y(y﹣1)=2(y﹣1),∴(y﹣1)(3y﹣2)=0,∴y﹣1=0或3y﹣2=0,∴y1=1,y2=;(2)∵(x﹣1)(x+2)=70,∴x2+x﹣2=70,∴x2+x﹣72=0,∴(x+9)(x﹣8)=0,∴x+9=0或x﹣8=0,∴x1=﹣9,x2=8;(3)∵2y2﹣3=4y,∴2(y2﹣2y+1﹣1)﹣3=0,∴2(y﹣1)2=5,y=1±,y1=1+,y2=1﹣.20.(6分)小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).【解答】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)21.(6分)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.【解答】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为2(结果保留根号);②的长为π(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.【解答】解:(1)如图所示:连接AC,作线段AC的垂直平分线OE,交正方形网格于点O,则O点即为⊙O 的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴△AGO≌△OFC(SSS)∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.23.(6分)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O 的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.24.(8分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).【解答】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°﹣30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆﹣(S△ABC﹣S扇形AEC),=π﹣×2×+,=﹣2,答:图中阴影部分的面积是﹣2.25.(8分)某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)【解答】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=﹣0.1x+8,根据题意,得:(x﹣20)(﹣0.1x+8)﹣40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.26.(10分)如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标.【解答】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10﹣4t,解得,t=,此时CP=2×=,∴AP=8﹣=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10﹣4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10﹣4t)=6﹣t,PE=(10﹣4t)﹣2t=8﹣t﹣2t=8﹣t,由勾股定理得,(6﹣t)2+(8﹣t)2=(2t)2,整理得:36t2﹣140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10﹣4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10﹣4t)=6﹣t,PF=2t﹣(10﹣4t)=t﹣8,则(6﹣t)2+(t﹣8)2=(10﹣4t)2,整理得,21t2﹣40t=0,解得,t1=,t2=0(舍去),此时,AP=8﹣×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6﹣=,G的坐标为(8,).27.(10分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.【解答】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE=6,∵∠EAD+∠BAE=90°,∠BAE=∠BEF,∴∠EAD+∠BEF=90°,∵∠BEF+∠F=90°,∴∠EAD=∠F∵∠ADE=∠FBE∴△ADE∽△FBE,∴,,∴BF=30;(2)①如图1,将矩形ABCD和直角△FBE以CD为轴翻折,则△AMH即为未包裹住的面积,∵Rt△F′HN∽Rt△F′EG,∴=,即解得:HN=3,=•AM•MH=×12×24=144;∴S△AMH②如图2,将矩形ABCD和Rt△ECF以AD为轴翻折,∵Rt△GBE∽Rt△GB′C′,∴,即,解得:GB′=24,=•B′C′•B′G=×12×24=144,∴S△B′C′G∴按照两种包裹方法的未包裹面积相等.28.(10分)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.(1)当r=4时,①在P1(0,﹣3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是P2,P3;②若点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为(4,﹣2)或P(﹣4,6);(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y 轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是0<r<或r>2+2.【解答】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y﹣2)2=(4)2,即,x2+(y﹣2)2=32,把P1(0,﹣3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=﹣x+2代入x2+(y﹣2)2=32,得x2+x2=32,解得x=±4,∴y=﹣2或6,∴P(4,﹣2)或P(﹣4,6).故答案为:(4,﹣2)或P(﹣4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=﹣x+5上,∴设P(p,﹣p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(﹣p+5﹣2)2=(p+2)2,解得:P1=5+2,P2=5﹣2,∴P1(5+2,﹣2),P2(5﹣2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|﹣2﹣2|=4+4或2|2﹣2|=4﹣4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT﹣DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=﹣x+8,DT所在的直线为:y=x﹣2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT﹣DE1=DT﹣DE=3﹣2=,∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE2=HD+DE=+2=2+2,∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
江苏省无锡市锡山区东亭片2016届九年级上学期期中考试数学试题解析(解析版)
一、选择题(本大题共10小题,每小题3分,共30分.)1.方程0)2)(1(=+-x x 的解是 ( )A .1=xB .2-=xC .2,121=-=x xD .2,121-==x x【答案】D【解析】试题分析:根据题意可得:x -1=0或x+2=0,解得:1x =1,2x =-2.考点:解一元二次方程 2.若35a b =,则a b b+的值是 ( ) A. 35 B. 85 C. 58 D. 32 【答案】B【解析】 试题分析:38155a b a b b b b +=+=+=. 考点:比的性质.3.一元二次方程x 2﹣2x+3=0的根的情况是 ( )A.有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】C【解析】试题分析:△=2(2)--4×1×3=4-12=-8<0,则方程没有实数根.考点:根的判别式 4.若⊙P 的半径为5,圆心P 的坐标为(-3,4),则平面直角坐标系的原点O 与⊙P 的位置关系是 ( )A.在⊙P 内B. 在⊙P 上C. 在⊙P 外D.无法确定【答案】B试题分析:根据勾股定理可得:,则OP=r,则原点在⊙P上.考点:点与圆的位置关系5.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28° B.33° C.34° D.56°【答案】A考点:切线的性质6.如图,为测量某树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点O,此时竹竿与这一点相距6m,与树相距15m,则树的高度为()A.4mB.5mC.7mD.9m【答案】C【解析】试题分析:∵AB∥CD,∴△AOB∽△COD,则AB OBCD OD=,即2621CD=,解得:CD=7m.考点:三角形相似7.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是 ( )A.3 B.6 C.9 D.12【解析】试题分析:根据位似比可得:△ABC的面积:△A′B′C′的面积=1:4,则△A′B′C′的面积=12.考点:位似图形8.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的等边三角形的面积为S1,以PB、AB为直角边的直角三角形的面积为S2,则S1与S2的关系是 ( )A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S2【答案】B【解析】试题分析:首先设AB=2,根据黄金分割点得出AP和BP的长度,然后分别求出两个三角形的面积,从而比较大小.考点:黄金分割点、三角形面积的计算9.已知二次函数y=ax2+bx+c(a≠0)的图像如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论个数有()A、2个B、3个C、4个D、5个-1O x=1yx【答案】B【解析】试题分析:根据图象可得:a<0,b>0,c>0,则abc<0,则①错误;当x=-1时,y<0,即a-b+c<0,则②错误;③、④、⑤正确.考点:二次函数的性质10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“至和”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0那么我们称这个方程为“至美”方程,如果一个一元二次方程既是“至和”方程又是“至美”方程我们称之为“和美方程”。
无锡市新区2016届九年级上期中数学试卷含答案解析
江苏省无锡市新区2016届九年级上学期期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=12.下列说法正确的是()A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等3.关于x的一元二次方程(a﹣1)x2+2ax+1﹣a2=0有一个根是0,则a=()A.1 B.﹣1 C.±1 D.04.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(﹣4,3),则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内C.点P在⊙O上 D.点P在⊙O外或⊙O上5.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠16.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1827.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或28.如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画⊙A,E是圆⊙A上一动点,P 是BC上一动点,则PE+PD最小值是()A.2 B.3 C.4 D.2二、填空题(本大题共10小题,每空2分,共24分)9.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是,它的一次项系数是.10.若圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为cm2.(结果保留π)11.已知关于x的方程mx2﹣3x+6=0的一个根是﹣2,则m=,方程的另一个根是.12.网民小李的QQ群里共有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有90条消息,设小李的QQ群里共有好友x个,可列方程为:.13.如图,AB是⊙O直径,∠AOC=130°,则∠D=°.14.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.15.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.16.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为.17.如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为.18.如图,△ABC内接于⊙O,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H.若BC=6,AH=4,则⊙O的半径为.三、解答题(本大题共7小题,共50分)19.解下列方程:(1)(x﹣2)2=3(x﹣2)(2)x(x﹣3)=10(3)4y2=8y+1.(用配方法解)(4)x2+3x﹣2=0.)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.21.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①(2,0)⊙D的半径为(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.23.今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.24.如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s速度运动.P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s,问:(1)t为何值时,P、Q两点之间的距离为10cm?(2)t分别为何值时,直线PQ与⊙O相切?相离?相交?25.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.江苏省无锡市新区2016届九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1【考点】解一元二次方程-配方法.【分析】在本题中,把一次项、常数项2分别移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:由原方程,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,即(x﹣2)2=1故选:D.【点评】此题配方法解一元二次方程,掌握配方法的一般步骤是本题的关键,配方法的一般步骤是(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.2.下列说法正确的是()A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等【考点】确定圆的条件;圆心角、弧、弦的关系;三角形的外接圆与外心.【分析】根据确定圆的条件对A进行判断;根据三角形外心的定义对B进行判断;根据圆心角、弦、弧的关系对C、D进行判断.【解答】解:A、经过不共线的三点可以作一个圆,所以A选项错误;B、三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C、等弧所对的圆心角相等,所以C选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.原式考查了圆心角、弦、弧的关系和三角形的外接圆.3.关于x的一元二次方程(a﹣1)x2+2ax+1﹣a2=0有一个根是0,则a=()A.1 B.﹣1 C.±1 D.0【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=0代入原方程得到1﹣a2=0,解得:a=±1,∵a﹣1≠0,∴a≠1,故选B.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.4.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(﹣4,3),则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内C.点P在⊙O上 D.点P在⊙O外或⊙O上【考点】点与圆的位置关系;坐标与图形性质.【分析】求得OP的长,与圆的半径进行比较即可确定.【解答】解:OP==5,则OP等于圆的半径,则点P在⊙O上.故选C.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)>0,解得m<2且m≠1.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.7.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或2【考点】换元法解一元二次方程.【分析】设a2+b2=x,则原方程变为x2﹣2x=8,解这个方程即可求得的a2+b2值.【解答】解:设a2+b2=x,原方程变为:x2﹣2x=8,x2﹣2x﹣8=0,(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2,因为平方和是非负数,所以a2+b2的值为4;故选B.【点评】考查了换元法解一元二次方程,换元法是解方程时常用方法之一,它能够把一些方程化繁为简,化难为易,对此应注意总结能用换元法解的方程的特点,寻找解题技巧.8.如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画⊙A,E是圆⊙A上一动点,P 是BC上一动点,则PE+PD最小值是()A.2 B.3 C.4 D.2【考点】轴对称-最短路线问题.【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC于P,则DE′就是PE+PD最小值;根据勾股定理求得A′D的长,即可求得PE+PD最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC 于P,则DE′就是PE+PD最小值;∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,DD′=2DC=4,AE′=1,∴A′D=5,∴DE′=5﹣1=4∴PE+PD=PE′+PD=DE′=4,故答案为4.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.二、填空题(本大题共10小题,每空2分,共24分)9.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是3x2﹣10x﹣4=0,它的一次项系数是﹣10.【考点】一元二次方程的一般形式.【分析】首先把方程化成一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),再确定一次项系数.【解答】解:3x(x﹣2)=4(x+1),3x2﹣6x=4x+4,3x2﹣10x﹣4=0,一次项系数是﹣10,故答案为:3x2﹣10x﹣4=0;﹣10.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.10.若圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为24πcm2.(结果保留π)【考点】圆锥的计算.【专题】计算题.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×5=15π;底面积为=9π,全面积为:15π+9π=24π.故答案为24π.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.已知关于x的方程mx2﹣3x+6=0的一个根是﹣2,则m=﹣3,方程的另一个根是1.【考点】一元二次方程的解.【分析】将方程的根代入求得m的值,然后代入求解方程即可求得另一根.【解答】解:∵关于x的方程mx2﹣3x+6=0的一个根是﹣2,∴4m+6+6=0解得:m=﹣3,∴方程变为x2+x﹣2=0,解得:x=﹣2或x=1,故答案为:﹣3,1.【点评】考查了一元二次方程的解的定义,解题的关键是能够将方程的解代入并求解m的值,也可利用根与系数的关系求解.12.网民小李的QQ群里共有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有90条消息,设小李的QQ群里共有好友x个,可列方程为:x(x﹣1)=90.【考点】由实际问题抽象出一元二次方程.【分析】每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个好友,每人发x﹣1条消息,则发消息共有x(x﹣1)条.【解答】解:设有x个好友,依题意,x(x﹣1)=90,故答案为:x(x﹣1)=90.【点评】本题考查了由实际问题抽象出一元二次方程,类似于几名同学互赠明信片,每两名同学之间会产生两张明信片,即:可重复;与每两名同学之间握手有区别.13.如图,AB是⊙O直径,∠AOC=130°,则∠D=25°°.【考点】圆周角定理.【分析】由AB是⊙O直径,∠AOC=130°,根据邻补角的定义,即可求得∠BOC的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠D的度数.【解答】解:∵AB是⊙O直径,∠AOC=130°,∴∠BOC=180°﹣∠AOC=50°,∴∠D=∠BOC=25°.故答案为:25.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.【考点】切线的性质;勾股定理;垂径定理.【分析】根据垂径定理得BE的长,再根据勾股定理列方程求解即可.【解答】解:作OE垂直AB于E,交⊙O于D,设OB=r,根据垂径定理,BE=AB=×6=3cm,根据题意列方程得:(r﹣2)2+9=r2,解得r=,∴该圆的半径为cm.【点评】此题很巧妙,将垂径定理和勾股定理不露痕迹的镶嵌在实际问题中,考查了同学们的转化能力.15.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.【考点】方差.【专题】计算题.【分析】根据平均数的计算公式先求出x的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入计算即可.【解答】解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是×[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.【点评】此题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].16.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为19.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】综合题.【分析】易得方程的两根,那么根据三角形的三边关系,得到符合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故答案为:19.【点评】综合考查了解一元二次方程﹣因式分解法和三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.17.如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为1﹣.【考点】切线的性质;扇形面积的计算.【分析】遇切线,想直角;根据切线,可得∠ADO=90°,根据AB的长,求出AO的长度;解直角三角形,求出半径OD的长度;根据阴影部分的面积=2×(三角形的面积减扇形的面积),计算即可.【解答】解:如右图,连接OD,∵AC与⊙O相切,∴∠ADO=90°,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∴∠AOD=45°,∵O是AB的中点,AB=,∴OA=,在Rt△AOD中,∠A=45°,OA=,∴OD=cos45°•OA==1,∴.故答案为:1﹣.【点评】本题是切线的性质、等腰三角形的性质、解直角三角形、三角形的面积、扇形的面积的综合应用,根据已知条件求出圆的半径是解决此题的关键.18.如图,△ABC内接于⊙O,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H.若BC=6,AH=4,则⊙O的半径为.【考点】平行四边形的判定与性质;勾股定理;垂径定理;圆周角定理.【分析】作直径CM,连接MB、MA,做OF⊥BC于F,推出∠MAC=∠MBC=90°,求出平行四边形MBHA,求出BM,求出OF,根据垂径定理求出CF,根据勾股定理求出OC即可.【解答】解:作直径CM,连接MB、MA,作OF⊥BC于F,∵CM为直径,∴∠MBC=∠MAC=90°,又∵∠ADC=∠BEC=90°∴∠MBC=∠ADC,∠MAC=∠BEC,∴MB∥AD,MA∥BE,∴四边形MBHA为平行四边形,∴MB=AH=4,又∵OF⊥BC,OF过O,∴根据垂径定理:CF=FB=BC=3;又∵CO=OM,∴OF=MB=2,∴在Rt△COF中,OC2=OF2+CF2=22+32=13,∴OC=.故答案为:.【点评】本题考查的是平行四边形的判定与性质,涉及到圆周角定理,勾股定理,垂径定理,平行四边形的性质和判定等知识点的综合应用.三、解答题(本大题共7小题,共50分)19.解下列方程:(1)(x﹣2)2=3(x﹣2)(2)x(x﹣3)=10(3)4y2=8y+1.(用配方法解)(4)x2+3x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先把方程变形为(x﹣2)2﹣3(x﹣2)=0,再利用因式分解法解方程;(2)先把方程化为一般式为x2﹣3x﹣10=0,然后利用因式分解法解方程;(3)利用配方法得到(y﹣1)2=,然后利用直接开平方法解方程;(4)利用求根公式法解方程.【解答】解:(1)(x﹣2)2﹣3(x﹣2)=0,(x﹣2)(x﹣2﹣3)=0,x﹣2=0或x﹣2﹣3=0,所以x1=2,x2=5;(2)x2﹣3x﹣10=0,(x﹣5)(x+2)=0,x﹣5=0或x+2=0,所以x1=5,x2=﹣2;(3)y2﹣2y=,y2﹣2y+1=+1,(y﹣1)2=,y﹣1=±,所以y1=1+,y2=1﹣;(4)△=32﹣4×1×(﹣2)=17,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.【考点】方差;加权平均数;中位数;众数.【专题】计算题;图表型.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【考点】根的判别式;一元二次方程的解;勾股定理.【分析】(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.【解答】(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.【点评】本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①(2,0)⊙D的半径为2(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.【考点】圆的综合题.【分析】(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;(2)①根据第一问画出的图形即可得出C及D的坐标;②在直角三角形AOD中,由OA及OD的长,利用勾股定理求出AD的长,即为圆O的半径;③直线CE与圆O的位置关系是相切,理由为:由圆的半径得出DC的长,在直角三角形CEF中,由CF及FE的长,利用勾股定理求出CE的长,再由DE的长,利用勾股定理的逆定理得出三角形DCE为直角三角形,即EC垂直于DC,可得出直线CE为圆O的切线.【解答】解:(1)根据题意画出相应的图形,如图所示:(2)①在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD==2,则⊙D的半径为2;②AC==2,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长==π,圆锥的底面的半径=;③直线EC与⊙D的位置关系为相切,理由为:在Rt△CEF中,CF=2,EF=1,根据勾股定理得:CE==,在△CDE中,CD=2,CE=,DE=5,∵CE2+CD2=()2+(2)2=5+20=25,DE2=25,∴CE2+CD2=DE2,∴△CDE为直角三角形,即∠DCE=90°,则CE与圆D相切.【点评】此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.23.今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每双袜子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每双袜子的定价为x元时,每天的利润为800元.根据题意,得(x﹣1)(500﹣10×)=800,解得x1=3,x2=5.∵售价不能超过进价的300%,∴x≤1×300%.即x≤3.∴x=3.答:每双袜子的定价为3元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s速度运动.P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s,问:(1)t为何值时,P、Q两点之间的距离为10cm?(2)t分别为何值时,直线PQ与⊙O相切?相离?相交?【考点】圆的综合题.【分析】(1)根据速度乘时间,可得AP,BQ,根据线段的和差,可得OE的长,根据勾股定理,可得答案;(2)根据PQ从相交到相切,由相切到相离,由相离到相切,再到相交,根据相切,可得PQ=AP+BQ,根据勾股定理,可得t值;根据小于第一次相切时相交,大于第一次相切的时间,小于第二次相切的时间时相离,根据大于第二次相切时再次相交,可得答案.【解答】解:(1)AP=t,BQ=26﹣3t,如图1:作PE⊥BC于E,.QE=26﹣4t.由勾股定理,得(26﹣4t)2+64=100,解得t=5或8;(2)当PQ与⊙O相切时,如图2,,由相切,得PQ=AP+BQ=26﹣2t,BE=26﹣4t,PE=8,(26﹣4t)2+64=(26﹣2t)2直线PQ与⊙O相切,t=8或;当26÷3=,当t=时运动停止,相交0≤t<或8<t≤;相离<t<8.【点评】本题考查了圆的综合题,利用了勾股定理,理解直线由相交到相切,再到相切,最后相交是解题关键.25.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为5cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【考点】正多边形和圆.【专题】压轴题;探究型.【分析】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10﹣x,再根据勾股定理解答.【解答】解:(1)(Ⅰ)连接BD,∵AD=3×5=15cm,AB=5cm,∴BD==cm;。
2016-2017年度苏科版第一学期九年级数学期中试卷含答案
2016-2017学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项 是正确的,请将正确选项前的字母填写在答题卡上) 1. 一元二次方程x 2-9=0的根为A . x = 3B . x =-3C . x 1= 3,x 2 =-3D . x = 9 2. 如图,点A 、B 、C 是⊙O 上的三点,若∠BOC =80º,则∠A 的度数是 A .40º B .60º C .80º D .100º 3.用配方法解方程x 2-4x -1=0时,配方后得到的方程为A .(x +2)2= 3 B .( x +2)2 = 5 C .(x -2)2 = 3 D .( x -2)2 = 54.下列关于x 的一元二次方程有实数根的是A .x 2 + 1= 0B .x 2 + x + 1= 0C .x 2 - x + 1= 0D .x 2 -x -1= 05.在下列命题中,正确的是A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 6.对于二次函数 y =-(x +1)2-3 ,下列结论正确的是A .函数图像的顶点坐标是(-1,-3)B .当 x >-1时,y 随x 的增大而增大C .当x =-1时,y 有最小值为-3D .图像的对称轴是直线x = 17.如图,圆弧形桥拱的跨度AB = 16 m ,拱高CD = 4 m ,则圆弧形桥拱所在圆的半径为 A .6 m B .8 m C .10 m D .12 mB OCA( 第2题 )yx-3O-1( 第7题 ) ( 第8题 )ABDC8.如图是二次函数y = ax 2 + bx + c 图像的一部分,其对称轴为直线x =-1,且过点(-3,0),下列说法:① abc < 0;② 2a -b = 0;③ 4a + 2b + c < 0;④若(-5,y 1) ,(2.5,y 2)是抛物线上两点,则y 1 > y 2,其中说法正确的是 ( )A .①②③B .②③C .①②④D .①②③④ 二、填空题(每小题3分,共30分) 9. 方程x 2 = x 的解是_______________.10.已知扇形的圆心角为120º,半径为6 cm ,则该扇形的弧长为_______ cm (结果保留π). 11.一元二次方程2x 2 + 4x -1= 0的两根为x 1、x 2,则x 1 + x 2的值是_________. 12.圆锥的底面半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积是_________cm 2. 13. 抛物线y = x 2沿x 轴向右平移1个单位长度,则平移后抛物线对应的表达式是________. 14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意,可列方程是:_________________.15.若关于x 的一元二次方程x 2+2x +m = 0有两个相等的实数根,则m =______.16.如图,P A 、PB 是⊙O 的两条切线,A ,B 是切点,若∠APB = 60°,PO = 2,则PB =_________. 17.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为_____.18. 已知二次函数y = ax 2+ bx + c 中,函数y 与自变量x 的部分对应值如下表:x … -2 -1 0 1 2 … y…1771-11…则当y < 7时,x 的取值范围是______________.( 第16题 ) ( 第17题 )C DB AO三、解答题(共66分)19. 解方程 (每题5分,共10分)(1) x 2 + 4x -2 = 0; (2) (x -1)(x +2) = 2(x +2)20. (6分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,CD =16,AB =20,求BE 的长.21. (8分) 如图,已知二次函数y = ax 2 + bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).(1) 求二次函数的表达式; (2) 画出二次函数的图像.EDO C( 第20题 )xyACB O( 第21题 )22. (8分) 如图,学校准备修建一个面积为48 m 2的矩形花园.它的一边靠墙,其余三边利用长20 m的围栏.已知墙长9 m ,问围成矩形的长和宽各是多少?23. (10分) 如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1) 判断直线BC 与⊙O 的位置关系,并说明理由; (2) 若AC = 3,∠B = 30°.① 求⊙O 的半径;② 设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积 ( 结果保留根号和π ) .( 第22题)( 第23题 )EOA24. (12分) 某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2) 为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x =5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?y(元/千度)千度)( 第24题)25. (12分) 在平面直角坐标系中,抛物线y =-x 2-2x + 3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1) 请直接写出点A ,C ,D 的坐标;(2) 如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3) 如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形? 若存在,求出点P 的坐标,若不存在,请说明理由.2016-2017学年度第一学期期中检测九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)( 图1 ) ( 图2 )( 第25题 )y x DCA OB yxDCA O B二、选择题 (每题3分,共30分)9. x 1=0,x 2=1; 10.4π; 11.-2; 12.15π; 13.y = (x -1)2; 14. 60 (1-x )2 = 48.6; 15. 1 ; 16.3; 17.41π ; 18. -1< x < 3. 三、解答题 (共66分) 19.解法一:(1)x 2+4x +4-4-2=··································································································································· 1分 (x +2)2=6··································································································································· 2分 x +2=6± ··································································································································· 3分 x 1=-26-,x 2=-26+··································································································································· 5分 解法二:a=1,b =4,c=-2··································································································································· 1分 △=42-4·1·(-2) = 24··································································································································· 2分 x=2244±- ··································································································································· 3分 x 1=62--,x 2 =62+- ··································································································································· 5分 (2)解:(x-1)(x +2)-2(x +2)=··································································································································· 1分 (x +2)(x-3)=··································································································································· 2分 x +2=,x-3=··································································································································· 3分 x 1=-2,x 2=3··································································································································· 5分20.解:连接OC ,∵AB是⊙O的直径,CD ⊥AB ,∴CE =21CD = 8··································································································································· 2分 ∵AB=20,∴OB=OC =10···································································································································∵∠OEC =90°,∴22810-=OE = 6··································································································································· 5分 又∵BE =OB-OE,∴BE =10-6=4··································································································································· 6分21. 解:(1)∵二次函数y =ax 2+ bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).∴⎪⎩⎪⎨⎧-=++-==+-212c b a c c b a ··································································································································· 3分解得⎪⎩⎪⎨⎧-=-==121c b a ··································································································································· 4分 ∴二次函数的表达式为y=x 2-2x-1··································································································································· 5分(2) 图像如图:··································································································································CyxAOB22. 解:设宽为x m,则长为(20-2x) m. ···································································································································1分由题意,得x·(20﹣2x) = 48, ···································································································································3分解得x1 = 4,x2 = 6. ···································································································································5分当x= 4时,20-2×4 = 12>9 (舍去), ···································································································································6分当x=6时,20-2×6= 8. ···································································································································7分答:围成矩形的长为8 m、宽为 6 m. ···································································································································8分23. 解:(1) 连结OD,∵OA=OD,∴∠OAD =∠ODA. ···································································································································1分∵∠BAC的角平分线AD交BC边于D,∴∠CAD =∠OAD. ···································································································································2分∴∠CAD =∠ODA ,∴OD ∥AC ,··································································································································· 3分∴∠ODB =∠C =90°,即OD ⊥BC .··································································································································· 4分又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切.··································································································································· 5分(2) ① 设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r .··································································································································· 6分在Rt △ACB 中,∠B =30°,∴AB = 2AC = 6.··································································································································· 7分∴3r = 6,解得r =2.··································································································································· 8分② 在Rt △ACB 中,∠B =30°,∴∠BOD = 60°.∴ππ322360602=⋅⋅︒=︒ODES 扇形. ··································································································································· 9分∴所求图形面积为π3232-=-∆ODE BOD S S 扇形.··································································································································· 10分。
江苏省无锡市 九年级(上)期中数学试卷
.
28. 如图,Rt△ABC 中,AB=6,AC=8.动点 E,F 同时分别从点 A,B 出发,分别沿着 射线 AC 和射线 BC 的方向均以每秒 1 个单位的速度运动,连接 EF,以 EF 为直径
作⊙O 交射线 BC 于点 M,连接 EM,设运动的时间为 t(t>0).
1 BC=
,cos∠ABC=
上.则 PE+EF+FP 的最小值为
.
三、解答题(本大题共 10 小题,共 80.0 分)
19. 解方程:
(1)(x-1)2=16;
(2)x2-36=5x;
(3)2x2-5x+1=0;
(4)(x-3)2-4x(3-x)=0.
第 2 页,共 20 页
20. 已知关于 x 的方程 x2-2x+m-1=0. 1 若方程有两个不相等的实数根,求 m 的取值范围; 2 若方程有一个实数根是 5,求此方程的另一个根.
24. 1如图,在四边形 ABCD 中,AD∥BC,∠ABC=90° 点 P, 是边 AB 上一点,若△PAD∽△CBP,请利用没有刻 度
的直尺和圆规,画出满足条件的所有点 P;
2在(1)的条件下,若 AB=8,AD=3,BC=4,则 AP
的长是
.
25. 如图,在⊙O 中,PA 是直径,PC 是弦,PH 平分∠APB 且与 ⊙O 交于点 H,过 H 作 HB⊥PC 交 PC 的延长线于点 B. 1 求证:HB 是⊙O 的切线; 2 若 HB=6,BC=4,求⊙O 的直径.
(1)如图 1,⊙O 的半径为 2,
①点 A(0,1),B(4,3),则 d(A,⊙O)=
,d(B,⊙O)=
.
②已知直线 l:y=-512x+b 与⊙O 的“距离”d(l,⊙O)=3413,求 b 的值.
九年级数学上学期期中试卷(含解析) 苏科版
2016-2017学年江苏省无锡市宜兴市周铁学区九年级(上)期中数学试卷一.选择题(本大题共10小题,每题3分,共30分.)1.下列关于x的方程中,一定是一元二次方程的为()A.x2=0 B.x2﹣2=(y+3)2C.x2+﹣5=0 D.ax2+bx+c=02.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=43.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x,根据题意,可得方程()A.5.4(1﹣x)2=4.2 B.5.4(1﹣x2)=4.2 C.5.4(1﹣2x)=4.2 D.4.2(1+x)2=5.44.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.55.一元二次方程x2﹣2x+2=0的根的情况为()A.有两个等根B.有两个不等根C.只有一个实数根D.没有实数根6.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定7.下面说法正确的是()A.三点确定一个圆B.外心在三角形的内部C.平分弦的直径垂直于弦 D.等弧所对的圆周角相等8.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm29.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q 分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.二.填空题(本大题共8小题,每题2分,共16分.)11.若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,则a= .12.要从甲、乙两名运动员中选出一名参加比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)13.已知x2+x﹣1=0,则3x2+3x﹣9= .14.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.15.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .16.已知△ABC的面积为100,它的内切圆半径为5,则△ABC的周长为.17.如图,⊙O的直径AB和弦CD相交于点M,已知AM=5,BM=1,∠CMB=60°,则CD的长为.18.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三.解答题(本大题共9小题,共84分.需写出必要的文字说明或演算步骤)19.解方程(1)x2﹣4x=0;(2)x2﹣2x﹣8=0(3)2(x﹣1)2=3x﹣3(4)y2﹣2=4y(配方法)20.某次考试中,A、B、C、D、E五位同学的数学、英语成绩如表所示:(单位:分)(1)请在表中直接填写出这5位同学数学成绩的标准差和极差(结果可保留根号);(2)为了比较同一学生不同学科考试成绩的好与差,可采用“标准分”进行比较﹣﹣标准分大的成绩更好.请通过计算说明B同学在这次考试中,数学与英语哪个学科考得更好?[注:标准分=(个人成绩﹣平均分)÷成绩的标准差].21.在不透明的箱子里放有4个乒乓球.每个乒乓球上分别写有数字1、2、3、4,从箱子中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出的球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果;(2)求这样的点落在如图所示的圆中的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别与x轴、y轴切于点(2,0)和(0,2)两点.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,⊙D的半径为,∠ADC的度数为;(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.23.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=x1+x2﹣5,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由.24.如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.(1)求证:BC=CF;(2)若AD=6,DE=8,CD=3,求BE的长.25.某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?26.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.①当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);②当P在AB上方而C在AB下方时(如图2),①中结论还成立吗?证明你的结论;③当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,求证:AB=4PD.27.已知如图:在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别交于A、B两点,P 是直线AB上一动点,⊙P的半径为1.①判断原点O与⊙P的位置关系,并说明理由;②当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;③当⊙P与x轴相切时,求出切点的坐标.2016-2017学年江苏省无锡市宜兴市周铁学区九年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每题3分,共30分.)1.下列关于x的方程中,一定是一元二次方程的为()A.x2=0 B.x2﹣2=(y+3)2C.x2+﹣5=0 D.ax2+bx+c=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:A、是一元二次方程,故A正确;B、是二元二次方程,故B错误;C、是分式方程,故C错误;D、a=0时是一元一次方程,故D错误;故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x,根据题意,可得方程()A.5.4(1﹣x)2=4.2 B.5.4(1﹣x2)=4.2 C.5.4(1﹣2x)=4.2 D.4.2(1+x)2=5.4【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得等量关系:5.4万吨×(1﹣降低的百分率)2=4.2,根据等量关系列出方程即可.【解答】解:设平均每次用钢量降低的百分率为x,根据题意得:5.4(1﹣x)2=4.2,故选:A.【点评】此题主要考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是: [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.一元二次方程x2﹣2x+2=0的根的情况为()A.有两个等根B.有两个不等根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△=﹣4<0,由此即可得出结论.【解答】解:∵在方程x2﹣2x+2=0中,△=(﹣2)2﹣4×1×2=﹣4<0,∴该方程没有实数根.故选D.【点评】本题考查了根的判别式,熟练掌握“当△<0时方程无解”是解题的关键.6.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】计算题.【分析】根据直线和园的位置关系可知,圆的半径小于直线到圆距离,则直线l与O的位置关系是相离.【解答】解:∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与O的位置关系是相交.故选A.【点评】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.下面说法正确的是()A.三点确定一个圆B.外心在三角形的内部C.平分弦的直径垂直于弦 D.等弧所对的圆周角相等【考点】三角形的外接圆与外心;垂径定理;确定圆的条件.【分析】根据确定圆的条件、三角形的外心的性质、垂径定理、圆周角定理即可判断.【解答】解:A、错误.理由是过不在同一直线上的三点确定一个圆.B、错误.理由是钝角三角形的外心在三角形形外.C、错误.平分弦(此弦非直径)的直径垂直于弦.D、正确.等弧所对的圆周角相等.【点评】本题考查确定圆的条件、三角形的外心的性质、垂径定理、圆周角定理等知识,解题的关键是熟练掌握所学知识解决问题,属于中考常考题型.8.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥的计算.【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.9.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合【考点】三角形的内切圆与内心;三角形的外接圆与外心;旋转的性质.【分析】根据I是△ABC的内心,得到AI平分∠BAC,BI平分∠ABC,由角平分线的定义得到∠BAD=∠CAD,∠ABI=∠CBI根据三角形外角的性质得到∠BDI=∠DIB,根据等腰三角形的性质得到BD=DI.【解答】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;∴=,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC,∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意;故选D.【点评】本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q 分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.【考点】切线的性质.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选C.【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.二.填空题(本大题共8小题,每题2分,共16分.)11.若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,则a= 2 .【考点】一元二次方程的解.【专题】计算题.【分析】首先根据根与方程的关系,将x=0代入方程求得a的值;又由一元二次方程的二次项系数不能为0,最终确定a的值.【解答】解:∵关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,∴a2﹣4=0,∴a=±2,∵a+2≠0,即a≠﹣2,∴a=2.故答案为:2.【点评】此题考查了根与方程的关系.解题时要注意一元二次方程的二次项系数不能为0.12.要从甲、乙两名运动员中选出一名参加比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差越小,波动越小,可以解答本题.【解答】解:∵甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),0.024>0.008,∴乙运动员的成绩比较稳定,故答案为:乙.【点评】本题考查方差,解题的关键是明确方差的意义.13.已知x2+x﹣1=0,则3x2+3x﹣9= ﹣6 .【考点】代数式求值.【分析】已知等式变形求出x2+x的值,原式变形后把x2+x的值代入计算即可求出值.【解答】解:由x2+x﹣1=0,得到x2+x=1,则原式=3(x2+x)﹣9=3﹣9=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= 125 °.【考点】三角形的内切圆与内心;圆周角定理.【分析】根据三角形内心的性质得到OB平分∠ABC,OC平分∠ACB,根据角平分线定义得∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,然后根据三角形内角和定理计算∠BOC.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.故答案为125.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.15.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= 75°.【考点】多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.16.已知△ABC的面积为100,它的内切圆半径为5,则△ABC的周长为40 .【考点】三角形的内切圆与内心.【分析】连OA,OB,OC.把三角形ABC分成三个三角形,用三个三角形的面积和表示三角形ABC面积,即可得出△ABC的周长.【解答】解:如图,⊙O是△ABC的内切圆,切点分别为D,E,F.连OA,OB,OC,OD,OE,OF.则OD⊥AB,OE⊥BC,OF⊥AC,且OE=OF=OD=5,∴S△ABC=S△AOB+S△OBC+S△OAC=×5×AB+×5×BC+×5×AC=(AB+AC+BC)=100,解得:AB+AC+BC=40.故答案为:40.【点评】掌握三角形的内切圆的性质、切线的性质、三角形面积的计算方法;根据题意得出三角形的面积=三角形的周长与内切圆半径乘积的一半是解决问题的关键.17.如图,⊙O的直径AB和弦CD相交于点M,已知AM=5,BM=1,∠CMB=60°,则CD的长为2.【考点】垂径定理;勾股定理.【专题】计算题.【分析】连接OD,过点O作OE⊥CD,根据题意先求出OM,再由∠CMB=60°,得∠MOE=30°,再根据勾股定理求得OE,DE,由垂径定理得出CD的长.【解答】解:连接OD,过点O作OE⊥CD,∵∠CMB=60°,∴∠MOE=30°,∵AM=5,BM=1,∴OB=3,OE=,∴DE=,∴CD=2,故答案为2.【点评】本题考查了垂径定理和勾股定理,是基础知识比较简单.18.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.【考点】扇形面积的计算;点、线、面、体;垂径定理.【分析】连接PA、PD,过点P作PE垂直AB于点E,延长PE交CD于点F,根据垂径定理可得出AE=BE= AB,利用勾股定理即可求出PE的长度,再根据平行线的性质结合正方形的性质即可得出EF=BC=AB,DF=AE,再通过勾股定理即可求出线段PD的长度,根据边与边的关系可找出PF的长度,分析AB旋转的过程可知CD边扫过的区域为以PF为内圆半径、以PD为外圆半径的圆环,根据圆环的面积公式即可得出结论.【解答】解:连接PA、PD,过点P作PE垂直AB于点E,延长PE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=AB=3.在Rt△AEP中,AE=3,PA=5,∠AEP=90°,∴PE==4.∵四边形ABCD为正方形,∴AB∥CD,AB=BC=6,又∵PE⊥AB,∴PF⊥CD,∴EF=BC=6,DF=AE=3,PF=PE+EF=4+6=10.在Rt△PFD中,PF=10,DF=3,∠PFD=90°,∴PD==.∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=π•PD2﹣πPF2=109π﹣100π=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,解题的关键是分析出CD边扫过的区域的形状.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三.解答题(本大题共9小题,共84分.需写出必要的文字说明或演算步骤)19.解方程(1)x2﹣4x=0;(2)x2﹣2x﹣8=0(3)2(x﹣1)2=3x﹣3(4)y2﹣2=4y(配方法)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)把方程左边提公因式分解因式可得x(x﹣4)=0,进而可得两个一元一次方程x=0或x﹣4=0,再解即可;(2)把方程左边分解因式可得(x﹣4)(x+2)=0,进而可得两个一元一次方程x﹣4=0或x+2=0,再解即可;(3)首先把等号右边分解因式,然后移项,再分解因式可得(x﹣1)(2x﹣5)=0,进而可得两个一元一次方程x﹣1=0或2x﹣5=0,再解即可;(4)首先移项y2﹣4y=2,再两边同时加上4,进而可得(y﹣2)2=6,再开方即可.【解答】解:(1)x(x﹣4)=0,x=0或x﹣4=0,解得:x1=0,x2=4;(2)(x﹣4)(x+2)=0,x﹣4=0或x+2=0,解得:x1=﹣2,x2=4;(3)2(x﹣1)2=3(x﹣1),2(x﹣1)2﹣3(x﹣1)=0,(x﹣1)(2x﹣5)=0,x﹣1=0或2x﹣5=0,解得:x1=1,x2=;(4)y2﹣4y=2,y2﹣4y+4=2+4,(y﹣2)2=6,y﹣2=,解得:y1=2+,y2=2﹣.【点评】此题主要考查了一元二次方程的解法,因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.某次考试中,A、B、C、D、E五位同学的数学、英语成绩如表所示:(单位:分)(1)请在表中直接填写出这5位同学数学成绩的标准差和极差(结果可保留根号);(2)为了比较同一学生不同学科考试成绩的好与差,可采用“标准分”进行比较﹣﹣标准分大的成绩更好.请通过计算说明B同学在这次考试中,数学与英语哪个学科考得更好?[注:标准分=(个人成绩﹣平均分)÷成绩的标准差].【考点】标准差;极差.【专题】新定义.【分析】(1)直接根据方差以及标准差求法得出答案即可;(2)利用:标准分=(个人成绩﹣平均分)÷成绩的标准差,进而得出答案.【解答】解:(1)=(71+72+69+68+70)=70,数学成绩的方差为:S2= [(71﹣70)2+(72﹣70)2+(69﹣70)2+(68﹣70)2+(70﹣70)2]=2∴标准差为,极差为72﹣68=4;(2)B的英语标准分=(88﹣85)÷6=,B的数学标准分=(72﹣70)÷=.∵<,∴B同学在这次考试中,数学学科考得更好.【点评】此题主要考查了方差以及标准差和极差公式等知识,准确记忆方差公式是解题关键.21.在不透明的箱子里放有4个乒乓球.每个乒乓球上分别写有数字1、2、3、4,从箱子中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出的球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果;(2)求这样的点落在如图所示的圆中的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别与x轴、y轴切于点(2,0)和(0,2)两点.【考点】列表法与树状图法;几何概率.【专题】计算题.【分析】(1)画树状图展示所有16种等可能的结果数;(2)根据点与圆的位置关系的判定方法找出点落在圆中的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有16种等可能的结果数;(2)点落在圆中的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),所以点落在如图所示的圆中的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点与圆的位置关系.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D点的位置,并写出D点的坐标为(2,0);(2)连接AD、CD,⊙D的半径为2,∠ADC的度数为90°;(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.【考点】圆的综合题.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πr•AD,可求得r.【解答】解:(1)如图1,分别作AB、BC的垂直平分线,两线交于点D,∴D点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD、CD,过点C作CE⊥x轴于点E,则OA=4,OD=2,在Rt△AOD中,可求得AD=2,即⊙D的半径为2,且CE=2,DE=4,∴AO=DE,OD=CE,在△AOD和△DEC中,,∴△AOD≌△DEC(SAS),∴∠OAD=∠CDE,∴∠CDE+∠ADO=90°,∴∠ADC=90°,故答案为:2;90°;(3)弧AC的长=π×2=π,设圆锥底面半径为r则有2πr=π,解得:r=,所以圆锥底面半径为.【点评】本题主要考查垂径定理和全等三角形的判定和性质、扇形和圆锥的有关计算等知识的综合应用,掌握确定圆心的方法,即确定出点D的坐标是解题的关键,在求圆锥底面半径时注意圆锥的侧面积计算公式利用.23.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=x1+x2﹣5,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)先求出该一元二次方程的△的值,再根据一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根即可得出答案.(2)根据x1+x2=﹣和n=x1+x2﹣5,表示出n,再把点A(4,5)代入,即可得出答案.【解答】解:(1)∵△=(m+6)2﹣4(3m+9)=m2+12m+36﹣12m﹣36=m2≥0,∴该一元二次方程总有两个实数根;(2)动点P(m,n)所形成的函数图象经过点A(4,5);理由:∵x1+x2=m+6,n=x1+x2﹣5,∴n=m+1,∵当m=4时,n=5,∴动点P(m,n)所形成的函数图象经过点A(4,5).【点评】本题考查了根的判别式、根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系的表达式;一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.24.如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.(1)求证:BC=CF;(2)若AD=6,DE=8,CD=3,求BE的长.【考点】切线的性质.【专题】计算题.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,利用AD⊥DE可判定OC∥AD,则∠2=∠3,加上∠3=∠1,所以∠1=∠2,于是可判定BC=CF;(2)先利用勾股定理计算出AE=10,设⊙O的半径为r,利用OC∥AD可得到=,解得r=,然后求出r后计算AE﹣AB即可.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OC=OA,∴∠3=∠1,∴∠1=∠2,∴=,∴BC=CF;(2)解:在Rt△ADE中,AE==10,设⊙O的半径为r,∵OC∥AD,∴=,即=,解得r=,∴BE=AE﹣AB=10﹣2×=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.会运用相似比和勾股定理计算线段的长.25.某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?【考点】二次函数的应用.【专题】应用题.【分析】(1)设y=kx+b,利用待定系数法确定y与x的函数关系式即可;(2)根据毛利润=销量×单价利润,可得w关于x的函数关系式,利用配方法求最值即可;(3)令w=1800,得出一元二次方程,解出即可得出答案.【解答】解:(1)设y=kx+b,把(23,270)、(28,120)代入可得:,解得:即y=﹣30x+960.(2)w=(x﹣16)(﹣30x+960)=﹣30(x﹣24)2+1920,当x=24时,w有最大值1920.答:销售价格定为24元时,才能使每月的毛利润最大,最大毛利润为1920元.(3)当w=1800时,即(x﹣16)(﹣30x+960)=1800,解得:x1=22<23(舍去),x2=26,∴某月的毛利润为1800元,售价应定为26元.【点评】本题考查了二次函数及一次函数的应用,解答本题的关键是掌握待定系数法求解函数关系式及配方法求二次函数最值的应用.26.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.。
2016-2017学年苏科版初三数学上册期中测试卷及答案
2016-2017学年第一学期初三数学期中考试试卷一、选择题:(本题共10小题,每小题3分,共30分) 1.已知2a b =,那么a bb+的值是…………………………………………………………………………( ) A .3; B .4; C .5; D .6;2.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是……………………( ) A .4:9 ;B .2:3; C .16:81; D .9:4;3.如图,D 为△ABC 边BC 上一点,要使△ABD ∽△CBA ,应该具备下列条件中的……………………( ) A .AC AB CD CD =;B .AB BC CD AD =;C .AB BD CB AB =;D .AC CBCD AC=; 4. 二次函数2(1)2y x =--图象的对称轴是……………………………………………………………( ) A .直线1x =- B .直线1x = C .直线2x =- D .直线2x =5.如图,四边形ABCD 是平行四边形,E 是BC 的延长线上一点,AE 与CD 相交于F ,与△CEF 相似的三角形有………………………………………………………………………………………………………( )个. A .1 B .2 C .3 D .46. 可以把抛物线2y x =平移后得到()223y x =+-,则下列平移过程正确的是……………………( )A .向左移2个单位,下移3个单位; B. 向右移2个单位,上移3个单位; C .向右移2个单位,下移3个单位; D .向左移2个单位,上移3个单位;7.如图,线段CD 两个端点的坐标分别为C (3,3),D (4,1),以原点O 为位似中心,在第一象限内将线段CD 放大为原来的2倍后得到线段AB ,则端点B 的坐标为………………………………………………( ) A .(6,6) B .(6,8) C .(8,6) D .(8,2)8. 二次函数2y ax bx c =++的图象如图,则一次函数y ax b =+的图象不经过……………………( ) A .第一象限; B .第二象限 ; C .第三象限; D .第四象限;9. (2016•兰州)点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是………………………………………………………………………………( ) A .321y y y >>;B .312y y y >=;C .123y y y >>;D .123y y y =>;10.(2016•黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重第3题图 第7题图第5题图第8题图第10题图第12题图 第14题图叠面积为y ,则y 关于x 的函数图象是……………………………………………………………………( )二、填空题:(本题共8小题,每小题3分,共24分)11.已知线段AB=1,C 是线段AB 的黄金分割点,且AC <CB ,则AC 的长度为 . 12.(2015•漳州)如图,AD ∥BE ∥CF ,直线1l ,2l 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23AB BC =,DE=6,则EF= . 13. 已知两相似三角形对应高的比为3:10,且这两个三角形的周长差为56cm ,则较小的三角形的周长为 .14. 用配方法将21213y x x =-+写成()2y a x h k =-+的形式,结果为 . 15. 如图是二次函数21y ax bx c =++和一次函数2y kx b =+的图象,当12y y ≥时,x 的取值范围是 .16. (2016•随州)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若:1:25DOE COA S S = ,则BDE S 与CDE S 的比是 .17. (2015•泰州)如图,△ABC 中,D 为BC 上一点,∠BAD=∠C ,AB=6,BD=4,则CD 的长为 . 18. (2016•通辽)如图是二次函数2y ax bx c =++图象的一部分,图象过点A (-3,0),对称轴为直线1x =-,给出以下结论:①abc <0 ;②240b ac ->③4b+c <0 ;④若B 15,2y ⎛⎫- ⎪⎝⎭、C 21,2y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y >;⑤当-3≤x ≤1时,y ≥0;其中正确的结论是(填写代表正确结论的序号) .三、解答题:(本题共10大题,共76分) 19.(本题满分6分)已知线段a 、b 、c 满足a :b :c=3:2:6,且a+2b+c=26. (1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值. 20.(本题满分6分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D . (1)证明:△ACD ∽△CBD ;(2)已知AD=2,BD=4,求CD 的长.A. B. C. D. 第16题图第17题图 第18题图21. (本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到111A B C ,请画出111A B C ; (2)请画一个格点222A B C ,使222ABC ∽△ABC ,且相似比不为1.22. (本题满分8分)如图,已知二次函数2y ax bx c =++的图象过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.23. (本题满分6分)如图,一位同学想利用树影测量树AB 的高,他在某一时刻测得直立于地面上的一根长为1m 的竹竿影长为0.9m ,但他马上测量树AB 的影长时,因树AB 靠近一幢建筑物,有一部分影子落在建筑物的墙上,他先测得落在建筑物墙上的影高CD 为1.2m ,又测得落在地面上的影长为2.7m ,求树AB 的高.24. (本题满分7分) 如图,抛物线22y x x c =-++与x 轴交于A ,B 两点,它的对称轴与x 轴交于点N ,过顶点M 作ME ⊥y 轴于点E ,连结BE 交MN 于点F ,已知点A 的坐标为(-1,0). (1)求该抛物线的解析式及顶点M 的坐标.(2)求△EMF 与△BNF 的面积之比.25. (本题满分9分)(2015•宁波)已知抛物线()()2y x m x m =---,其中m 是常数. (1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点; (2)若该抛物线的对称轴为直线52x =. ①求该抛物线的函数解析式;②把该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点.26.(本题满分9分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的1y 与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?少?27 (本题满分9分)(2016•梅州)如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,∠BAC=60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 的速度向点B 匀速运动,设运动时间为t 秒(0≤t ≤5),连接MN . (1)若BM=BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值;(3)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.28. (本题满分10分)(2016•衡阳)如图,抛物线2y ax bx c =++经过△ABC 的三个顶点,与y 轴相交于90,4⎛⎫⎪⎝⎭,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.参考答案一、选择题:1.A ;2.B ;3.C ;4.B ;5.B ;6.A ;7.D ;8.D ;9.D ;10.B ; 二、填空题:11.12.9;13.24;14. ()21323y x =--;15. 1x ≥或2x ≤-;16.1:4;17.5;18.②③⑤; 三、解答题:19.(1)6a =,4b =,12c =;(2)x = 20.(1)略;(2)21.略;22.(1)211122y x x =--;(2)D (-1,0);(3)14x -<<;23.4.2; 24.(1)223y x x =-++;(1)1:4;25.(1)10∆=>;(2)256y x x =-+;(3)14;26.(1)解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)这个一次函数的表达式为;0.260y x =-+(0≤x ≤90); (3)设2y 与x 之间的函数关系式为22y k x b =+, 这个一次函数的表达式为20.6120y x =-+(0≤x ≤130), 设产量为xkg 时,获得的利润为W 元,当0≤x ≤90时,W=x[(-0.6x+120)-(-0.2x+60)]= ()20.4752250x --+, ∴当x=75时,W 的值最大,最大值为2250;当90≤x ≤130时,W=x[(-0.6x+120)-42]= ()20.6652535x --+,由-0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160, ∴当x=90时,W=-0.6(90-65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.27. 解:(1)∵在Rt △ABC 中,∠ACB=90°,AC=5,∠BAC=60°, ∴∠B=30°,∴AB=2AC=10,BC =.由题意知:BM=2t ,CN ,∴BN =,∵BM=BN ,∴2t =,解得:15t =.(2)当52t =或t =157时,△MBN 与△ABC 相似. (3)过M 作MD ⊥BC 于点D ,则MD ∥AC ,当52时,y 的值最小.此时,y 最小=28.(1)21944y x =-+;(2)(2)F (1,1);(3)当△DMN 是等腰三角形时,t 的值为12,31.。
2017九年级数学上期中试卷(无锡市锡山区锡东片附答案和解释)
2017九年级数学上期中试卷(无锡市锡山区锡东片附答案和解释)2016-2017学年江苏省无锡市锡山区锡东片九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.) 1.一元二次方程x2+ax�2=0的一个根为1,则a的值为() A.1 B.2 C.�1 D.�2 2.已知a:b=3:5,则的值为() A. B. C. D. 3.等腰三角形的底和腰是方程x2�6x+8=0的两根,则这个三角形的周长为() A.8 B.10 C.8或10 D.不能确定 4.方程x2�2x+3=0的根的情况是() A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有一个实数根 5.如图,添加下列一个条件,不能使△ADE∽△ACB的是() A. = B.∠AED=∠B C. = D.∠ADE=∠C 6.若⊙P的半径为5,圆心P的坐标为(�3,4),则平面直角坐标系的原点O与⊙P的位置关系是() A.在⊙P内B.在⊙P上 C.在⊙P外 D.无法确定 7.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于() A.60° B.30° C.40° D.50° 8.现有一张面积是240cm2的长方形纸片,且它的长比宽多8cm,可设长方形纸片的宽为x,则根据题意可列得一元二次方程为() A.x(x+8)=240 B.x(x�8)=240 C.x(x�8)=120 D.x (x+8)=120 9.如图是由10个半径相同的圆组合而成的烟花横截面,点A、B、C分别是三个角上的圆的圆心,且三角形ABC为等边三角形.若圆的半径为r,组合烟花的高为h,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)() A.18πrh B.2πrh+18rh C.πrh+12rh D.2πrh+12rh 10.如图,以M(�5,0)为圆心、4为半径的圆与x轴交于点A、B,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于点C、D,以CD为直径的⊙N于x轴交于点E、F,则EF的长() A.等于4 B.等于4 C.等于6 D.随点P的位置而变化二、填空题(本大题共8小题,每空2分,共16分.) 11.观察方程(x�1)(x+2)=0的解是. 12.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是. 13.在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,则A、B两地的实际距离为km. 14.若圆锥的底面半径为2,母线长为3,则圆锥的侧面积等于. 15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于10厘米,那么相邻一条边的边长等于厘米.(保留根号) 16.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米. 17.已知:点A(0,4),B(0,�6),C为x轴正半轴上一点,且满足∠ACB=45°,则点C坐标为. 18.如图,在Rt△ABC中,AC=4,BC=3,若点M、N分别是线段AB、AC上的两个动点,则CM+MN的最小值为.三、解答题(本大题共10小题,共84分,写出必要的解题步骤和过程) 19.解方程(1)(x�2)2=9;(2)x2+3x+1=0. 20.如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)圆弧所在圆的圆心P的坐标为(2)圆弧所在圆的半径为(3)扇形PAC的面积为(4)把扇形PAC围成一个圆锥,该圆锥底面圆的半径为. 21.如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长. 22.阅读材料:一元二次方程ax2+bx+c=0(a≠0),当判别式△=b2�4ac≥0时,其求根公式为:x= ;若两根为x1,x2,当△≥0时,则两根的关系为:x1+x2=�;x1•x2= 应用:(1)方程x2�2x+1=0的两实数根分别为x1,x2,则x1+x2= x1•x2=(2)若方程方程x2�2mx=�m2+2x的两个实数根x1•x2满足|x1|=x2,求实数m的值. 23.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC= ,求AB 的长. 24.如图,AB切⊙O于点B,AC交⊙O于点M、N,若四边形OABN恰为平行四边形,且弦BN的长为10cm.(1)求⊙O的半径长及图中阴影部分的面积S.(2)求MN的长. 25.2014年,锡东新城碧桂苑楼盘以均价每平方米8000元的均价对外销售.由于受周边地区及炒房的影响,该楼盘在二年内疯涨,至2016年该楼盘的均价为每平方米11520元.如果设每年的增长率相同.(1)求平均每年增长的百分率;(2)假设2017年该楼盘的均价仍然增长相同的百分率,有一工作了十年的李老师准备购买一套100平方米的住房,他持有现金80万元,可在银行贷款50万元,李老师的愿望能否实现?(房价按照均价计算,不考虑其它因素.) 26.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值. 27.(1)已知点P为线段AB上一点如图1,射线PM⊥AB,用直尺和圆规在PM上找一点C,使得PC2=AP•PB (2)如图2,平行四边形ABCD中,DP⊥AB于P,PD2=AP•PB,△BCD的面积和周长均为24,求PD的长. 28.定义:y是一个关于x的函数,若对于每个实数x,函数y的值为三数x+2,2x+1,�5x+20中的最小值,则函数y叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A(1,3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B,点A(1,3),动点M(m,m).①直接写出△ABM的面积,其面积是;②若以M为圆心的圆经过A,B两点,写出点M的坐标;③以②中的点M为圆心,以为半径作圆.在此圆上找一点P,使PA+ PB的值最小,直接写出此最小值.附:下列知识可直接应用: 1、中点公式:已知A(x₁,y₁)与 B(x₂,y₂),则线段AB的中点M的坐标为:M (,) 2、如果两条直线y=k1x+m,和y=k2x+n垂直,则k1•k2=�1.2016-2017学年江苏省无锡市锡山区锡东片九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.) 1.一元二次方程x2+ax�2=0的一个根为1,则a 的值为() A.1 B.2 C.�1 D.�2 【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=1代入关于x 的一元二次方程x2+ax�2=0,列出关于a的方程,通过解该方程求得a值即可.【解答】解:∵一元二次方程x2+ax�2=0的一个根为1,∴x=1满足关于x的一元二次方程x2+ax�2=0,∴1+a�2=0,解得,a=1;故选:A. 2.已知a:b=3:5,则的值为()A. B. C. D.【考点】比例的性质.【分析】根据比例设a=3k,b=5k,然后代入比例式进行计算即可得解.【解答】解:∵a:b=3:5,∴设a=3k,b=5k,则 = = .故选B. 3.等腰三角形的底和腰是方程x2�6x+8=0的两根,则这个三角形的周长为() A.8 B.10 C.8或10 D.不能确定【考点】等腰三角形的性质;解一元二次方程�因式分解法;三角形三边关系.【分析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.【解答】解:∵方程x2�6x+8=0的解是x=2或4,(1)当2为腰,4为底时,2+2=4不能构成三角形;(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B. 4.方程x2�2x+3=0的根的情况是() A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有一个实数根【考点】根的判别式.【分析】把a=1,b=�2,c=3代入△=b2�4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=�2,c=3,∴△=b2�4ac=(�2)2�4×1×3=�8<0,所以方程没有实数根.故选:C. 5.如图,添加下列一个条件,不能使△ADE∽△ACB的是() A. = B.∠AED=∠B C. = D.∠ADE=∠C 【考点】相似三角形的判定.【分析】(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似,结合选项进行判断即可.【解答】解:A、 = ,∠A=∠A,不能判断△ADE∽△ACB,故A 选项符合题意; B、∠AED=∠B,∠A=∠A,能确定△ADE∽△ACB,故B选项不符合题意; C、 = ,∠A=∠A,能判断△ADE∽△ACB,故C 选项不符合题意; D、∠ADE=∠C,∠A=∠A,能判断△ADE∽△ACB,故D选项不符合题意;故选:A. 6.若⊙P的半径为5,圆心P 的坐标为(�3,4),则平面直角坐标系的原点O与⊙P的位置关系是() A.在⊙P内 B.在⊙P上 C.在⊙P外 D.无法确定【考点】点与圆的位置关系;坐标与图形性质.【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由勾股定理,得 OP= =5, d=r=5,原点O在⊙P上.故选:B. 7.如图,⊙O是△ABC 的外接圆,∠OCB=40°,则∠A的度数等于() A.60° B.30° C.40° D.50° 【考点】圆周角定理;三角形的外接圆与外心.【分析】因为∠A是所对的圆周角,∠BOC是所对的圆心角,则∠A= ∠BOC,因此只要求出∠BOC的度数即可.【解答】解:∵OB=OC,∴∠OCB=∠OBC,∵∠OCB=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°�40°�40°=100°,∴∠A= ∠BOC= ×100°=50°,故选D. 8.现有一张面积是240cm2的长方形纸片,且它的长比宽多8cm,可设长方形纸片的宽为x,则根据题意可列得一元二次方程为() A.x(x+8)=240 B.x(x�8)=240 C.x(x�8)=120 D.x(x+8)=120 【考点】由实际问题抽象出一元二次方程.【分析】根据矩形的宽表示出矩形的长,利用矩形的面积计算方法列出方程即可.【解答】解:设长方形纸片的宽为x,则长为(x+8),根据题意得:x(x+8)=240,故选A. 9.如图是由10个半径相同的圆组合而成的烟花横截面,点A、B、C分别是三个角上的圆的圆心,且三角形ABC为等边三角形.若圆的半径为r,组合烟花的高为h,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)()A.18πrh B.2πrh+18rh C.πrh+12rh D.2πrh+12rh 【考点】相切两圆的性质;等边三角形的性质.【分析】根据图形可以看出截面的周长等于9个圆的直径和1个半径为r的圆的周长的和,用周长乘以组合烟花的高即可.【解答】解:由图形知,三角形ABC为等边三角形边长为6r,∴其周长为3×6r=18r,∵一个圆的周长为:2πr,∴截面的周长为:18r+2πr,∴组合烟花的侧面包装纸的面积为:(18r+2πr)h=18rh+2πrh.故选:B. 10.如图,以M (�5,0)为圆心、4为半径的圆与x轴交于点A、B,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于点C、D,以CD为直径的⊙N于x轴交于点E、F,则EF的长() A.等于4 B.等于4 C.等于6 D.随点P的位置而变化【考点】相似三角形的判定与性质;坐标与图形性质;圆周角定理.【分析】连接NE,设圆N半径为r,ON=x,则OD=r�x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OA:OD,即(r+x):1=9:(r�x),求出r2�x2=9,根据垂径定理和勾股定理即可求出答案.【解答】解:连接NE,设圆N半径为r,ON=x,则OD=r�x,OC=r+x,∵以M(�5,0)为圆心、4为半径的圆与x轴交于A、B两点,∴OA=4+5=9,0B=5�4=1,∵AB是⊙M的直径,∴∠APB=90°(直径所对的圆周角是直角),∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA,∴OC:OB=OA:OD,即,(r+x)(r�x)=9,∴r2�x2=9,由垂径定理得:OE=OF,OE2=EN2�ON2=r2�x2=9,即OE=OF=3,∴EF=2OE=6,故选:C.二、填空题(本大题共8小题,每空2分,共16分.)11.观察方程(x�1)(x+2)=0的解是1或�2 .【考点】解一元二次方程�因式分解法.【分析】本方程的左边为两个一次因式相乘,右边为0,所以得方程x�1=0或x+2=0,直接解答即可.【解答】解:∵(x�1)(x+2)=0 ∴x�1=0或x+2=0 ∴x1=1,x2=�2 12.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是12 .【考点】位似变换.【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【解答】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为:12. 13.在比例尺为1:50000的地图上,量得A、B 两地的图上距离AB=3cm,则A、B两地的实际距离为 1.5 km.【考点】比例线段.【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【解答】解:∵比例尺为1:5000,量得两地的距离是20厘米,∴ ,∴A、B两地的实际距离=150000cm=1.5km.故答案为:1.5. 14.若圆锥的底面半径为2,母线长为3,则圆锥的侧面积等于6π.【考点】圆锥的计算.【分析】根据圆锥的侧面积等于母线长乘底面周长的一半.依此公式计算即可解决问题.【解答】解:圆锥的侧面积=πrl=2×3π=6π.故答案为:6π. 15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于10厘米,那么相邻一条边的边长等于 5 �5 厘米.(保留根号)【考点】黄金分割;矩形的性质.【分析】根据黄金比值为,计算即可.【解答】解:设相邻一条边的边长为x厘米,由题意得, = ,解得,x=5 �5,故答案为:5 �5. 16.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为10 厘米.【考点】垂径定理的应用;勾股定理.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16�x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【解答】解:EF 的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16�x,MF=8,在直角三角形OMF中,OM2+MF2=OF2 即:(16�x)2+82=x2 解得:x=10 故答案为:10. 17.已知:点A(0,4),B(0,�6),C为x轴正半轴上一点,且满足∠ACB=45°,则点C坐标为(12,0).【考点】圆周角定理;坐标与图形性质;勾股定理;等腰直角三角形.【分析】构造含有90°圆心角的⊙P,则⊙P与x轴的交点即为所求的点C.根据△PBA为等腰直角三角形,可得OF=PE=5,根据勾股定理得:CF= =7,进而得出OC=OF+CF=5+7=12,即可得到点C坐标为(12,0).【解答】解:设线段BA的中点为E,∵点A(0,4),B(0,�6),∴AB=10,E(0,�1).如图所示,过点E在第四象限作EP⊥BA,且EP= AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5 ;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA= ∠BPA=45°,即则点C即为所求.过点P作PF⊥x轴于点F,则OF=PE=5,PF=OE=1,在Rt△PFC中,PF=1,PC=5 ,由勾股定理得:CF= =7,∴OC=OF+CF=5+7=12,∴点C坐标为(12,0),故答案为(12,0). 18.如图,在Rt△ABC中,AC=4,BC=3,若点M、N分别是线段AB、AC上的两个动点,则CM+MN的最小值为.【考点】轴对称�最短路线问题.【分析】首先作C关于AB的对称点D,作DN⊥A于点N,交AB于点M,则此时CM+MN有最小值,且CM+MN=DM,然后利用直角三角形的性质,求得CD的长,继而证得△DCN∽△ABC,利用相似三角形的对应边成比例,求得答案.【解答】解:作C关于AB的对称点D,作DN⊥A于点N,交于AB于点M,则此时CM+MN的最小值,且CM+MN=DM,∵在Rt△ABC中,AC=4,BC=3,∴AB= =5,∴CE= = ,∴CDD=2CE= ,∵∠D+∠ACE=∠A+∠ACE=90°,∴∠A=∠D,∵∠CND=∠ACB=90°,∴△DCN∽△ABC,∴ ,即,∴DN= .∴CM+MN的最小值为:.故答案为:.三、解答题(本大题共10小题,共84分,写出必要的解题步骤和过程) 19.解方程(1)(x�2)2=9;(2)x2+3x+1=0.【考点】解一元二次方程�公式法;解一元二次方程�直接开平方法.【分析】(1)直接开平方法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x�2)2=9,∴x�2=3或x�2=�3,解得:x=5或x=�1;(2)∵a=1,b=3,c=�1,∴△=9�4×1×(�1)=13,则x= . 20.如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)圆弧所在圆的圆心P的坐标为(2,1)(2)圆弧所在圆的半径为(3)扇形PAC的面积为(4)把扇形PAC 围成一个圆锥,该圆锥底面圆的半径为.【考点】垂径定理;坐标与图形性质;圆锥的计算.【分析】(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.(2)连接PA、DC、AC,由勾股定理求出PA=PC即可;(3)与勾股定理求出AC,由勾股定理的逆定理证出∠APC=90°,由扇形面积公式计算即可;(4)由弧长公式和圆的周长即可得出结果.【解答】解:(1)作弦AB和BC的垂直平分线,交点即为圆心如图1所示,圆心P的坐标为(2,1);故答案为:(2,1);(2)连接PA、PC,如图2所示:由勾股定理得:PA=PC= = ,故答案为:;(3)∵AC= = ,∴PA2+PC2=AC2,∴△APC是等腰直角三角形,∠APC=90°,∴扇形PAC的面积= = ;故答案为:;(4)设圆锥底面圆的半径为r,∵ 的长= = π,∴2πr= π,解得:r= ;故答案为:. 21.如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长.【考点】相似三角形的判定与性质.【分析】(1)根据∠ABD=∠C,∠A=∠A,即可证得△ABD∽△AC B;(2)由(1)知:△ABD∽△ACB,根据相似三角形的性质得到 = ,代入数据即可得到结果.【解答】解:(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∴ = ,即 = ,∴CD=5. 22.阅读材料:一元二次方程ax2+bx+c=0(a≠0),当判别式△=b2�4ac≥0时,其求根公式为:x= ;若两根为x1,x2,当△≥0时,则两根的关系为:x1+x2=�;x1•x2= 应用:(1)方程x2�2x+1=0的两实数根分别为x1,x2,则x1+x2= 2 x1•x2= 1 (2)若方程方程x2�2mx=�m2+2x的两个实数根x1•x2满足|x1|=x2,求实数m的值.【考点】根与系数的关系;解一元二次方程�公式法;根的判别式.【分析】(1)根据方程的系数结合根与系数的关系即可得出结论;(2)将方程整理成一般式,根据根的判别式即可得出关于m 的一元二次不等式,解不等即可得出结论,再分x1=x2或x1=�x2两种情况确定m的值,当x1=x2时,利用根的判别式△=0即可求出m 值;当x1=�x2时,利用根与系数的关系可得出2(m+1)=0,解之即可得出m的值,结合方程有解m的取值范围即可确定该情况不合适.综上即可得出结论.【解答】解:(1)∵方程x2�2x+1=0的两实数根分别为x1,x2,∴x1+x2=2,x1•x2=1.故答案为:2;1.(2)方程整理为x2�2(m+1)x+m2=0,∵关于x的方程x2�2mx=�m2+2x 有两个实数根x1、x2,∴△=4(m+1)2�4m2≥0,解得m≥�.∵|x1|=x2,∴x1=x2或x1=�x2,当x1=x2,则△=0,所以m=�;当x1=�x2,即x1+x2=2(m+1)=0,解得m=�1,而m≥�,∴m=�1舍去.∴m的值为�. 23.如图,已知AB 是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC= ,求AB的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OC,根据切线的性质得到OC与CD垂直,进而得到∠OCA+∠DCA=90°,由AC为角平分线,根据角平分线定义得到两个角相等,又OA=OC,根据等边对等角得到又得到另两个角相等,等量代换后得到∠DAC=∠O CA,根据等角的余角相等得到∠DCA+∠DAC=90°,从而得到∠ADC为直角,得证;(2)连接CB,由AB为圆O的直径,根据直径所对的圆周角为直角得到∠ACB与∠ADC相等都为直角,又根据AC为角平分线得到一对角相等,由两对对应角相等的两三角形相似,得到三角形ADC与三角形ABC相似,由相似得比例列出关系式,把AC和AD的长即可求出AB的长.【解答】解:(1)连接OC,∵直线CD与⊙O相切于点C,∴OC⊥CD.∴∠OCA+∠DCA=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又∵在⊙O中,OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴∠DCA+∠DAC=90°,则∠ADC=90°,即AD⊥DC;(2)连接BC.∵AB为圆O的直径,∴∠ACB=90°,∴∠ADC=∠ACB=90°,又∵AC平分∠DAB,∴∠DAC=∠OAC,∴△ADC∽△ACB,∴ ,即,则. 24.如图,AB切⊙O于点B,AC交⊙O于点M、N,若四边形OABN恰为平行四边形,且弦BN的长为10cm.(1)求⊙O的半径长及图中阴影部分的面积S.(2)求MN的长.【考点】切线的性质;平行四边形的性质;扇形面积的计算.【分析】(1)连接OB,由AB是⊙O的切线,得出OB⊥AB,由四边形OABN是平行四边形,得出AB∥ON,证出△OBN为等腰直角三角形,即可解得OB及S阴影=S扇形�S△OBN;(2)过点O作OH⊥AC,垂足为H,AC与OB的交点为G,∠OHN=∠NOG=90°,证得△ONH∽△GNO,得出 = ,求得OG=BG= OB、GN、HN,即可得出结果.【解答】解:(1)连接OB,则OB=ON,如图1所示:∵AB是⊙O的切线,∴OB⊥AB,即∠OBA=90°,∵四边形OABN是平行四边形,∴AB∥ON,∴∠OBA=∠BON=90°,∴△OBN为等腰直角三角形,∵BN=10,∴OB=5 ,∴S阴影=S扇形�S△OBN= ×(5 )2π�×5 ×5 = π�25;(2)过点O作OH⊥AC,垂足为H,AC与OB的交点为G,如图2所示∴∠OHN=∠NOG=90°,∵∠ONH=∠ONG,∴△ONH∽△GNO,∴ = ,∵四边形OABN是平行四边形,∴OG=BG= OB= ,∴GN= = = ,∴HN= = =2 ,∴MN=4 . 25.2014年,锡东新城碧桂苑楼盘以均价每平方米8000元的均价对外销售.由于受周边地区及炒房的影响,该楼盘在二年内疯涨,至2016年该楼盘的均价为每平方米11520元.如果设每年的增长率相同.(1)求平均每年增长的百分率;(2)假设2017年该楼盘的均价仍然增长相同的百分率,有一工作了十年的李老师准备购买一套100平方米的住房,他持有现金80万元,可在银行贷款50万元,李老师的愿望能否实现?(房价按照均价计算,不考虑其它因素.)【考点】一元二次方程的应用.【分析】(1)设平均每年增长的百分率为x,根据“2016年的房价=2014年的房价×1加增加百分率的平方”,即可列出关于x的一元二次方程,解方程即可得出结论;(2)根据“房屋的总价=2017年房屋单价×房屋面积”,即可求出100平方米的住房的总价,再于李老师持有的现金及银行贷款的总和进行比较后即可得出结论.【解答】解:(1)设平均每年增长的百分率为x,根据题意得:8000×(1+x)2=11520,解得:x=20%,x=�144%(舍去),答:平均每年增长的百分率为20%.(2)100×11520×(1+20%)=1382400(元),∵1382400>800000+500000=1300000,∴李老师的愿望不能实现. 26.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.【考点】相似三角形的判定与性质.【分析】(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8�4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:根据勾股定理得:BA= ;(1)分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴ ,解得,t=1,②当△BPQ∽△BCA时,,∴ ,解得,t= ;∴t=1或时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8�4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴ ,∴ ,解得t= . 27.(1)已知点P为线段AB上一点如图1,射线PM⊥AB,用直尺和圆规在PM 上找一点C,使得PC2=AP•PB (2)如图2,平行四边形ABCD中,DP⊥AB 于P,PD2=AP•PB,△BCD的面积和周长均为24,求PD的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用垂径定理结合相似三角形的判定与性质得出C点即可;(2)将等积式PD2=AP•PB化为等比式,可得到△DAP∽△BDP,设AD=a,BD=b,AB=c,列出方程组即可解答.【解答】解:(1)如图所示:作AB的垂直平分线,以O为圆心, AB为半径作圆,射线PM交⊙O于点C,C点即为所求.(2)∵PD2=AP•PB,∴PD:AP=PB:PD,又∵DP⊥AB于P,∴∠DPA=∠DPB,∴△DAP∽△BDP,∴∠ADB=90°,设AD=a,BD=b,AB=c,由题意得,,解得,AB=c=10,∵ DP•AB= AD•DB= ×48=24,∴PD=4.8. 28.定义:y是一个关于x的函数,若对于每个实数x,函数y的值为三数x+2,2x+1,�5x+20中的最小值,则函数y叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A(1,3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B,点A(1,3),动点M(m,m).①直接写出△ABM的面积,其面积是 2 ;②若以M为圆心的圆经过A,B两点,写出点M的坐标;③以②中的点M为圆心,以为半径作圆.在此圆上找一点P,使PA+ PB的值最小,直接写出此最小值.附:下列知识可直接应用: 1、中点公式:已知A(x₁,y₁)与 B(x₂,y₂),则线段AB的中点M的坐标为:M (,) 2、如果两条直线y=k1x+m,和y=k2x+n垂直,则k1•k2=�1.【考点】圆的综合题.【分析】(1)根据三数的最小值函数的定义画出图象即可,根据图象可以判断点A的位置.(2)①如图2中,作ON⊥AB于N,由AB∥OM,得S△ABM=S△ABO由此即可判断.②求出线段AB的中垂线,再列出方程组即可解决问题.③取MB的中点D,P为圆上任意一点,PM= ,MB=2,MD=1,可证△MPD∽△MBP,则PA+ PB 最小也就是PA+PD最小,求出AD的值即可.【解答】解:(1)最小值函数的图象见图中实线,∵x=1时,y=3,∴点A(1,3)在这个最小值函数的图象上.(2)①如图2中,作ON⊥AB于N.∵AB∥OM,∴S△ABM=S△ABO,∵A91,3),B(3,5),ON= ,AB=2 ∴S△ABM= ×2 × =2.故答案为:2.②∵直线AB的解析式为y=x+2,∴线段AB的中垂线的解析式为y=y=�x+6,由,解得,∴点M坐标为(3,3);③PA+ PB的最小值为,理由如下:如图,A(1,3)B(3,5),M(3,3),取MB的中点D,P为圆上任意一点,PM= ,MB=2,MD=1,可证△MPD∽△MBP,可得PD= PB,则PA+ PB 最小也就是PA+PD最小,所以连接AD,线段AD的长是所求的最小值,最小值为.2017年3月19日。
2016-2017年江苏省无锡市新区九年级(上)期中数学试卷及参考答案
2016-2017学年江苏省无锡市新区九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列方程是一元二次方程的是()A.3x+1=5 B.3x+5y=9 C.3x2+5x=﹣7 D.5x2+=﹣92.(3分)若一组数据:2,﹣1,x,3的极差是5,则x的值为()A.6 B.﹣2 C.4 D.4或﹣23.(3分)下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=95.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切6.(3分)某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1447.(3分)已知:M=2a2+5a+9,N=a2+7a+2,试比较M与N的大小()A.M>N B.M<N C.M=N D.无法确定8.(3分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB 是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本大题共10小题,每空2分,共24分)9.(4分)将一元二次方程(x+1)(x﹣3)=3x+4化成一般形式可得,它的一次项系数是.10.(4分)一元二次方程x2+kx﹣3=0的一个根是x=1,则k=,另一个根是x=.11.(2分)如图,在⊙O中,∠ABC=50°,则∠AOC等于度.12.(2分)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.13.(2分)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE=.14.(2分)九年级甲班与乙班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,甲班成绩的方差为17.5,乙班成绩的方差为15.由此可知班的成绩稳定.15.(2分)已知:圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为.16.(2分)已知:对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,则方程x⊗1=0的解为.17.(2分)如图,已知∠ABC=90°,AB=πr,BC=πr,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.圆心O运动的路程是.18.(2分)如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是.三、解答题(本大题共7小题,共52分)19.(12分)解下列方程:(1)x2﹣7x+10=0(2)3(x+5)=(x+5)2(3)x2﹣4x﹣1=0(4)x2﹣6x﹣6=0(配方法解)20.(7分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)初中部85高中部85100(1)根据图示填写表;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.21.(6分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)22.(6分)已知关于x的方程x2+(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值.23.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?24.(6分)小明打算用一张半圆形的纸做一个圆锥.在制作过程中,他先将半圆剪成面积比为1:2的两个扇形.(1)请你在图中画出他的裁剪痕迹.(要求尺规作图,保留作图痕迹)(2)若半圆半径是3,大扇形作为圆锥的侧面,则小明必须在小扇形纸片中剪下多大的圆才能组成圆锥?小扇形纸片够大吗(不考虑损耗及接缝)?25.(9分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q 沿CA向终点A运动,速度为2cm/s,当一个到达终点时,另一个也停止运动.设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)用关于x的代数式表示△PQD的面积y;(3)求出当△PQD的面积是时x的值(4)探索以PQ为直径的圆与AC何时相切、相交,请写出相应位置关系的x的取值范围(不要求写出过程).2016-2017学年江苏省无锡市新区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列方程是一元二次方程的是()A.3x+1=5 B.3x+5y=9 C.3x2+5x=﹣7 D.5x2+=﹣9【解答】解:A、是一元一次方程,故A错误;B、是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.2.(3分)若一组数据:2,﹣1,x,3的极差是5,则x的值为()A.6 B.﹣2 C.4 D.4或﹣2【解答】解:当x为最大值时,x﹣(﹣1)=5,则x=4;当x为最小值时,3﹣a=5,则x=﹣2.所以x的值是4或﹣2.故选:D.3.(3分)下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心【解答】解:A、经过不在同一直线上的三点确定一个圆,故错误;B、三角形的外心到三角形各顶点的距离相等,故正确;C、同圆中,相等的圆心角所对的弧相等,故正确;D、经过切点且垂直于切线的直线必经过圆心,故正确;故选:A.4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.5.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选:A.6.(3分)某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【解答】解:设该果园水果产量的年平均增长率为x,则201年5的产量为100(1+x)吨,2016年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.7.(3分)已知:M=2a2+5a+9,N=a2+7a+2,试比较M与N的大小()A.M>N B.M<N C.M=N D.无法确定【解答】解:∵M﹣N=2a2+5a+9﹣a2﹣7a﹣2=a2﹣2a+7=(a﹣1)2+6>0∴M>N,故选:A.8.(3分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB 是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4【解答】解:如图3,连接OG.∵∠AOB是直角,G为AB中点,∴GO=AB=半径,∴原点O始终在⊙G上.∵∠ACB=90°,AB=6,AC=2,∴BC=4.连接OC.则∠AOC=∠ABC,∴tan∠AOC==,∴点C在与x轴夹角为∠AOC的射线上运动.如图4,C1C2=OC2﹣OC1=6﹣2=4;如图5,C2C3=OC2﹣OC3=6﹣4;∴总路径为:C1C2+C2C3=4+6﹣4=10﹣4.故选:D.二、填空题(本大题共10小题,每空2分,共24分)9.(4分)将一元二次方程(x+1)(x﹣3)=3x+4化成一般形式可得x2﹣5x﹣7=0,它的一次项系数是﹣5.【解答】解:(x+1)(x﹣3)=3x+4,x2﹣3x+x﹣3﹣3x﹣4=0,x2﹣5x﹣7=0,一次项系数为﹣5,故答案为:x2﹣5x﹣7=0,﹣5.10.(4分)一元二次方程x2+kx﹣3=0的一个根是x=1,则k=2,另一个根是x=﹣3.【解答】解:将x=1代入原方程,得:1+k﹣3=0,解得:k=2.∵x1+x2=﹣=﹣2,x1=1,∴x2=﹣3.故答案为:2;﹣3.11.(2分)如图,在⊙O中,∠ABC=50°,则∠AOC等于100度.【解答】解:∵∠ABC与∠AOC是一条弧所对的圆周角与圆心角,∠ABC=50°,∴∠AOC=2∠ABC=2×50°=100°.故答案为:100.12.(2分)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.【解答】解:∵OC⊥弦AB于点C,∴BC=AC=AB=×4=2,在Rt△OBC中,OC=1,BC=2,∴OB==.故答案为13.(2分)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE=6.【解答】解:连接OE,OF,OG,∵AB,AD,DE都与圆O相切,∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,∵四边形ABCD为正方形,∴AB=AD=11,∠A=90°,∴∠A=∠AGO=∠AFO=90°,∵OF=OG=5,∴四边形AFOG为正方形,则DE=DF=11﹣5=6,故答案为:614.(2分)九年级甲班与乙班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,甲班成绩的方差为17.5,乙班成绩的方差为15.由此可知乙班的成绩稳定.【解答】解:∵甲班成绩的方差为17.5,乙班成绩的方差为15,∴甲班成绩的方差>乙班成绩的方差,∴乙班比甲班的成绩稳定.故答案为:乙.15.(2分)已知:圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为3.【解答】解:∵圆锥的底面圆的周长为3,母线长为2,∴圆锥的侧面积为:×3×2=3.故答案为:3.16.(2分)已知:对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,则方程x⊗1=0的解为x=1或x=﹣2.【解答】解:方程整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,故答案为:x=1或x=﹣217.(2分)如图,已知∠ABC=90°,AB=πr,BC=πr,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.圆心O运动的路程是2πr.【解答】解:如图:圆心O运动的路程长=OD+弧DE的长+EF=AB+弧DE的长+BC=πr++=2πr.故答案为:2πr.18.(2分)如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是﹣1.【解答】解:如图所示:当∠AFE=∠GFE,点G在CE上时,此时CG的值最小,根据折叠的性质,△AFE≌△GFE,∴AE=GE,∵E是AB边的中点,AB=2,∴AE=BE=GE=1,∵BC=AB=2,∴CE==,∴CG=CE﹣EG=﹣1,故答案为:﹣1.三、解答题(本大题共7小题,共52分)19.(12分)解下列方程:(1)x2﹣7x+10=0(2)3(x+5)=(x+5)2(3)x2﹣4x﹣1=0(4)x2﹣6x﹣6=0(配方法解)【解答】解:(1)∵(x﹣2)(x﹣5)=0,∴x﹣2=0或x﹣5=0,解得:x=2或x=5;(2)(x+5)2﹣3(x+5)=0,∴(x+5)(x+5﹣3)=0,即(x+5)(x+2)=0,∴x+5=0或x+2=0,解得:x=﹣5或x=﹣2;(3)∵a=1,b=﹣4,c=﹣1,∴△=16﹣4×1×(﹣1)=20>0,∴x==2;(4)x2﹣6x=6,∴x2﹣6x+9=6+9,即(x﹣3)2=15,则x﹣3=±,∴x=3±.20.(7分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)初中部858585高中部8580100(1)根据图示填写表;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.【解答】解:(1)由条形统计图可得,初中5名选手的平均分是:=85,众数是85,高中五名选手的成绩是:70,75,80,100,100,故中位数是80,故答案为:85,85,80;(2)由表格可知,初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)由题意可得,s2初中==70,s2高中==160,∵70<160,故初中部代表队选手成绩比较稳定.21.(6分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD ⊥DC ,∴AC 是⊙O 的切线;(2)解:∵∠A=60°, ∴∠C=30°,∠DOC=60°, 在Rt △DOC 中,OD=2, ∴CD=OD=2,∴阴影部分的面积=S △COD ﹣S 扇形DOE =×2×2﹣=2﹣.22.(6分)已知关于x 的方程x 2+(2m +1)x +m (m +1)=0. (1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m ﹣1)2+(3+m )(3﹣m )+7m ﹣5的值.【解答】(1)证明:∵在方程x 2+(2m +1)x +m (m +1)=0中,△=(2m +1)2﹣4m (m +1)=1>0,∴方程总有两个不相等的实数根; (2)解:∵x=0是此方程的一个根, ∴把x=0代入方程中得到m (m +1)=0, ∴m=0或m=﹣1,∵(2m ﹣1)2+(3+m )(3﹣m )+7m ﹣5=4m 2﹣4m +1+9﹣m 2+7m ﹣5=3m 2+3m +5, 把m=0代入3m 2+3m +5中,得:3m 2+3m +5=5;把m=﹣1代入3m 2+3m +5中,得:3m 2+3m +5=3×1﹣3+5=5.23.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x 株,则每盆花苗有(x +3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.24.(6分)小明打算用一张半圆形的纸做一个圆锥.在制作过程中,他先将半圆剪成面积比为1:2的两个扇形.(1)请你在图中画出他的裁剪痕迹.(要求尺规作图,保留作图痕迹)(2)若半圆半径是3,大扇形作为圆锥的侧面,则小明必须在小扇形纸片中剪下多大的圆才能组成圆锥?小扇形纸片够大吗(不考虑损耗及接缝)?【解答】解:(1)如图:(2)∵OA=3,=π×3=2π,∴l弧AC∴小圆半径r=1,正好够剪.25.(9分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q 沿CA向终点A运动,速度为2cm/s,当一个到达终点时,另一个也停止运动.设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)用关于x的代数式表示△PQD的面积y;(3)求出当△PQD的面积是时x的值(4)探索以PQ为直径的圆与AC何时相切、相交,请写出相应位置关系的x的取值范围(不要求写出过程).【解答】解:(1)由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;(2)如图,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)由(2)知,点P在BD上,y=﹣x2+x;∵△PQD的面积是,∴﹣x2+x=,∴x=或x=即:x=或x=时,△PQD的面积是;(4)由(1)可知,当x=时,以PQ为直径的圆与AC相切;当0≤x<或<x≤2时,以PQ为直径的圆与AC相交.。
江苏省2016-2017学年九年级上期中数学试题(含答案)
第一学期九年级期中考试数学学科试题注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的班级、姓名、学号填写在试卷的装订线内.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.方程x 2-4x =0的根是………………………………………………… ( ▲ ) A .x =4 B .x =0 C .x 1=0,x 2=4 D .x 1=0,x 2=-42.下列一元二次方程中,有实数根的是 ………………………………………………( ▲ )A .x 2-x +1=0B .x 2-2x +3=0C .x 2+x -1=0D .x 2+4=03.已知m ,n 是方程x 2-2x -2016=0的两个实数根,则n 2+2m 的值为于…………( ▲ )A . 1010B .2012C .2016D .20204.如图,在△ABC 中,若DE ∥BC ,AD = 5, BD = 10,DE = 4,则BC 的值为 ( ▲ )A .8B .9C .10D .12OBCA第4题 第8题 第9题 第10题5. 已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2), 以点B 为位似中心,且位似比为1:2将△ABC 放大得△A 1BC 1 ,则点C 1 的坐标为( ▲ ) A .(1,0)B .(5,8)C .(4,6)或(5,8)D .(1,0)或(5,8)6. 已知P 为⊙O 内一点,OP =1,如果⊙O 的半径是2,那么过P 点的最短弦长是 ( ▲ )A.1B.2C.3D.237.下列说法中,正确的是 ( ▲ ) A .垂直于半径的直线一定是这个圆的切线 B .任何三角形有且只有一个内切圆 C .三点确定一个圆 D .三角形的内心到三角形的三个顶点的距离相等 8.如图,在△ABC 中,点O 为重心,则S △DOE :S △BOC = (▲) A .1:4 B . 1:3C . 1:2D . 2:3MFADBCE NOBAC9.如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为 (▲) A. 15° B. 18° C. 20° D. 28°10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D 2015E 2015到BC 的距离记为h 2016.若h 1=1,则h 2016的值为 ( ▲ ) A.201521 B.201421 C. 2015211-D.2015122-二、填空题:(本大题共8小题,每空2分,共16分)11.在Rt△ABC 中,∠C = 90°,AB = 2BC ,则cos A 的值为 ▲ .12.已知(m −3)x 2−3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是 ▲ .13.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是 ▲ 米.14.某公司4月份的利润为160万元,由于经济危机,6月份的利润降到90万元,则平均每月减少的百分率是 ▲ .15.如图,∠ABC = 140°,D 为圆上一点,则∠ADC 的度数为 ▲ .第15题 第16题 第17题 第18题16.如图,已知△ABC ,AB =AC =2,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ▲ . 17.如图,平行四边形ABCD 中,AB=28,E 、F 是对角线AC 上的两点,且AE:EF:FC=1:2:3,DE 交AB 于点M ,MF 交CD 于点N ,则CN= ▲ .18.如图,△ABC 是等腰直角三角形,AC =BC =2a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则CD 的长为 ▲ .三、解答题:(本大题共9小题,共84分)19.解方程:(本题共有2小题,每小题4分,共8分)(1) x 2-2x -4=0 (2) (x +3)(x -1)=1220.(6分)如图,在Rt △ABC 中,∠ACB=90°.(1)先作∠ABC 的平分线交AC 边于点O ,再以点O 为圆心,OC 为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB 与⊙O 的位置关系,并证明你的结论.21.(7分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是 45°,向前走8m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
2016-2017学年度苏科版九年级上册期中考试数学试卷含答案
2016-2017学年度第一学期初三年级期中考试数 学 试 卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是(▲) A .632x x x =+B .()623x x= C .xy y x 532=+ D .236x x x =÷2x 的取值范围是(▲)A .13x ≥B .13x >C . 13x >- D .13x ≥-3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是(▲)A.1k >-B.1k <且0k ≠C. 1k ≥-且0k ≠D. 1k >-且0k ≠ 4.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A 、C ,则劣弧 ⌒AC的长度为(▲) A .35πB .45πC .34πD .23π5.如图,MN 是圆柱底面的直径,MP 是圆柱的高,在圆柱的侧面上,过点M ,P 有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP 剪开,所得的侧面展开图可以是(▲)A B C D6.有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是 (▲)A.如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B.如果6是方程M 的一个根,那么 是方程N 的一个根;C.如果方程M 和方程N 有一个相同的根,那么这个根必是 ;D.如果方程M 有两根符号相异,那么方程N 的两根符号也相异; 二、填空题(本大题共8小题,每小题2分,共16分) 7.分解因式:2a 2﹣2= ▲ .(第7题)E(第4题)1-=x 618.近似数8.6×105精确到 ▲ 位. 9.正十边形的每个内角为 ▲ 度. 10.若反比例函数xm y 1-=的图象位于第二、四象限内,则m 的取值范围是 ▲ 11.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 ▲ .12.如图,AB 为⊙O 的弦,△ABC 的两边BC 、AC 分别交⊙O 于D 、E 两点,其中∠B =60°,∠EDC =70°,则∠C = ▲ 度.(12题图) (14题图)13.若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣1,x 2=2,则b+c 的值 是 ▲ .14.如图,直线y =x -2与x 轴、y 轴分别交于M 、N 两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN 有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移 动 ▲ 秒.三、解答题(本大题共10小题,共84分.) 15.解方程:(本题满分16分).(1)x 2﹣2x =0; (2)x (x+4)=﹣3(4+x )(3)2x 2-3x+1=0 (4)()()22142x x +=-16.(本题满分6分). 先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.17.(本题满分6分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29-27分;C:26-24分;D:23-18分;E:17-0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年5000名九年级学生中,体育成绩为优秀的学生人数有多少人?18.(本题满分6分).如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140º,求∠AFE的度数.19.(本题满分6分).如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.20.(本题满分6分)已知:如图,点E 是正方形ABCD 中AD 边上的一动点,连结BE ,作∠BEG =∠BEA 交CD 于G ,再以B 为圆心作AC ︵,连结BG .(1)求证:EG 与AC ︵相切 (2)求∠EBG 的度数;GD21.(本题满分6分)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)作出△ABC 关于点O 的中心对称图形△A ′B ′C ′; (2)△A ′B ′C ′绕点B ′顺时针旋转90°,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.22.(6分)如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?23.(6分)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.24.(本题满分6分).已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.25.(8分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.(1)大号苹果的单价为▲元/千克;小号苹果的单价为▲ 元/千克;(用含x的代数式表示)(2)若水果超市售完购进的1000千克苹果,请解决以下问题:①若所获利润为3385元,求x的值.②当x为何值时,所获利润最大?2016-2017学年度第一学期初三年级期中考试数 学 答 案一、选择题:本大题共6小题,每小题3分,共18分.1.B 2. A 3. D 4. B 5.D 6 .C二、填空题:本大题共8小题,每小题2分,共16分.7.2(a +1)(a -1) 8.万 9.144 10.m <1 11.10% 12.50 13. -3 14. 三、解答题:本大题共10小题,共86分.15.(本题满分16分)(1)0,2(2) -4,-3 (3)1,21(4) 1,5 16.(本题满分6分)化简得:a 2+4a-3,代入得18.17.(本题满分6分)(1)B 组的人数是:200-70-40-30-10=50(人), 补图如下:(4分)(2)根据题意得:200405070++×5000=4000(人),答:体育成绩为优秀的学生人数有4000人. (6分)2218.(本题满分6分)(1)证明:∵正方形ABCD 中,E 为对角线AC 上一点,∴BC =DC ,∠BCE =∠DCE =45º又∵CE =CE ∴△BCE ≌△DCE (SAS )(2)解:由全等可知,∠BEC =∠DEC =12∠DEB =12×140º=70º在△BCE 中,∠CBE =180º―70º―45º=65º ∴在正方形ABCD 中,AD ∥BC ,有∠AFE =∠CBE =65º19.(本题满分6分)解:(1)∵反比例函数y =(k 为常数,且k ≠0)经过点A (1,3), ∴3=,解得:k =3,∴反比例函数解析式为y =; (2)设B (a ,0),则BO =a ,∵△AOB 的面积为6,∴•a •3=6,解得:a =4,∴B (4,0), 设直线AB 的解析式为y =kx +b ,∵经过A (1,3)B (4,0), ∴,解得,∴直线AB 的解析式为y =﹣x +4.20.(1)证明:过点B 作BF ⊥EG ,垂足为F ,∴∠BFE =90°∵四边形ABCD 是正方形 ∴∠A =90°,∴∠BFE =∠A , (1分) ∵∠BEG =∠BEA ,BE =BE ,∴△ABE ≌△FBE , (2分) ∴BF =BA , (3分)∵BA 为弧AC 的半径, ∴B F 为弧AC 的半径,∴EG 与弧AC 相切; (4分) (2)解:由(1)可得△ABE ≌△FBE ,∴∠1=∠ABE =21∠ABF , (5分) ∵四边形ABCD 是正方形, ∴∠C =∠ABC =90°, ∴CD 是⊙O 切线,由(1)可得EG 与弧AC 相切, ∴GF =GC , ∵BF ⊥EG ,BC ⊥CD ,∴∠2=∠CBG =21∠FBC , (7分)∴∠EBG=∠1+∠2=21(∠ABF +∠FBC )= 21∠ABC =45° (8分) 21.(本题满分6分)S=45π.22.(本题满分6分)设道路的宽为xm ,可列方程(30-2x )(20-x )=6×78 解得:x=33(舍去)或x=223.(本题满分6分)815 24.(1)证明:k≠0,△=(4k+1)2﹣4k (3k+3)=(2k ﹣1)2,∵k 是整数,∴k≠,2k ﹣1≠0,∴△=(2k ﹣1)2>0,∴方程有两个不相等的实数根; (2)解:y 是k 的函数. 解方程得,x==,∴x=3或x=1+,∵k 是整数,∴≤1,∴1+≤2<3. 又∵x 1<x 2,∴x 1=1+,x 2=3, ∴y=3﹣(1+)=2﹣.25.(本题满分8分)解:(1)16-0.03x ;10+0.02x ;(2)①由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x化简,整理得032300202=--x x解得:190=x 或170-=x②设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x=﹣0.05x 2+x +5000当x =10时,所获最大利润为5005元. 26.(本题满分8分)(2)。
江苏省无锡市锡北片2016届九年级上学期期中考试数学试题解析(解析版)
一.选择题1.一元二次方程x 2+x -2=0的根的情况是(▲)A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A考点:根的判别式2.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为(▲)A.482(1)x -=36B.482(1)x +=36C.362(1)x -=48D.362(1)x +=48【答案】D【解析】试题分析:对于增长率的问题的通用公式为:增长前的数量×(1)+增长次数增长率=增长后的数量. 考点:一元二次方程的应用3.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为(▲)A .2B .3C .4D .8【答案】C【解析】试题分析:对于一元二次方程20ax bx c ++=的两根为12,x x ,则有12b x x a+=-,本题中两根之和为6,则另一个根为4.考点:韦达定理4.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,这个圆锥底面半径为(▲)【答案】D【解析】试题分析:圆锥展开图的圆心角=底面半径÷母线长×360°,本题中母线长为3cm,则底面半径为1cm. 考点:圆锥的性质5.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(▲)A.(6,0)B.(6,3)C.(6,5)D.(4,2)【答案】B【解析】试题分析:当点E的坐标为(6,3)时,△CDE为等腰直角三角形,则和△ABC不相似.考点:三角形相似6.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是(▲)A.12B.32C.52D.72【答案】C 【解析】试题分析:根据题意可得:AB=AD+BD=5,△ADE∽△ABC,则AD DEAB BC=,即215BC=,∴BC=52.考点:三角形相似7.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为(▲)A.3cm B.4cm C.5cm D.6cm【答案】C【解析】试题分析:设圆心为O,过O作OC⊥AB,连接OB,设半径为r,则OC=r-2,BC=4,则根据Rt△OBC的勾股定理可得r=5.考点:垂径定理8.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于(▲)A.100° B.80° C.50°D.40°OABC【答案】D【解析】试题分析:在同圆中,同弧所对的圆周角的度数等于圆心角度数的一半,则∠ACB=12∠AOB=40°.考点:圆心角与圆周角9.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=6米,则旗杆AB的高度为(▲)A.9米 B.9(1)米 C.12米 D.18米【答案】A【解析】试题分析:首先设AC=x,根据∠ACB=60°可得x;过点D作DE⊥AB,则DE=AC=x,则x,则AE=AB-x,根据AE=CD=6,求出x的值,然后计算AB的值.考点:直角三角形锐角三角函数的应用.10.已知二次函数y=ax2+bx+c的图像如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:(1)ac>0; (2)方程ax2+bx+c=0的两根是x1=-1,x2=3;(3)2a-b=0;(4)当x>1时,y随x的增大而减小;(5)3a+2b+c>0则以上结论中不正确的有(▲)A.1个 B.2个 C.3个 D.4个【答案】B考点:二次函数图象的性质.二、填空题11.cos30°的值为▲.【解析】试题分析:根据锐角三角函数的计算方法可进行计算.考点:三角函数的计算.12.正方体的表面积S(cm2)与正方体的棱长a(cm)之间的函数关系式为▲.【答案】S=62a【解析】试题分析:正方体每个面的面积为2a ,则表面积等于每个面的面积×6.考点:函数关系式的求法.13.如图,PA 是⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PB =4,OB =6,则tan ∠APO 的值是 ▲ .【答案】34【解析】试题分析:根据题意可得:OA=OB=6,OP=OB+PB=10,∠OAP=90°,根据勾股定理可得AP=8,则tan ∠APO=63==84OA AP . 考点:三角函数的计算.14.圆心角为120°,弧长为12π的扇形半径为 ▲ .【答案】18【解析】试题分析:根据题意可得:12π=120180180n r r p p =,解得:r=18. 考点:弧长的计算公式.15.点A(2,y 1)、B(3,y 2)是二次函数y =x 2-2x +1的图像上两点,则y 1与y 2的大小关系为y 1 ▲ y 2(填“>”、“<”、“=”).【答案】<【解析】试题分析:当x=2时,1y =1;当x=3时,2y =4,则1y <2y .考点:二次函数值的大小比较.16.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 ▲ .【答案】10%【解析】试题分析:设月平均增长率为x ,则10002(1+)x =1210 解得:1x =-2.1(舍去),2x =0.1考点:一元二次方程的应用.17.如图,⊙O 与正方形ABCD 的两边AB 、AD 相切,且DE 与⊙O 相切于E 点.若正方形ABCD 的周长为44,且DE =6,则sin ∠ODE =___▲ .考点:锐角三角函数的计算.18.如图,直线y =x -2与x 轴、y 轴分别交于M 、N 两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN 有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移动 ▲ 秒.【答案】【解析】试题分析:当圆与直线第一次相切的时候移动了(2)秒,第二次相切的时候移动了)秒,则移动的时间为:)-(2秒.考点:切线的性质.三、解答题19.解方程:x 2-6x -7=0.【答案】1x =7 2x =-1.【解析】试题分析:首先将方程进行因式分解,然后进行求解.试题解析:方程可变形为:(x -7)(x+1)=0 解得:1x =7 2x =-1.考点:解一元二次方程.20.计算:2sin60°+cos60°-3tan30°. 【答案】12【解析】试题分析:分别求出各三角函数的值,然后进行计算.试题解析:原式12-312. 考点:三角函数的计算.21.如图,AC 是△ABD 的高,∠D =45°,∠B =60°,AD =10.求AB 的长.【解析】试题分析:首先根据Rt △ACD 的三角函数求出AC 的长度,然后根据Rt △ABC 的三角形函数求出AB 的长度. 试题解析:在Rt △ACD 中,AC=10×sin ∠D=10×sin45°在Rt △ABC 中,AB=sin AC B ∠. 考点:锐角三角函数的应用.22.已知关于x 的方程x 2-6x +m 2-3m =0的一根为2.(1)求5m 2-15m -100的值; (2)求方程的另一根.【答案】(1)、-60;(2)、x=4.【解析】试题分析:首先将x=2代入方程,然后利用整体思想进行求解;根据解方程的方法进行求解.试题解析:把x=2代入方程可得:2m -3m=8(1)、52m -15m -100=5(2m -3m)-100=40-100=-60.(2)、根据题意得:方程为2x -6x -8=0 ∴方程的另一个根为x=4.考点:整体思想求代数式的值,解一元二次方程.23.已知二次函数y =ax 2+bx +1的图像经过(1,2),(2,4)两点.(1)求a 、b 值;(2)试判断该函数图像与x 轴的交点情况,并说明理由.【答案】(1)、a=12,b=12;(2)、没有交点. 【解析】试题分析:(1)、分别将两点代入解析式列出关于a 和b 的二元一次方程组,然后进行求解;(2)、求出△的值,然后进行判断与x 轴是否有交点. 试题解析:(1)、将(1,2)和(2,4)代入函数解析式得:1423a b a b ì+=ïí+=ïî 解得:a=12,b=12 (2)、由(1)得函数解析式为:y=122x +12x+1 ∵△=14-4×12×1=-74∴函数与x 轴没有交点. 考点:待定系数法求函数解析式,二次函数的交点问题.24.如图,△ABC 是⊙O 的内接三角形,AE 是⊙O 的直径,AF 是⊙O 的弦,且AF ⊥BC 于D 点.求证:(1)△ADC ∽△ABE ; (2)BE =CF.【答案】略【解析】试题分析:根据垂直和直径所对的圆周角为直角可得∠ADC=∠ABE=90°,根据同弧所对的圆周角相等可得∠E=∠ACB,从而得到三角形相似,根据三角形相似可得∠CAD=∠BAE,从而说明BE=CF.试题解析:(1)、∵AF⊥BC ∴∠ADC=90°∵AE是圆的直径∴∠ABE=90°∴∠ADC=∠ABE根据同弧所对的圆周角相等可得∠E=∠ACB ∴△ADC∽△ABE(2)、∵△ADC∽△ABE ∴∠CAD=∠BAE ∴弧BE=弧CF ∴BE=CF.考点:三角形相似的判定,圆的基本性质.25.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球后放回,再随机地摸出一个小球,请用列举法(画树状图或列表)求下列事件的概率:(1)两次取得小球的标号相同;(2)两次取得小球的标号的和等于4.【答案】(1)、14;(2)、316.【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率. 试题解析:(1)、P(两次取得小球的标号相同)=41 164=;(2)、P(两次取得小球的标号的和等于4)=3 16.考点:概率的计算.26.已知关于x的一元二次方程x2-x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.【答案】(1)、m=1;(2)、 1.【解析】试题分析:(1)、根据方程有两个不相等的实数根求出m的取值范围,然后求出m的值;(2)、将m的值代入方程求出方程的解,然后进行计算.试题解析:(1)、由题意得:△>0,即2(4m -->0 ∴m <2∴m 的最大整数为m=1.(2)、把m=1代入210x -+= ∵1x >2x ∴解得:1x 2x =-∴1x +22x )+2×(---1.考点:根的判别式、一元二次方程的解法.27.如图,折叠矩形ABCD 的一边AD 使点D 落在BC 边上的E 处,已知折痕AF =10cm ,且tan ∠FEC =34. (1)求矩形ABCD 的面积;(2)利用尺规作图求作与四边形AEFD 各边都相切的⊙O 的圆心O (只须保留作图痕迹),并求出⊙O 的半径.【答案】(1)、64;(2) 【解析】试题分析:(1)、根据折叠图形的性质得出∠AEF=∠D=90°,DF=EF ,根据∠FEC 的正切值设CF=3k ,分别求出EC 和EF 与k 的关系,根据角度的关系得出∠BAE=∠FEC 求出AB=CD=8k ,∴BE=6k ,AE=10k ,根据Rt △AEF 的勾股定理求出k 的值,然后计算面积;(2)、根据三角形相似的应用求出圆的半径.试题解析:(1)、根据折叠图形可得:△ADF ≌△AEF ∠AEF=∠D=90° DF=EF∵tan ∠FEC=34 设CF=3k ,EC=4k ,EF=5k ∴tan ∠BAE=tan ∠FEC=34∴AB=CD=8k ∴BE=6k AE=10k 在Rt △AEF 中,222AE EF AF += 解得: ∴S=802k =64(2)、做∠ADF 的角平分线与AF 的交点,该交点即为所求圆心O设圆O 的半径为r ,则5105r k r k k -= ∴r=103k =即圆O . 考点:勾股定理、三角函数的应用.28.如图,在平面直角坐标系xOy 中,⊙C 经过点O ,交x 轴的正半轴于点B (2,0),P 是 OwB上的一个动点,且∠OPB =30°.设P 点坐标为(m ,n).(1)当n =,求m 的值;(2)设图中阴影部分的面积为S ,求S 与n 之间的函数关系式,并求S 的最大值;(3)试探索动点P 在运动过程中,是否存在整点P(m ,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.【答案】(1)、m=0或2;(2)、S=n+23p -,最大值为:2+23p ;(3)、不存在. 【解析】试题分析:(1)、根据角度的关系得出△OCB 为等边三角形,从而求出OD 和CD 的长度,然后根据圆的轴对称性求出m 的值;(2)、阴影部分的面积等于三角形的面积加上扇弧的面积;(3)、根据题意求出m 的值,然后分别计算出n 的值,看是否有符合条件的. 试题解析:(1)、过点C 作CD ⊥OB ∵∠OPB=30° ∴∠OCB=60° ∴△OCB 为等边三角形 ∴OC=OB=2∴OD=1, ∴当时,根据圆的对称性 得m=0或2.(2)、S=12×2n+(240360p )=n+23p∴当S 最大值为2+23p . (3)、动点P 在运动过程中,不存在整点.∵-1≤m ≤3,横坐标可取整数为-1,0,1,2,3当m=-1,3时,当m=0,2时, 当m=1时,以上对应的纵坐标n 均不是整数 ∴动点P 在弧OwB 运动过程中,不存在整点.考点:圆的基本性质.29.如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.(1)求n的值和点A坐标;(2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.【答案】(1)、A(3,0);(2)、P(12,54)和P(2,2)【解析】试题分析:(1)、将点(0,0)代入求出n的值,从而得到函数解析式,得出点A的坐标;(2)、首先求出M和N的坐标,然后分两种情况进行讨论得到答案.试题解析:(1)、∵图像经过坐标原点∴2n-9=0 ∴n=3或-3∵顶点在第一象限∴n=3 ∴y=-2x+3x ∴点A的坐标为(3,0)(2)、过P作PB⊥y轴于B,设P(x,-2x+3x) ∵PN⊥MN ∠NOM=90°∴要使△PMN与△OMN相似则分两种情况:①、△PMN∽△MNO ②、△PMN∽△NMO.∵一次函数y=-2x+b分别交x轴、y轴于点M、N∴OM=12b ON=b ∴12OMON=①、当△PMN∽△MNO(如图1),得12PN MOMN NO==∵PN⊥NM,PB⊥y轴∴△PNB∽△MNO ∴231122x x x bb b-+-==∴x=12,x=0(舍去) ∴点P的坐标为(12,54)②、当△PMN∽△NMO时(如图2),得:21PN NOMN MO==解法同上,得x=2,x=0(舍去)∴点P的坐标为(2,2)综上所述:满足条件的点有2个:P(12,54)和P(2,2).考点:三角形相似的应用、求二次函数解析式.高考一轮复习:。
2016-2017学年苏科版初三数学第一学期期中测试卷 有答案
2016-2017学年初三第一学期数学期中试卷考试范围:苏科版九年级数学教材上册第一章《一元二次方程》、下册第五章《二次函数》;考试时间:120分钟;考试分值:130分;考试题型:选择题、填空题、解答题。
一、选择题 (本大题共10 小题,每小题3分,共30 分) 1. 一元二次方程2240x x -+=的根的情况是( ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根2. 已知函数:①y=3x ﹣1;②y=3x 2﹣1;③y=﹣20x 2;④y=x 2﹣6x+5,其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个3. 一元二次方程x 2﹣8x ﹣1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x ﹣4)2=17D .(x ﹣4)2=154. 已知一元二次方程28150x x -+=的两个分别是Rt △ABC 的两边长,则第3 条边长( ) A.3 B.4或5 C.3或5 D.4或34 5. 若函数y=22(1)22mm x x ---+是关于x 的二次函数,且抛物线的开口向上,则m 的值为( ) A .﹣2; B .1; C .2;D .﹣16.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x 倍,两年后产品y 与x 的函数关系是( )A .y=20(1﹣x )2B .y=20+2xC .y=20(1+x )2D .y=20+20x 2+20x7.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2016的值为( ) A .2014; B .2015; C .2016; D .20178. 如图所示,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图象顶点为A (﹣2,﹣2),且过点B (0,2),则y 与x 的函数关系式为( ) A .y=x 2+2B .y=(x ﹣2)2+2C .y=(x ﹣2)2﹣2D .y=(x+2)2﹣2(第8题)(第9题)(第10题)9. 二次函数y=ax 2+bx+c (a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值 ;B .对称轴是直线x=C .当x <,y 随x 的增大而减小;D .当﹣1<x <2时,y >010. 二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( )学校___________ 班级_____________ 姓名___________ 准考证号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………A. B. C.D.二.填空题(本大题共8小题,每小题3 分,共24分)11.方程x²= 2x的解为____________.12. 若关于x 的方程x²-5x+k=0的一个根是0,则另一个根是____________.13. 已知关于x 的一元二次方程k x²+ 4x+1=0有两个实数根,则k的取值范围是_____.14. 已知一元二次方程x2﹣5x﹣1=0的两根为x1,x2,则x1+x2= .15. 某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是.16. 抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是__________.17. 如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为__________m.(第17题)18. 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价__________元.一、选择题:11. ;12. ;13. ;14. ;15. ;16. ;17. ;18. ;三、解答题(本大题共10 小题,共76 分)19. (本题满分8 分)解方程:(1) x²-2x-1= 0(用配方法)(2) x(2x - 6)=x-320.(本题满分6 分)已知抛物线的解析式为y=x2﹣2x﹣3.(1)将其化为y=a(x﹣h)2+k的形式,并直接写出抛物线的顶点坐标;(2)求出抛物线与x轴交点坐标.21.(本题满分6分)阅读下列例题:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得x1=2,x2=﹣1(舍去).当x<0时,原方程化为x2+x﹣2=0,解得x1=1(舍去),x2=﹣2.∴x1=2,x2=﹣2是原方程的根.请参照例题解方程:x2﹣|x﹣1|﹣1=0.22. (本题满分6 分)在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程2x+(b+ 2)x+ 6-b=0有两个相等的实数根,求△ABC 的周长.23. (本题满分8 分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?24. (本题满分8 分)如图,将一块长60m ,宽30m 的长方形荒地进行改造,要在其四周留一条宽度相等的人行道路,中间部分建成一块面积为1000m 2 的长方形绿地,求人行道路的宽度.25. (本题满分8 分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260 元时,月销售量为45 吨,每售出1 吨这种水泥共需支付厂家费用和其他费用共100 元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10 元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240 元时,此时的月销售量是____________吨. (2)该经销店计划月利润为9000 元而且尽可能地扩大销售量,则售价应定为每吨多少元?26. (本题满分8分)已知P (﹣3,m )和Q (1,m )是抛物线y=2x 2+bx+1上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程2x 2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x 2+bx+1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.(第24题)27. (本题满分8分)如图,在一次高尔夫球比赛中,小明从山坡下O点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度10m时,球移动的水平距离为8m.已知山坡OA与水平方向OC的夹角为30°,OC=12m.(1)求点A的坐标;(2)求球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点.28.(满10分)如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP=t、OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)(1)写出t的取值范围,写出M的坐标:(,);(2)用含a,t的代数式表示b;(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)①求t的值;②若N在△OAB的内部及边上,试求a及m的取值范围.参考答案DCCDA CDDDC11.0,2;12.5;13.1,04k k ≤≠且;14.5;15.20%;16.2243y x x =---;17.; 18.5。
江苏省无锡九年级上学期期中考试数学试卷1有答案
(第8题图)A BCO(第9题图)(第10题图)CBA DO江苏省无锡市东林中学九年级上学期期中考试数学试卷(考试时间:120分钟 满分:130分)一.选择题(本大题共10小题,每题3分,共30分.)1.若式子x -3在实数范围内有意义,则x 的取值范围是………………………( )A . x ≥3B . x ≤3C . x >3D . x <32.下列计算正确的是……………………………………………………………… ( )A . 43-33=1B . 2+3= 5C . 212= 2 D . 3+22=5 23.用配方法解方程x 2-2x -1=0时,配方后所得的方程为…………………… ( ) A .(x +1) 2=0 B .(x -1) 2=0 C .(x +1) 2=2 D .(x -1) 2=2 4.矩形具有而菱形不一定具有的性质是…………………………………………… ( )错误!未找到引用源。
A .两组对边分别平行 B .对角线相等 C .对角线互相平分错误!未找到引用源。
D .两组对角分别相等5.下列说法中,不正确的是…………………………………………………………( ) A .过圆心的弦是圆的直径 B .等弧的长度一定相等C .周长相等的两个圆是等圆D .同一条弦所对的两条弧一定是等弧6.若x +1与x -1互为倒数,则实数x 为………………………………………… ( ) A .0错误!未找到引用源。
B . 2 C .±1错误!未找到引用源。
D .± 27.一元二次方程2x 2-5x +1=0的根的情况是……………………………………( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定8. 如图,DC 是⊙O 的直径,弦AB ⊥CD 于F ,连结BC 、DB ,则下列结论错误的是( ) A . ⌒AD= ⌒BD B .AF =BF C .OF =CF D .∠DBC =90º9.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为……… ( )A .130°B .100°C .50°D .65°10. 如图,已知BO 是△ABC 的外接圆的半径,CD ⊥AB 于D .若AD =3,BD =8,CD =6,则BO 的长为……………………………………………………… ( )A .6B .525 C .4 2 D .458二.填空题(本大题共10小题,每题2分,共20分.)11. 比较大小:3 3 27.12. 在实数范围内分解因式:a 3-3a = . 13.若实数a 、b 满足(a 2+b 2)2-2(a 2+b 2)-8=0,则a 2+b 2= . 14.如图,点A 、B 、C 在⊙O 上,AB ∥CO ,∠A =38º,则∠B = º.15. 如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2 cm ,∠A =120︒,则EF = cm.16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °.17.⊙O 的半径OA =1,弦AB 、AC 的长分别是2、3,则∠BAC 的度数为 .18.若a -4+||b -1=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值范围是 .19.如果一组数据-1、0、3、5、x 的极差为7,那么x 的值可以是 .20.如图,平面直角坐标系的长度单位是厘米,直线y =-33x +6分别与x 轴、y 轴相交于B 、A 两点.点C 在射线BA 上以3厘米/秒的速度运动,以C 点为圆心作半径为1厘米的⊙C .点P以2厘米/秒的速度在线段OA 上来回运动,过点P 作直线l ∥x 轴.若点C 与点P 同时从点B 、点O 开始运动,设运动时间为t 秒,则在整个运动过程中直线l 与⊙C 最后一次相切时t =秒.三.解答题(本大题共8小题,共80分. 解答需写出必要的文字说明或演算步骤) 21.(12分)计算:① 8-||―2+(-12)0 ② (63-213+48)÷12 ③ 3a 2÷(-3a 2)×122a322.(16分)解方程:① x 2-10x +9=0 ② 2x 2-2x -5=0③ x 2+5=25x ④ x 2-(a +1)x +a =0 (a 为常数)23.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N . (1)求证:∠ADB =∠CDB ;A BC DN MPBO · CA (第14题图)(第15题图)A BCDE FO FEDC B A(第16题图)COPABxl y(第20题图)(2)若∠ADC =90︒,求证:四边形MPND 是正方形.24.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 甲 10 8 9 8 10 9 乙107101098(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环; (2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. 计算方差的公式:s 2=1n [(x 1--x )2+(x 2--x )2+…+(x n--x )2]25.(8分)已知□ABCD 的两边AB 、AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的边长为2,那么□ABCD 的周长是多少?26.(8分)把球放在长方体纸盒内,球的一部分露出盒外,如下所示为正视图.已知EF =CD =16厘米,求出这个球的半径.27.(10分)如图,AB 是⊙O 的直径,AB =4,过点B 作⊙O 的切线,C 是切线上一点,且BC =2,P 是线段OA 上一动点,连结PC 交⊙O 于点D ,过点P 作PC 的垂线,交切线BC 于点E ,交⊙O 于点F ,连结DF 交AB 于点G .(1)当P 是OA 的中点时,求PE 的长; (2)若∠PDF =∠E ,求△PDF 的面积.CA BD OP EFG28. (10分)已知A (23,0),直线y =(2-3)x -2与x 轴交于点F ,与y 轴交于点B ,直线l ∥AB 且交y 轴于点C ,交x 轴于点D ,点A 关于直线l 的对称点为A ′,连接AA ′、A ′D .直线l 从AB 出发,以每秒1个单位的速度沿y 轴正方向向上平移,设移动时间为t . (1)求点A ′ 的坐标(用含t 的代数式表示); (2)求证:AB =AF ;(3)过点C 作直线AB 的垂线交直线y =(2-3)x -2于点E ,以点C 为圆心CE 为半径作⊙C ,求当t 为何值时,⊙C 与△AA ′D 三边所在直线相切?O xyCAA ′BDF初三数学期中考试参考答案与评分标准一、选择题(每题3分)A C D B D D A C A B 二、填空题(每空2分)11. < 12. a (a +3)(a -3) 13. 4 14. 19º 15. 316. 45º 17. 75º或15º 18. k ≤14 19. 6或-2 20. 267三、解答题21. ①原式=22-2+1=2+1 ②原式=3-13+2=423③原式=-163a 2×2×2a a ×3=-a322. ① x 1=1,x 2=9 ② x 1,2=1±112 ③x 1=x 2=5④x 1=a , x 2=1…………………………………(21、22每小题4分,分步酌情给分) 23. (1)易证△ABD ≌△CBD (SAS )………………………………………………(3分)∴∠ADB =∠CDB ……………………………………………………………(4分) (2)∵∠ADB =∠CDB ,且PM ⊥AD ,PN ⊥CD ,∴PM =PN ……………………(5分)又∵∠ADC =∠PMD =∠PND =90º,∴四边形MPND 是矩形………………(7分) 而PM =PN ,∴矩形MPND 是正方形……………………………………(8分)24.(1)9,9 ……………………………………………………………………………(2分)(2)s 2甲=16[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=16(1+1+0+1+1+0)=23 ………………………………………………(4分) s 2乙=16[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=16(1+4+1+1+0+1)=43………………………………………………(6分) (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲.………(8分)25.(1)令△=m 2-4(m 2-14)=m 2-2m +1=(m -1)2=0……………………………… (2分)∴m =1,此时菱形边长为12…………………………………………………… (4分)(2)当AB =2时,22-2m +m 2-14=0……………(5分)解得m =52………… (6分)∴C =2(AB +AD )=2m =5…………………………………………………… (8分)26. 由题意,⊙O 与BC 相切…………………………………………………………… (1分) 不妨记切点为G ,作直线OG ,分别交AD 、劣弧 ⌒EF于点H 、I ,再连结OF ……(2分) 在矩形ABCD 中,AD ∥BC ,而IG ⊥BC ,∴IG ⊥AD ……………………………(3分)∴在⊙O 中,FH =12EF =8…………………………………………………………(4分)设求半径为r ,则OH =16-r ,在Rt △OFH 中,r 2-(16-r )2=82……………(6分)A (P )BD COF EABCEDF G O (P )(第26题图)(第27题图①)(第27题图②)解得r =10,这个球的半径是10厘米……………………………………………(8分)27.(1)当P 是OA 的中点时,PB =3………………………………………………(1分) ∵CE 是⊙O 的切线,∴AB ⊥CE ……………………………………………(2分)又∵CP ⊥PE ,∠CPB =∠E ,∴△CBP ∽△PBE …………………………(3分)∴CB BP =PB BE ,∴BE =PB 2BC =92…………………………………………………(4分) ∴在Rt △PBE 中,PE =32+(92)2=3132……………………………………(5分)(2)在Rt △PDG 中,由∠PDF =∠E =∠CPB ,可知∠GPF =∠GFP于是GD =GP =GF ……………………………………………………………(6分) 直径AB 平分弦DF ,有两种可能.(ⅰ)弦DF 不是直径,如图①,则AB ⊥DF ,于是PD =PF ,∠GPD =∠GDP =45º∴BP =BC =2=BO ,点P 与点O 重合. S △PDF =12×2×2=2………………(8分)(ⅱ)弦DF 恰为直径,如图②,则点P 即为点A . 而BC =2,BP =4,∴BE =8S △PCE =12×10×4=20,∴S △PDF =(410)2×20=165……………………………(10分)28.(1)∵A (23,0),B (0,-2),∴∠OAB =30°……………………………………(1分)∵点A 关于直线l 的对称点为A ’,且l ∥AB ,∴DA ’=DA ,∠A ’DA =2∠OAB =60° 可得等边△A ’DA ,其中A ’A =2BC =3t ,∴A ’(23-3t 2,3t2)…………(3分) (2)∵F (4+23,0),A (23,0),B (0,-2),∴AF =4,AB =4,∴AB =AF (5分)(3)∵直线l 是点A 和A ’的对称轴,∴直线l 是∠A ’DA 的平分线,∴点C 到直线AD 和A ’D 的距离相等,∴当⊙C 与AD (x 轴)相切时,也一定与A ’D 相切.图①∵∠OAB =30°且AB =AF ,∴∠ABF =15°,∴∠CBF =75°=∠CEB ,∴CB =CE . 题中所指CE 为半径,即以CB 为半径.又⊙C 与AD 相切,∴CO =CE =CB ,∴t =1………………………………(7分) 如图②,当⊙C 与AA ’相切于点M 时,DM =2(t -2)+t =3t 2,解得t =83…(10分)综上所述,符合要求的t 的值有两个,t =1或83.C图1 图2。
江苏省无锡市锡山区九年级(上)期中数学试卷
第 4 页,共 18 页
27. 图 1 是某奢侈品牌的香水瓶.从正面看上去(如图 2),它可以近似看作⊙O 割去 两个弓形后余下的部分与矩形 ABCD 组合而成的图形(点 B、C 在⊙O 上),其中 BC∥EF;从侧面看,它是扁平的,厚度为 1.3cm.
命中环数
6 7 8 9 10
甲命中相应环数的次数
01310
乙命中相应环数的次数
20021
1 根据上述信息可知:甲命中环数的中位数是
环,乙命中环数的众数是
环;
2 试通过计算说明甲、乙两人的成绩谁比较稳定? 3如果乙再射击 1 次,命中 8 环,那么乙射击成绩的方差会
.(填“变
大”、“变小”或“不变”)
②如果 G(0,t)是⊙O 的关联点,则 t 的取值范围是
;
2 如果线段 EF 上每一个点都是⊙O 的关联点,那么⊙O 的半径 r 最小为
;
(3)Rt△ABC 中(如图 2),∠C=90°,BC=8,∠A=30°,⊙P 的半径为 1,当点 P
第 5 页,共 18 页
运动时,始终确保△ABC 的三条边中至少有一条边上恰好有唯一的⊙P 的关联点.请 你
3.【答案】C
【解析】
解:13 个不同的分数按从小到大排序后,中位数及中位数之后的共有 7 个数, 故只要知道自己的分数和中位数就可以知道是否获奖了. 故选:C. 由于比赛取前 6 名参加决赛,共有 13 名选手参加,根据中位数的意义分析即 可. 本题考查了方差和标准差的意义.方差是用来衡量一组数据波动大小的量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省无锡市锡山区九年级(上)期中数学试卷一、选择题(本大题共有10小题,每题3分,共30分.每小题只有一个选项是正确的,请将正确选项前的字母代号写在答题卷的相应位置上.)1.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.ax2+bx+c=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=02.(3分)如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°3.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个4.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.35.(3分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=54007.(3分)下列命题是真命题的是()A.垂直于圆的半径的直线是圆的切线B.经过半径外端的直线是圆的切线C.直线上一点到圆心的距离等于圆的半径的直线是圆的切线D.到圆心的距离等于圆的半径的直线是圆的切线8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.4﹣πC.πD.(4﹣π)a210.(3分)如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A.B.﹣1 C.D.二、填空题(本大题共8小题,每空2分,共16分.请把答案直接填写在答题卷相应位置上)11.(2分)已知=,则=.12.(2分)近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为.13.(2分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.14.(2分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=°.15.(2分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.16.(2分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(2分)如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x﹣2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a的取值范围是.18.(2分)如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC 在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为.三、解答题(本大题共有10小题,共84分.请在答题卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(12分)(1)3y(y﹣1)=2(y﹣1)(2)(x﹣1)(x+2)=70(3)2y2﹣3=4y(配方法)20.(6分)小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.(6分)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为(结果保留根号);②的长为(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.(6分)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O 的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.(8分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.(8分)某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)26.(10分)如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标.27.(10分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.(10分)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.(1)当r=4时,①在P1(0,﹣3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是;②若点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y 轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是.2016-2017学年江苏省无锡市锡山区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每题3分,共30分.每小题只有一个选项是正确的,请将正确选项前的字母代号写在答题卷的相应位置上.)1.(3分)下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1 B.ax2+bx+c=0C.x(x﹣1)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2﹣x﹣1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选:C.2.(3分)如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°【解答】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.3.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个【解答】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选:D.4.(3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.5.(3分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选:A.6.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=5400【解答】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.7.(3分)下列命题是真命题的是()A.垂直于圆的半径的直线是圆的切线B.经过半径外端的直线是圆的切线C.直线上一点到圆心的距离等于圆的半径的直线是圆的切线D.到圆心的距离等于圆的半径的直线是圆的切线【解答】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选:D.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【解答】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.4﹣πC.πD.(4﹣π)a2【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1﹣)=4﹣π.故选:B.10.(3分)如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A.B.﹣1 C.D.【解答】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO﹣OP=﹣1.故选:B.二、填空题(本大题共8小题,每空2分,共16分.请把答案直接填写在答题卷相应位置上)11.(2分)已知=,则=.【解答】解;由=,得=.由合比性质,得=.=,故答案为:.12.(2分)近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为7000(1+x)2=8500.【解答】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.13.(2分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.14.(2分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=67.5°.【解答】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°﹣∠ACO﹣∠OCD=67.5°.故答案是:67.5°.15.(2分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.16.(2分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.【解答】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.17.(2分)如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x﹣2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a的取值范围是1﹣≤a≤1+.【解答】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x﹣2,∴B(1,0),D(0,﹣2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1﹣≤a≤1+,故答案为:1﹣≤a≤1+.18.(2分)如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC 在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为(﹣,).【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴==,即==.∴DF=,AF=.∴OF=﹣1=.∴点D的坐标为(﹣,).故答案为:(﹣,).三、解答题(本大题共有10小题,共84分.请在答题卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(12分)(1)3y(y﹣1)=2(y﹣1)(2)(x﹣1)(x+2)=70(3)2y2﹣3=4y(配方法)【解答】解:(1)∵3y(y﹣1)=2(y﹣1),∴(y﹣1)(3y﹣2)=0,∴y﹣1=0或3y﹣2=0,∴y1=1,y2=;(2)∵(x﹣1)(x+2)=70,∴x2+x﹣2=70,∴x2+x﹣72=0,∴(x+9)(x﹣8)=0,∴x+9=0或x﹣8=0,∴x1=﹣9,x2=8;(3)∵2y2﹣3=4y,∴2(y2﹣2y+1﹣1)﹣3=0,∴2(y﹣1)2=5,y=1±,y1=1+,y2=1﹣.20.(6分)小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).【解答】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)21.(6分)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.【解答】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为2(结果保留根号);②的长为π(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.【解答】解:(1)如图所示:连接AC,作线段AC的垂直平分线OE,交正方形网格于点O,则O点即为⊙O 的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴△AGO≌△OFC(SSS)∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.23.(6分)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O 的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.24.(8分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).【解答】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°﹣30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆﹣(S△ABC﹣S扇形AEC),=π﹣×2×+,=﹣2,答:图中阴影部分的面积是﹣2.25.(8分)某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)【解答】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=﹣0.1x+8,根据题意,得:(x﹣20)(﹣0.1x+8)﹣40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.26.(10分)如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标.【解答】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10﹣4t,解得,t=,此时CP=2×=,∴AP=8﹣=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10﹣4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10﹣4t)=6﹣t,PE=(10﹣4t)﹣2t=8﹣t﹣2t=8﹣t,由勾股定理得,(6﹣t)2+(8﹣t)2=(2t)2,整理得:36t2﹣140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10﹣4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10﹣4t)=6﹣t,PF=2t﹣(10﹣4t)=t﹣8,则(6﹣t)2+(t﹣8)2=(10﹣4t)2,整理得,21t2﹣40t=0,解得,t1=,t2=0(舍去),此时,AP=8﹣×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6﹣=,G的坐标为(8,).27.(10分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.【解答】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE=6,∵∠EAD+∠BAE=90°,∠BAE=∠BEF,∴∠EAD+∠BEF=90°,∵∠BEF+∠F=90°,∴∠EAD=∠F∵∠ADE=∠FBE∴△ADE∽△FBE,∴,,∴BF=30;(2)①如图1,将矩形ABCD和直角△FBE以CD为轴翻折,则△AMH即为未包裹住的面积,∵Rt△F′HN∽Rt△F′EG,∴=,即解得:HN=3,=•AM•MH=×12×24=144;∴S△AMH②如图2,将矩形ABCD和Rt△ECF以AD为轴翻折,∵Rt△GBE∽Rt△GB′C′,∴,即,解得:GB′=24,=•B′C′•B′G=×12×24=144,∴S△B′C′G∴按照两种包裹方法的未包裹面积相等.28.(10分)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.(1)当r=4时,①在P1(0,﹣3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是P2,P3;②若点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为(4,﹣2)或P(﹣4,6);(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y 轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是0<r<或r>2+2.【解答】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y﹣2)2=(4)2,即,x2+(y﹣2)2=32,把P1(0,﹣3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=﹣x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=﹣x+2代入x2+(y﹣2)2=32,得x2+x2=32,解得x=±4,∴y=﹣2或6,∴P(4,﹣2)或P(﹣4,6).故答案为:(4,﹣2)或P(﹣4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=﹣x+5上,∴设P(p,﹣p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(﹣p+5﹣2)2=(p+2)2,解得:P1=5+2,P2=5﹣2,∴P1(5+2,﹣2),P2(5﹣2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|﹣2﹣2|=4+4或2|2﹣2|=4﹣4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT﹣DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=﹣x+8,DT所在的直线为:y=x﹣2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT﹣DE1=DT﹣DE=3﹣2=,∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE2=HD+DE=+2=2+2,∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。