沪科版数学7上第1章有理数测试卷

合集下载

沪科版七年级上数学《第1章有理数》单元测试(含答案)

沪科版七年级上数学《第1章有理数》单元测试(含答案)

《有理数》单元测试一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1062.﹣2的倒数是()A.2B.﹣3C.﹣ D.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣84.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.36.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣17.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.18.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和19.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.211.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为.14.计算﹣2+3×4的结果为15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.2.﹣2的倒数是()A.2B.﹣3C.﹣ D.【解答】解:﹣2的倒数是﹣.故选:C.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣8【解答】解:(﹣16)÷=(﹣16)×2=﹣32,故选:B.4.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个D.4个【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.3【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.6.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣1【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选:D.7.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.1【解答】解:设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故选:C.8.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C 错误,故选:C.9.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,a c<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.10.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.2【解答】∵x△(1△3)=2,x△(1×2﹣3)=2,x△(﹣1)=2,2x﹣(﹣1)=2,2x+1=2,∴x=.11.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选:D.12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9【解答】解:当n是偶数时,原式=1×(﹣1+1+3+6)=9,当n是奇数时,原式=﹣1×(﹣1+1﹣3﹣6)=9.故选:A.二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为﹣2.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.14.计算﹣2+3×4的结果为10【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为465【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故答案为:465.三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?【解答】解:(1)由题意得,b=1,c﹣5=0,a+b=0,则a=﹣1,b=1,c=5;(2)设x秒后点A与点C距离为12个点位长度,则x+5x=12﹣6,解得,x=1,答:1秒后点A与点C距离为12个点位长度.18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)【解答】解:(1)原式=﹣6+3+6=3;(2)原式=﹣×(﹣)×=1;(3)原式===2.2.21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)m∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D 的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.。

七年级数学(沪科版)上册第一章 有理数单元测试题(含答案)

七年级数学(沪科版)上册第一章 有理数单元测试题(含答案)

第一章有理数单元测试一、选择题(共10小题)1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A. B. -2 C. 0 D. ﹣3.4【答案】D2.下列四个数中,其倒数的相反数是正整数的是()A. 3B.C. -2D.【答案】D3.2018年五一小长假,杭州市公园、景区共接待游客总量617.57万人次,用科学计数法表示617.57万的结果是( )A. B. C. D.【答案】B4.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论正确的是()A. a+b>0B. a+b<0C. a﹣b=0D. a﹣b>0【答案】B5.若有理数a与3互为相反数,则a的值是()A. 3B. -3C.D. -【答案】B6.数据26000用科学记数法表示为2.6×10n,则n的值是()A. 2B. 3C. 4D. 5【答案】C7.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A. 美美 B. 多多 C. 田田 D. 乐乐【答案】D8.下列说法中正确的是()A. 减去一个数等于加上这个数B. 两个相反数相减得0C. 两个数相减,差一定小于被减数D. 两个数相减,差不一定小于被减数【答案】D9.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷×(﹣2)=16.其中正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】C10.下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D二、填空题(共10小题)11.若约定向北走5km记作+5km,那么向南走3km记作________ km.【答案】﹣312.比较大小:4 ________5【答案】<13.若x=4,则|x﹣5|=________.【答案】114.(2016•镇江)计算:(﹣2)3=________.【答案】-815.设[x]表示不超过x的最大整数,计算[2.7]+[﹣4.5]=________.【答案】﹣316.到原点的距离不大于3的整数有________ 个【答案】717. 截止2017年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________【答案】3.39×10918.﹣1减去与的和,所得的差是________【答案】19.数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,那么两点所表示的有理数的和与10的差是________【答案】—1120.对有理数a、b定义运算“﹡”如下:a﹡b= ,则(﹣3)﹡4=________.【答案】-12三、解答题(共5题)21.写出数轴上所有大于-4,且小于2的整数;【答案】—3、—2、—1、0、122.规定a※b=a﹣b,求4※(﹣6)的值.【答案】解:4※(﹣6)=4﹣(﹣6)=4+6=10.23.计算:(1)4×(﹣5)+|5﹣8|+24÷(﹣3)(2).【答案】(1)解:原式=﹣20+3﹣8=﹣25(2)解:原式=﹣1﹣=﹣24.今年的“十•一”黄金周是8天的长假,某风景区在8天假期中每天旅游人数变化如表(正号表示人数比前一天多,符号表示比前一天少)(1)若9月30日的游客人数为4.2万人,则10月4日的旅客人数为________万人;(2)八天中旅客人数最多的一天比最少的一天多________万人?(3)如果每万人带来的经济收入约为100万元,则黄金周八天的旅游总收入约为多少万元?【答案】(1)4.9(2)4.3(3)解:根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).25.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+19、﹣3 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【答案】(1)解:+8﹣9+4+7﹣2﹣10+19﹣3=14,东边14千米(2)解:(+8+|﹣9|+4+7+|﹣2|+|﹣10|+19+|﹣3|)×0.3=18.3升,答:从A地出发到收工时,共耗油18.3升。

沪科版七年级上册数学第1章 有理数 含答案

沪科版七年级上册数学第1章 有理数 含答案

沪科版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.0既不是整数也不是分数B.整数和分数统称为有理数C.一个数的绝对值一定是正数 D.绝对值等于本身的数是正数2、下列算式中,积为负数的是().A. B. C. D.3、的相反数是()A.2019B.C.﹣2019D.4、若与|x﹣y﹣3|互为相反数,则x+y的值为()A.27B.9C.12D.35、下列四个式子中,结果为负数的是()A.(﹣1)2B.(﹣1)×(﹣2)C.(﹣1)+(﹣2)D.(﹣1)﹣(﹣2)6、下列说法正确的有()①一个数的相反数不是正数就是负数;②海拔表示比海平面低;③负分数不是有理数;④由两条射线组成的图形叫做角;⑤把一个角放到一个放大5倍的放大镜下观看,角的度数也扩大5倍.A.0个B.1个C.2个D.3个7、的绝对值是()A. B. C. D.8、的相反数是()A. B. C. D.69、飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作()A.﹣8米B.+8米C.﹣15米D.+15米10、-2016 的相反数是()A.2015B.-2016C.2016D.-1/201611、用科学记数法表示:﹣208000 是()A.2.08×10 5B.﹣2.08×10 5C.﹣2.08×10 6D.2.08×10 612、已知m、n互为相反数,c,d互为倒数,a到原点的距离为1,求3m+3n+2cd+a的值为()A.3B.1C.3或1D.不能确定13、下列说法正确的是( )①任何一个有理数的平方都是正数②任何一个有理数的绝对值都是非负数③如果一个有理数的倒数等于它本身,那么这个数是1④如果一个有理数的相反数等于它本身,那么这个数是0A.①④B.②③C.③④D.②④14、在0,-1,1,2这四个数中,绝对值最小的数是A.-1B.0C.1D.215、数轴上点 A , B 表示的数分别是5,-2,它们之间的距离可以表示为( )A. B. C. D.二、填空题(共10题,共计30分)16、已知点在数轴上原点左侧,距离原点个单位长度,点到点的距离为个单位长度,则点对应的数为________.17、已知a、b为有理数,且a<0,b>0,a+b<0,将四个数a、b、-a、-b按从小到大的顺序排列是________18、已知2,-3,-4,6四个数,取其中的任意三个数求和,和最小是________.19、设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是________.20、已知a、b、c在数轴上的位置如图,则|c﹣a|+|a﹣b|=________.21、正在建设杭海城际铁路全长46.301公里,工程总投资136亿元,设车站12座,预计6月建成并投入运营,今后从杭州到海宁只需约半小时.其中136亿元用科学记数法表示为________ 元.22、由于末异于往年的降雨量,东非多国在初遭遇了史无前例的蝗灾.联合国粮农组织认为,蝗灾加剧了疫情下全球粮食安全的风险,结合世界银行此前给出的数据,测算出东非蝗灾对农作物造成的直接经济损失约为8500000000美元,用科学记数法可表示为________美元.23、若|x﹣2|+(y+3)2=0,则(x+y)2016=________.24、比较大小:①−________ ;②________25、﹣3 的倒数是________.三、解答题(共5题,共计25分)26、已知,,互为相反数,求的值.27、若|a+2|+(b﹣3)2=0,求(a+b)2016的值.28、如图是一条不完整的数轴,请你补充完整,并在数轴上标出下列各数,然后把这些数用“<”连接起来:,,.29、若a、b互为相反数,c、d互为倒数,m的绝对值为2,求代数式的值.30、下列各数填入相应的大括号里:,,,,,,,,,…①正数集合:{…};②整数集合:{…};③负数集合:{…};④分数集合:{…}.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、A5、C6、B7、D9、C10、C11、B12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

沪科版七年级数学上册《第1章有理数》单元测试题含答案

沪科版七年级数学上册《第1章有理数》单元测试题含答案

第1章 有理数一、选择题(每小题4分,共32分)1.如果盈利5%记作+5%,那么-3%表示( ) A .亏损3% B .亏损8% C .盈利2% D .少赚3% 2.下列运算正确的是( ) A .-(-2)2=-4 B .(-3)2=6 C .-|-3|=3 D .(-3)2=-2 3.0.2的相反数的倒数是( ) A.15 B .-15 C .-5 D .5 4.下列说法中正确的是( ) A .0不是有理数B .有理数不是整数就是分数C .在有理数中有最小的数D .若a 是有理数,则-a 一定是负数5.有理数a ,b 在数轴上的对应点如图1所示,则下面式子中正确的是( ) ①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .图1A .①②B .①④C .②③D .③④6.已知一个数a 的近似值为1.50,那么a 的准确值的范围是( ) A .1.495<a <1.505 B .1.495≤a <1.505 C .1.45≤a <1.55 D .1.45<a <1.557.某时刻北京、上海、重庆、宁夏的气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃,则此时这四个城市中气温最低的是( )A .北京B .上海C .重庆D .宁夏8.观察下面各正方形内的数,推测m 的值是( )图2A .38B .52C .66D .74 二、填空题(每小题4分,共24分)9.若一种大米的包装袋上标有“(10±0.5)千克”的字样,则两袋这种大米的质量最多相差________千克.10.若一个数的平方等于这个数的立方,则这个数是________.11.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是________,最小的积是________. 12.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为________吨.13.将长方形的纸片对折一次,有1条折痕;再沿相同方向对折一次,有3条折痕;再沿相同方向对折一次,就有7条折痕;若再对折一次,有________条折痕.14.现规定一种运算:a ⊗b =ab -12(a -b ),其中a ,b 为有理数,则3⊗(-16)的值是________.三、解答题(共44分) 15.(16分)计算: (1)-12+11-8+39;(2)(-2.5)÷⎝ ⎛⎭⎪⎫-54×⎝ ⎛⎭⎪⎫-32;(3)(14+16-12)×(-12);(4)-12+3×(-2)3-(-6)÷(-13)2.16.(6分)小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演.在会演前,主持人让她们自己确定出场顺序,可她们俩争着先出场.最后主持人想了一个主意,如图3所示.-|-4| -0.2的倒数 0的相反数 (-1)5比-2大52的数图317.(6分)我们把“如果a =b ,那么b =a ”称为等式的对称性.(1)根据等式的对称性,由分配律m(a+b+c)=am+bm+cm可得到等式:____________________;(2)利用(1)中的结论,求-8.57×3.14+1.81×3.14-3.24×3.14的值.18.(8分)已知每袋小麦的标准质量为90千克.10袋小麦的称重记录(单位:千克)如图4所示:图4与标准质量比较,10袋小麦总计超过多少千克?10袋小麦的总质量是多少?小明是这样做的:先计算10袋小麦的总质量:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=________(千克);再计算总计超过多少千克:________-90×10=________(千克).(1)请你把小明的解答过程补充完整;(2)你还有其他的方法吗?请写出解答过程.19.(8分)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1.仿照以上推理计算1+3+32+33+…+32018的值.1.A 2.A3.C 4.B 5.B 6.B7.D8.D 9.1 10.0或112.8×101013.15 14.-211215.解:(1)原式=(-12-8)+(11+39)=-20+50=30. (2)原式=-52×45×32=-3.(3)原式=14×(-12)+16×(-12)-12×(-12)=-3-2+6=1.(4)原式=-1+3×(-8)-(-6)×9=-1-24+54=29.16.解:因为-|-4|=-4,-0.2的倒数为-5,0的相反数是0,(-1)5=-1,比-2大52的数是-2+52=0.5,在数轴上表示略.-5<-4<-1<0<0.5.17.解:(1)am +bm +cm =m (a +b +c )(2)原式=3.14×(-8.57+1.81-3.24)=3.14×(-10)=-31.4. 18.解:(1)905.4 905.4 5.4(2)有.如将超出标准质量的千克数记为正,不足标准质量的千克数记为负,再计算,具体过程略.19.解:设M =1+3+32+33+…+32018①,①式两边都乘3,得3M =3+32+33+34+…+32019②.②-①,得2M =32019-1,两边都除以2,得M =32019-12.即1+3+32+33+…+32018=32019-12.。

沪科版七年级上册数学第1章 有理数含答案

沪科版七年级上册数学第1章 有理数含答案

沪科版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、下面的时间最接近你年龄的是()A.6000时B.6000分C.600月D.600周2、下列各式正确的是()A. B.C. D.3、如图,数轴上E、F、G、H四点对应着四个连续整数,分别是e、f、g、h,且,那么原点的位置应该是( )A.点EB.点FC.点GD.点H4、中国首次火星探测任务天问一号探测器在2月10日成功被火星捕获,成为中国第一颗人造火星卫星,并在距离火星约11000米处,拍摄了火星全景图像.将11000用科学记数法表示应为()A. B. C. D.5、对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0B.a>0,b<0且|b|<aC.a<0,b>0且|a|<bD.a>0,b<0且|b|>a6、下列说法中:① 若a<0时,a3=-a3;② 若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③ 若a、b互为相反数,则;④ 当a≠0时,|a|总是大于0;其中正确的说法个数是()A.1B.2C.3D.47、2020的倒数是().A. B.- C.2020 D.-20208、有理数a,b在数轴上的位置如下图所示,则下列判断正确的是()A.a+b>0B.a﹣b<0C.﹣a<﹣bD.﹣a+b<09、如图所示的图形为四位同学画的数轴,其中正确的是()A. B. C.D.10、﹣2015的相反数是()A.2015B.-2015C.D.-11、如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是()A.点AB.点BC.点CD.点D12、﹣32=()A.﹣3B.﹣9C.3D.913、哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃14、已知|a|=3,|b|=5,且ab<0,那么a+b的值等于( )A.8B.﹣2C.8或﹣8D.2或﹣215、在中,负数共有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、将数6260000用科学记数法表示为________ 。

2024~2025学年沪科版数学七年级上册第1章有理数单元自测卷(含答案)

2024~2025学年沪科版数学七年级上册第1章有理数单元自测卷(含答案)

沪科版七上《有理数》单元自测卷一、单选题1. 若一个数的相反数是−9,则该数为( )A :−19B :19C :−9D :92. 下列各数中:0.4 、−(−5)、−(+7)、38、0、π、−1911非负有理数有()个A :1个B :2个C :3个D :4个3. 下列选项中可以表示−2⁵的是( )A :B :C :D :4. 计算( )A :-1B :-17C :1D :175. 下列说法中正确的是( )A :绝对值等于本身的数是非正数B :相反数等于本身的数有且只有0C :倒数等于本身的数有、0D :最小的自然数是16. 绝对值小于2024的整数有( )个A :4046B :4047C :4048D :40497. 已知m 、n 互为相反数,x 、y 互为倒数,a 的绝对值为3,则m +n−3xy +a的值为( )A :-6B :0C :0或-6D :0或622222⨯⨯⨯⨯-)()()()()(22222-⨯-⨯-⨯-⨯-22222-----)()()()()(22222-+-+-+-+-=---2332)()(1±8. 若,则关于a 、b 下列说法错误的是()A :必然一正一负B :负数的绝对值大于正数的绝对值C :a b <0D :9. 数轴上点M 、N 到原点的距离分别为6、8,则点M 、N 之间的距离为()A :2B :14C :2或14D :2或-1410. 已知的结果为( )A :-3或1 B :3或1 C :3或-1 D :-3或-1二、填空题11. 数1520000000用科学计数法表示为_________12. 化简:13. 数轴上互为相反数的两点间距离为10,则这两点的数为_________14. 已知,_________15. 已知x 、y 互为相反数,则的值为_________三、解答题16. 计算:① ② ③ 00<,且<b a ab +0<b a -c c b b a a abc ++则<,0=---)(34,5==n m =+mn n m ,则>0y y y y y x x x x x +++++++++23420242024432 =÷-⨯-59312)()(=⨯-+÷+---8144135122024)()()(=-⨯+-)((6015412113117. 已知m 、n 满足:①求出m 、n 的值;②分别计算出的值18. 规定一种新的运算方式:,例如,求:①②19. 体育课上老师随机挑选6位同学进行跳绳检查,以一分钟跳100个为标准,六位同学的成绩依次如下:-9、+14、+27、-13、0、+5(1)六位同学中哪位同学跳的最多?哪位同学跳的最少?跳的最多与跳的最少的相差多少?(2)六位同学的总成绩是否达标?超过或不足标准多少个?20. 如图,请回答下列问题:(1)比较大小:_____ ; _____(2)请用“>”连接(3)化简:沪科版七上《有理数》单元自测卷04)32=-++n m ())((m n m n m n +-、xy y x y x -+-=⊕3210910392109⨯-⨯+⨯-=⊕32⊕)(5121⊕⊕-b 2-a -bcb ac b a ---、、、、、ba a c cb ++---1.若一个数的相反数是−9,则该数为()A :−19B :19C :−9D :9答案:D 2.下列各数中:0.4 、−(−5)、−(+7)、38、0、π、−1911非负有理数有( )个A :1个 B :2个 C :3个 D :4个答案:D3.下列选项中可以表示−2⁵的是( )A :B :C :D :答案:A4.计算( )A :-1B :-17C :1D :17答案:B5.下列说法中正确的是( )A :绝对值等于本身的数是非正数B :相反数等于本身的数有且只有0C :倒数等于本身的数有、0D :最小的自然数是1答案:B6.绝对值小于2024的整数有( )个A :4046B :4047C :4048D :4049答案:B7.已知m 、n 互为相反数,x 、y 互为倒数,a 的绝对值为3,则m +n−3xy +a的值为( )A :-6B :0C :0或-6D :0或6答案:C8.若,则关于a 、b 下列说法错误的是( )A :必然一正一负B :负数的绝对值大于正数的绝对值C :a b <0D :答案:D9.数轴上点M 、N 到原点的距离分别为6、8,则点M 、N 之间的距离为()A :2 B :14 C :2或14 D :2或-14 22222⨯⨯⨯⨯-)()()()()(22222-⨯-⨯-⨯-⨯-22222-----)()()()()(22222-+-+-+-+-=---2332)()(1±00<,且<b a ab +0<b a -10.已知的结果为( )A :-3或1B :3或1C :3或-1D :-3或-1答案:A 二、填空题11.数1520000000用科学计数法表示为_________答案:1.52×10⁹12.化简:答案:313.数轴上互为相反数的两点间距离为10,则这两点的数为_________答案:5、-514.已知,_________答案:20或-2015.已知x 、y 互为相反数,则的值为_________答案:0三、解答题16.计算:−15④ 11⑤ 1917.已知m 、n 满足:①求出m 、n 的值;②分别计算出的值答案:(1)m=-3 ;n=4 ;(2)81、718.规定一种新的运算方式:,例如,求:c c b b a aabc ++则<,0=---)(34,5==n m =+mn n m ,则>0y y y y y x x x x x +++++++++23420242024432 =÷-⨯-59312)((=⨯-+÷+---8144135122024)()()(=-⨯+-)((6015412113104)32=-++n m ())((m n m n m n +-、xy y x y x -+-=⊕3210910392109⨯-⨯+⨯-=⊕②答案:(1)-1 ; (2)3419.体育课上老师随机挑选6位同学进行跳绳检查,以一分钟跳100个为标准,六位同学的成绩依次如下:-9、+14、+27、-13、0、+5(3)六位同学中哪位同学跳的最多?哪位同学跳的最少?跳的最多与跳的最少的相差多少?(4)六位同学的总成绩是否达标?超过或不足标准多少个?答案:(1)第三位同学跳的最多,127个;第四位同学跳的最少,87个;相差127-87=30个;(5)-9+14+27-13+0+5=24(个),故达标,超过标准24个。

《有理数》沪科版七年级上册单元测试卷(含解析)

《有理数》沪科版七年级上册单元测试卷(含解析)

第1章有理数一、选择题(每题4分,共40分)1.在﹣5,0,﹣3,6这四个数中,最小的数是()A.﹣3B.0C.﹣5D.62.当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x 3.2.0151精确到百分位是()A.2.0B.2.01C.2.015D.2.024.的相反数是()A.B.C.D.5.三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为()A.125×104B.12.5×105C.1.25×106D.0.125×107 6.若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2x D.27.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.a>b B.a>﹣b C.a<b D.﹣a<﹣b8.下面每组中的两个数互为相反数的是()A.﹣和5B.﹣2.5和2C.8和﹣(﹣8)D.和0.333 9.如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中|AB|=|BC|,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边10.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A.B.C.D.二、填空题(每题5分,共20分)11.(5分)取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈.12.(5分)若0<a<1,则a,a2,的大小关系是.13.(5分)观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.14.(5分)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是.三、计算题(每题8分,共16分)15.(8分)计算:(1)()×(﹣24);(2).16.(8分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2).四、解答题(17题10分、18题10分、19题12分、20题12分,共44分)17.(10分)若m>0,n<0,|n|>|m|,用“<”号连接m,n,|n|,﹣m,请结合数轴解答.18.(10分)有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.19.(12分)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?20.(12分)观察下列等式:①1﹣=;②﹣=;③﹣=;④﹣=;…(1)猜想并写出第n个算式:;(2)请说明你写出的算式的正确性:;(3)计算下列式子的值(写出过程)+++…+.参考答案与试题解析一、选择题(每题4分,共40分)1.在﹣5,0,﹣3,6这四个数中,最小的数是()A.﹣3B.0C.﹣5D.6【分析】根据负数都小于0,负数都小于正数,负数都小于正数,两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵负数都小于0,负数都小于正数,∴﹣5和﹣3小,∵|﹣5|=5,|﹣3|=3,5>3,∴﹣5<﹣3,即最小的数是﹣5,故选:C.2.当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【分析】采取取特殊值法,取x=,求出x2和的值,再比较即可.【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.3.2.0151精确到百分位是()A.2.0B.2.01C.2.015D.2.02【分析】根据近似数的精确度求解.【解答】解:2.0151≈2.02(精确到百分位).故选:D.4.的相反数是()A.B.C.D.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:根据相反数的定义,得的相反数是﹣.故选:D.5.三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为()A.125×104B.12.5×105C.1.25×106D.0.125×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1 250 000用科学记数法表示为1.25×106.故选:C.6.若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选:D.7.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.a>b B.a>﹣b C.a<b D.﹣a<﹣b【分析】根据数轴得出a,b的取值范围,即可得出答案.【解答】解:∵由数轴可知,|a|>b,a<0,b>0,∴a<b.故选:C.8.下面每组中的两个数互为相反数的是()A.﹣和5B.﹣2.5和2C.8和﹣(﹣8)D.和0.333【分析】根据只有符号不同的两数叫做互为相反数对各选项分析判断利用排除法求解.【解答】解:A、﹣和5不是互为相反数,故本选项错误;B、﹣2.5和2是互为相反数,故本选项正确;C、8与﹣(﹣8)=8相等,不是互为相反数,故本选项错误;D、和0.333不是互为负数,故本选项错误.故选:B.9.如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中|AB|=|BC|,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.10.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A.B.C.D.【分析】通过观察和分析数据可知:分子是定值1,分母的变化规律是:奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.据此规律判断即可.【解答】解:分子的规律:分子是常数1;分母的规律:第1个数的分母为:12+1=2,第2个数的分母为:22﹣1=3,第3个数的分母为:32+1=10,第4个数的分母为:42﹣1=15,第5个数的分母为:52+1=26,第6个数的分母为:62﹣1=35,第7个数的分母为:72+1=50,…第奇数项的分母为:n2+1,第偶数项的分母为:n2﹣1,所以第7个数是.故选:D.二、填空题(每题5分,共20分)11.(5分)取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈ 3.142.【分析】把圆周率π=3.1415926…的万分位上的数字进行四舍五入即可.【解答】解:圆周率π=3.1415926…≈3.142(精确到0.001).故答案为:3.142.12.(5分)若0<a<1,则a,a2,的大小关系是>a>a2.【分析】根据a的取值范围利用不等式的基本性质判断出a2,的取值范围,再用不等号连接起来.【解答】解:∵0<a<1,∴0<a2<a,∴>1,∴>a>a2.故答案为:>a>a2.13.(5分)观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是﹣128a8.【分析】根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n﹣1),a的指数为n.【解答】解:第八项为﹣27a8=﹣128a8.14.(5分)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.【分析】根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.【解答】解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.三、计算题(每题8分,共16分)15.(8分)计算:(1)()×(﹣24);(2).【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式第一项表示2平方的相反数,第二项利用绝对值的代数意义化简,最后一项从左到右依次计算,即可得到结果.【解答】(1)解:原式=﹣24×+24×﹣24×=﹣16+4﹣18=﹣30;(2)解:原式=﹣4+3+24×(﹣)×=﹣4+3﹣=﹣.16.(8分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2).【分析】(1)先算乘方、再算乘法,最后算加减即可;(2)先算括号里面的,再算乘方,除法,最后算加减.【解答】解:(1)原式=2×(﹣27)+12+15=﹣54+12+15=﹣27;(2)原式=4+(﹣3)×﹣1=4﹣2﹣1=1.四、解答题(17题10分、18题10分、19题12分、20题12分,共44分)17.(10分)若m>0,n<0,|n|>|m|,用“<”号连接m,n,|n|,﹣m,请结合数轴解答.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,n<﹣m<m<﹣n.18.(10分)有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:﹣3<﹣b<﹣2,1<a<2,∴1﹣3b<0,2+b>0,3b﹣2>0,∴原式=3b﹣1+4+2b﹣3b+2=2b+5.19.(12分)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?【分析】设该市规定的每户每月标准用水量为x吨,然后可得出方程,解出即可.【解答】解:设该市规定的每户每月标准用水量为x吨,∵12×1.5=18<20,∴x<12则1.5x+2.5(12﹣x)=20,解得:x=10.答:该市规定的每户每月标准用水量为10吨.20.(12分)观察下列等式:①1﹣=;②﹣=;③﹣=;④﹣=;…(1)猜想并写出第n个算式:﹣=;(2)请说明你写出的算式的正确性:﹣=﹣=;(3)计算下列式子的值(写出过程)+++…+.【分析】(1)根据所给出的等式找出规律,即可得出第n个算式是﹣=;(2)根据(1)得出的规律和分式的加减运算法则进行计算,即可得出答案;(3)根据(1)得出的规律﹣=,再把要求的式子进行整理,然后进行计算即可得出答案.【解答】解:(1)第n个算式:﹣=;(2)﹣=﹣=;(3)+++…+=1﹣﹣+﹣…+﹣=1﹣=.故答案为:﹣=;﹣=﹣=;。

沪科版七年级数学上册 第1章 有理数 单元测试卷(含解析)

沪科版七年级数学上册 第1章 有理数 单元测试卷(含解析)

沪科版七年级数学上册第 1章有理数单元测试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共40分) 1. 在−4,2,−1,3这四个数中,最小的数是( )A. −4B. 2C. −1D. 32. 当0<x <1时,x 2、x 、1x 的大小顺序是( )A. x 2<x <1xB. 1x <x <x 2C. 1x <x 2<xD. x <x 2<1x3. 8.近似数8.1754精确百分位,正确的是( )A. 8.2B. 8.17C. 8.18D. 8.1754.12相反数是( )A. −12B. 2C. −2D. 125. 预计2019年建成通车的沪通长江大桥全长约11100米,将11100用科学记数法表示为( ) A. 1.11×105B. 1.11×104C. 0.111×106D. 11.1×1036. 当1<a <2时,代数式√(a −2)2+|1−a|的值是( )A. −1B. 1C. 2a −3D. 3−2a7. 实数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A. a >bB. a >−bC. −a >−bD. −a <b8. 下面每组中的两个数互为相反数的是( )A. 15和5 B. −2. 5和212C. 8和−(−8)D. 13和0.333 9. 如图所示,数轴上的A 、B 、C 三点所表示的数分别为a ,b ,c ,其中|AB|=|BC|,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在( )A. 点A 的左边B. 点A 与点B 之间C. 点B 与点C 之间D. 点C 的右边10. 按规律排列的一列数:1,−2,4,−8,16…中,第7与第8个数分别为( )A. 64,−128B. −64,128C. −128,256D. 128,−256二、填空题(本大题共4小题,共20.0分)11.用四舍五入法,将圆周率π=3.1415926…精确到千分位,结果是______.12.若m是大于−2、小于−1的有理数,则m,1m,−m2之间的大小关系是______ .13.观察下面的单项式:2x,−4x2,8x3,−16x4,…根据你发现的规律,第n个式子是______.14.观察下列各等式:−2+3=1−5−6+7+8=4−10−11−12+13+14+15=9−17−18−19−20+21+22+23+24=16……根据以上规律可知第11行左起第一个数是______.三、计算题(本大题共2小题,共16分)15.计算:(1)(−4)×3+(−18)÷(−2)(2)−22+(23−34)×12(3)先化简,再求值:x2−(5x2−4y)+3(x2−y),其中x=−1,y=2.16.计算(1)57÷(−225)−57×512−53÷4×47(2)−14−(−2)3÷(−135)+|0.8−1|四、解答题(本大题共4小题,共44分)17.若m>0,n<0,|n|>|m|,用“<”连接m,n,|n|,−m,请结合数轴解答.18.有理数a、b、c在数轴上的位置如图,化简:|b−c|+|a+b|−|c−a|的值.19.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨,该市小明家5月份用水12吨,缴水费20元.请问:该市规定的每户每月标准用水量是多少吨?20.观察下面的变形规律:11×2=1−12;12×3=12−13;13×4=13−14;…解答下面的问题:(1)若n为正整数,请你猜想1n(n+1)=______;(2)证明你猜想的结论;(3)求和:11×2+12×3+13×4+⋯+12019×2020.答案和解析1.【答案】A【解析】【分析】根据正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小进行比较即可.【详解】解:根据负数小于0,负数小于正数可知−4最小,故选:A.【点睛】本题考查了有理数的大小比较,理解正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.2.【答案】A【解析】【分析】本题主要考查了不等式的性质的有关知识,先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又∵x<1,∴x2、x、1x 的大小顺序是:x2<x<1x.故选A . 3.【答案】C【解析】[分析]根据近似数的精确度求解. [详解]8.1754≈8.18(精确百分位). 故答案选C .[点睛]本题考查的知识点是近似数和有效数字,解题的关键是熟练的掌握近似数和有效数字.4.【答案】A【解析】解:12的相反数是−12, 故选:A .一个数的相反数就是在这个数前面添上“−”号.12的相反数是−12.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 5.【答案】B【解析】[分析]科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. [详解]11100的小数点向左移动4位得到1.11,所以11100用科学记数法表示为:1.11×104,故选B.[点睛]本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】B【解析】【分析】本题主要考查了绝对值,二次根式的性质与化简的应用,解题的关键是熟练掌握绝对值,二次根式的性质与化简的计算.根据绝对值、二次根式的性质与化简的计算,求出代数式√(a−2)2+|1−a|的值.【解答】解:∵1<a<2,∴a−2<0,1−a<0,∴√(a−2)2+|1−a|=2−a+a−1=1.故选B7.【答案】C【解析】【分析】此题主要考查了实数与数轴的对应关系,以及估算实数大小的能力,也利用了数形结合的思想.根据数轴得出a,b的取值范围,即可得出答案.【解答】解:∵由数轴可知,|a|>b,a<0,b>0,∴−a>−b.故选C.【解析】【分析】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.根据只有符号不同的两数叫做互为相反数对各选项分析判断利用排除法求解.【解答】A.1和5不是互为相反数,故本选项错误;5B.−2.5和21是互为相反数,故本选项正确;2C.8与−(−8)=8相等,不是互为相反数,故本选项错误;D.1和0.333不是互为相反数,故本选项错误.3故选:B.9.【答案】C【解析】【分析】本题考查了实数与数轴,理解绝对值的定义是解题的关键.根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【解析】【分析】本题考查数字的变化规律,通过观察、分析、归纳,发现其中的规律,并应用发现的规律解决问题.这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1.由此求得答案即可.【解答】解:这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1,所以第7个数为26=64,第8个数为−27=−128.故选:A.11.【答案】3.142【解析】【分析】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.根据近似数的精确度求解.【解答】解:将圆周率π=3.1415926…精确到千分位,结果是3.142.故答案为3.142.12.【答案】−m2<m<1m【解析】【分析】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.令m=−1.5,求出1m 与m=−1.5,求出1m与−m2的值,值,再比较出其大小即可.【解答】解:由题意,可以令m=−1.5,则1m =1−1.5=−23,−m2=−2.25,∵−2.25<−1.5<−23,∴−m2<m<1.m.故答案为:−m2<m<1m13.【答案】(−1)n+1⋅2n⋅x n【解析】【分析】本题考查了单项式的应用,解此题的关键是找出规律直接解答.先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(−1)1+1⋅21⋅x1;−4x2=(−1)2+1⋅22⋅x2;8x3=(−1)3+1⋅23⋅x3;−16x4=(−1)4+1⋅24⋅x4;第n个单项式为(−1)n+1⋅2n⋅x n,故答案为(−1)n+1⋅2n⋅x n.14.【答案】−122【解析】【分析】本题主要考查数字的变化规律,解题的关键根据已知等式得出第n行左起第1个数为−(n2+1)的普遍规律.根据已知等式得出第n行左起第1个数为−(n2+1),据此求解可得.【解答】解:由已知等式知第n行左起第1个数为−(n2+1),当n=11时,−(n2+1)=−(121+1)=−122,故答案为:−122.15.【答案】解:(1)(−4)×3+(−18)÷(−2)=−12+9=−3;(2)原式=−4+23×12−34×12=−4+8−9=−5;(3)原式=x 2−5x 2+4y +3x 2−3y=x 2−5x 2+3x 2+4y −3y=−x 2+y , 当x =−1,y =2时, 原式=−(−1)2+2=−1+2=1.【解析】(1)先计算乘除法,再计算加减即可得;(2)先计算乘方、利用乘法分配律去掉括号,再计算乘法,最后计算加减可得; (3)先根据整式的混合运算顺序和运算法则化简原式,再将x 、y 的值代入计算可得. 本题主要考查有理数的混合运算和整式的化简求值,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.16.【答案】解:(1)原式=57×(−512)−57×512−53×14×47=−2584−2584−521=−7084=−56;(2)原式=−1−(−8)×(−58)+15=−6+0.2=−5.8.【解析】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. (1)将除法变为乘法,再根据乘法运算法则进行运算,再进行加减即可;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如11 / 12 果有括号,要先做括号内的运算.17.【答案】解:因为n <0,m >0,|n|>|m|>0,∴n <−m <0,将m ,n ,−m ,|n|在数轴上表示如图所示:用“<”号连接为:n <−m <m <|n|.【解析】根据已知得出n <−m <0,|n|>|m|>0,在数轴上表示出来,再比较即可. 本题考查了有理数的大小比较,绝对值的应用,注意:在数轴上表示的数,右边的数总比左边的数大.18.【答案】解:由数轴可得,a <0<b <c ,|b|<|a|<|c|,∴b −c <0,a +b <0,c −a >0,∴|b −c|+|a +b|−|c −a|=c −b −a −b −c +a=−2b .【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简.此题考查了数轴,以及绝对值,正确判断出绝对值里边式子的正负是解本题的关键. 19.【答案】解:设该市规定的每户每月用水标准量为x 吨,∵1.5×12=18<20,∴12吨超过了标准水量,则1.5x +2.5(12−x)=20,解得x =10.答:该市规定的每户月用水标准量是10吨.【解析】本题考查一元一次方程的应用.设该市规定的每户每月标准用水量为x 吨,然后可得出方程,解出即可.20.【答案】(1)1n −1n+1(2)1n −1n+1=n+1n(n+1)−n n(n+1)=n+1−n n(n+1)=1n(n+1);【解析】解:(1)1n(n+1)=1n−1n+1;(2)见答案(3)见答案【分析】(1)观察规律可得:1n(n+1)=1n−1n+1;(2)根据分式加减法的运算法则求解即可证得结论的正确性;(3)利用上面的结论,首先原式可化为:1−12+12−13+13−14+⋯+12019−12020,继而可求得答案.此题考查了分式的加减运算法则.此题难度适中,解题的关键是仔细观察,得到规律1n(n+1)=1n−1n+1,然后利用规律求解.12/ 12。

沪科版七年级数学上册《第1章-有理数(1.1-1.3)》测试卷

沪科版七年级数学上册《第1章-有理数(1.1-1.3)》测试卷

第1章 有理数(1.1-1.3)测试卷姓名 得分一、填空题(每题2分,共20分)1.最大的负整数是________,绝对值最小的数是_________。

2.某零件的长度比标准长度短1.5mm ,记作-1.5mm ,那么比标准长度多2mm ,记作________。

3.在数轴上距原点4个单位长度的点表示的数是_________。

4. -3.5的绝对值是_________;绝对值是5的数是_________;5. 绝对值大于3且不大于7的整数有________个,其中最大的是________。

6.比较大小:-0.87_________-87(填“>”,“=”或“<”)。

7.数轴上表示-5与7的两点间的距离是________。

8.与表示-2的点距离8个单位长度的点表示的数是________。

9.相反数等于本身的数是________,绝对值等于本身的数是________。

10.如果正午记作0小时,午后3点钟记作+3小时,那么上午8点钟可用负数记作________。

二、选择题(每题3分,共30分)11.下列不具有相反意义的量的是( )。

A .前进10米和后退10米B .节约3吨和浪费10吨C .身高增加2厘米和体重减少2千克D .超过5克和不足2克12.下列说法正确的是( )。

A .所有的正数都是整数B .不是正数的数一定是负数C .最小的自然数是1D .0不是最小的有理数13.下列说法错误的是( )。

A .自然数属于整数B .正有理数、零和负有理数统称为有理数C .0不是正数,也不是负数D .π不是正数,也不是负数14.下列两个数互为相反数的是( )。

A .8与81B .31与0.33 C .-5与-(-5) D .-3.14与π 15.在数轴上,到原点的距离小于3的所有整数有( )。

A .2,1B .2,1,0C .±2,±1,0D .±2,±116.若a >0,则a 是( )。

沪科版七年级上册数学第1章 有理数含答案(完整版)

沪科版七年级上册数学第1章 有理数含答案(完整版)

沪科版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、我国研制的“曙光3000服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学记数法可表示为()A.4032×10 8B.403.2×10 9C.4.032×10 11D.0.4032×10 122、下列各数中,小于﹣3的数是()A.2B.1C.﹣2D.﹣43、下列说法:①相反数等于它本身的数只有0 ②倒数等于它本身的数只有1③绝对值等于它本身的数只有0 ④平方等于它本身的数只有1其中错误的有()A.①③④B.②③④C.③④D.③4、若非零且互为相反数,互为倒数,m的绝对值为2,则值为()A.-4B.0C.2D.45、在数轴上到﹣3的距离等于5的数是()A.2B.﹣8和﹣2C.﹣2D.2和﹣86、计算(﹣6)÷2的结果等于()A.-4B.-3C.3D.-127、如果数a,b,满足ab<0,a+b>0,那么下列不等式正确的是()A.|a|>|b|B.|a|<|b|C.当a>0,b<0时,|a|>|b|D.当a<0,b>0时,|a|>|b|8、将数47300000用科学记数法表示为()A.473×10 5B.47.3×10 6C.4.73×10 7D.4.73×10 59、目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000用科学记数法表示为()A. B. C. D.10、设a为最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于自身的有理数,则a-b+c-d的值为 ( )A.1B.3C.1或3D.2或-111、下列说法正确的是()A. 为负数B. 为正数C. 的倒数是D. 为非负数12、﹣2的相反数是()A.﹣2B.﹣C.D.213、下列各对数中,是互为相反数的是()A.3与B. 与C. 与D.4与-514、某地某天的最高气温是8℃,该地这一天的温差是10℃,则最低气温是()A.﹣18℃B.﹣2℃C.2℃D.18℃15、若,,,则下列大小关系中正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、把××写成乘方的形式是________ .17、若x=4,则|x﹣5|=________ .18、定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.19、一只蚂蚁从数轴上A点出发爬了个单位长度到了表示的点B,则点A 所表示的数是________.20、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作 ________。

沪科版七年级数学上册 第1章 有理数 单元测试卷(有答案)

沪科版七年级数学上册 第1章 有理数 单元测试卷(有答案)

沪科版七年级数学上册第1章有理数单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共40分)1.当0<x<1时,x2、x、1x的大小顺序是()A. x2<x<1x B. 1x<x<x2 C. 1x<x2<x D. x<x2<1x2.在0,1,−2,3这四个数中,最小的数是()A. −2B. 1C. 0D. 33. 2.0151精确到百分位是()A. 2.0B. 2.01C. 2.015D. 2.024.−32的相反数是()A. −23B. 23C. 32D. −325.长沙市地铁4号线一期工程河西段全长183000米,预计最早于2018年底建成通车,将数据183000用科学记数法表示为()A. 18.3×104B. 1.83×104C. 1.83×105D. 0.183×1066.如果|x−a|=a−|x|(x≠0,x≠a),那么√a2−2ax+x2−√a2+2ax+x2=()A. 2aB. 2xC. −2aD. −2x7.实数a,b在数轴上的位置如图所示,下列各式正确的是()A. a+b>0B. ab>0C. |a|+b<0D. a−b>08.下列各组数中,互为相反数的是().A. −(−8)和−8B. 3.2和−4.5C. 0.3和−0.31D. −(+8)和+(−8)9.按规律排列的一列数:1,−2,4,−8,16…中,第7与第8个数分别为()A. 64,−128B. −64,128C. −128,256D. 128,−25610.如图,数轴上A、B、C三点所表示的数分别为a、b、c,AB=BC,若|b|<|a|<|c|,则关于原点O的位置,下列结论正确的是()A. 在A、B之间更接近BB. 在A、B之间更接近AC. 在B、C之间更接近BD. 在B、C之间更接近C二、填空题(本大题共4小题,共20分)11.用四舍五入法将0.257精确到0.01结果是.12.若0<a<1,则a,a2,1a三者之间的大小关系是__________________.13.观察一列单项式:a,−2a2,4a3,−8a4…根据你发现的规律,第7个单项式为______;第n个单项式为______.14.观察下面一列数:−12,−3,4−5,6,−7,8,−910,−11,12,−13,14,−15,16……按照上述规律排下去,那么第8行从右边数第4个数是______.三、计算题(本大题共2小题,共16分)15.计算(1)|−3|−(−2);(2)(1−16+34)×(−48).16.(1)计算:−23+[18−(−3)×2]÷4(2)化简求值:2(3x2−5y)−[−3(x2−3y)],其中x=13,y=−2(3)解方程x−64−x=x+52.四、解答题(本大题共4小题,共44分)17.若m>0,n<0,|n|>|m|,用“<”连接m,n,|n|,−m,请结合数轴解答.18.有理数a、b、c在数轴上的位置如图,化简:|b−c|+|a+b|−|c−a|的值.19.为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收费标准为每吨a元;若每户每月用水量超过25吨时,其中前25吨还是每吨a元,超出的部分收费标准为每吨b元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数据,回答:(1)a=______;b=______;(2)若小明家五月份用水32吨,则应缴水费______元;(3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?20.观察下列式子:2 2−4+66−4=2,55−4+33−4=2,−2−2−4+1010−4=2,1313−4+−5−5−4=2……按照上面式子的规律,完成下列问题:(1)填空:()()−4+11−4=2;(2)再写出两个式子;(3)把这个规律用字母表示出来,并说明其正确性(不必写出字母的取值范围).答案和解析1.【答案】A【解析】【分析】本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或am >bm.先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又∵x<1,则x<1x,∴x2、x、1x 的大小顺序是:x2<x<1x.故选A.2.【答案】A【解析】解:∵−2<0<1<3,∴最小的数是−2,故选:A.根据正数大于负数,两个负数比较大小,绝对值大的数反而小,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.3.【答案】D【解析】【分析】此题考查了近似数,经过四舍五入得到的数为近似数,根据近似数的精确度求解,即可得到答案.【解答】解:2.0151≈2.02(精确到百分位),故选D.4.【答案】C【解析】解:根据概念,−32的相反数是−(−32),即32.故选:C.根据相反数的概念,即一个数的相反数就是在这个数前面添上“−”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.【答案】C【解析】解:183000=1.83×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】D【解析】【分析】本题考查了绝对值的定义,完全平方公式,二次根式的性质,二次根式的化简及整式的加减运算.根据已知条件|x−a|=a−|x|,得出|x|=x且x<a.再根据完全平方公式及二次根式的性质进行化简,最后去括号、合并同类项即可得出结果.【解答】解:∵|x−a|=a−|x|,∴|x|=x且x<a.∴a−x>0,a+x>0.∴√a2−2ax+x2−√a2+2ax+x2=√(a−x)2−√(a+x)2=|a−x|−|a+x|=a−x−(a+x)=a−x−a−x=−2x.故选D.7.【答案】A【解析】解:A、∵根据数轴可知:−2<a<−1,b>2,∴a+b>0,故本选项正确;B、∵根据数轴可知:a<0,b>2,∴ab<0,故本选项错误;C、∵根据数轴可知a<0,b>2,∴|a|>0,∴|a|+b>0,故本选项错误;D、∵根据数轴可知:a<0,b>0,∴a−b<0,故本选项错误;故选:A.根据数轴得出−2<a<−1,b>2,根据a、b的范围,即可判断每个式子的值.本题考查了数轴和实数的应用,关键是能根据a、b的取值范围判断每个式子是否正确,题型比较好,但是一道比较容易出错的题目.8.【答案】A【解析】【分析】此题考查相反数,相反数的概念:只有符号不同的两个数叫做互为相反数.根据相反数的定义,只有符号不同的两个数是互为相反数解答即可.【解答】解:A.−(−8)=8和−8,互为相反数,故本选项正确;B.3.2和−4.5不是互为相反数,故本选项错误;C.0.3和−0.31不是互为相反数,故本选项错误;D.−(+8)=−8和+(−8)=−8,−8与−8不是互为相反数,故本选项错误.故选A.9.【答案】A【解析】【分析】本题考查数字的变化规律,通过观察、分析、归纳,发现其中的规律,并应用发现的规律解决问题.这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1.由此求得答案即可.【解答】解:这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1,所以第7个数为26=64,第8个数为−27=−128.故选:A.10.【答案】A【解析】解:∵|c|>|a|>|b|,∴点C到原点的距离最大,点a其次,点b最小,又∵AB=BC,∴原点O的位置是在点A与B之间,靠近点B.故选:A.根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.本题考查了数轴及绝对值,理解绝对值的定义是解题的关键.11.【答案】0.26【解析】【分析】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.把千分位上的数字7进行四舍五入即可.【解答】解:用四舍五入法将0.257精确到0.01的近似值为0.26,故答案为0.26.12.【答案】a2<a<1a【解析】【分析】本题考查了有理数的大小比较.采用特殊值的办法是解题的关键.根据0<a<1,令a= 0.5,代入a,a2,1计算,再比较大小即可求解.a【解答】解:∵0<a<1,令a=0.5,=2,∴a2=0.25,1a∵0.25<0.5<2,∴a2<a<1a.故答案为a2<a<1a.13.【答案】64a7;(−2)n−1a n.【解析】解:根据观察可得第7个单项式为64a7第n个单项式为(−2)n−1a n.故答案为:64a7,(−2)n−1a n.本题需要先通过观察已知条件,找出这列单项式的规律,然后即可求出结果.本题主要考查了单项式的有关知识,在解题时能通过观察得出规律是解决本题的关键.14.【答案】−61【解析】【分析】本题考查的是数字的变化类问题,正确找出数字的变化规律是解题的关键.根据题意求出第n行有(2n−1)个数,第n行最后一个数是(−1)n×n2,根据规律解答.【解答】解:由题意可知,第一行有1个数,第二行有3个数,第三行有5个数,则第n行有(2n−1)个数,第一行最后一个数是−12,第二行最后一个数是22,第三行最后一个数是−32,则第n行最后一个数是(−1)n×n2,∴第8行最后一个数是64,第8行有15个数,则第8行从右边数第4个数是−61,故答案为:−61.15.【答案】解:(1)原式=3+2=5;(2)原式=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76.【解析】此题考查了有理数的混合运算,以及绝对值,熟练掌握运算法则及绝对值的代数意义是解本题的关键.(1)原式先计算绝对值运算,再计算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.16.【答案】解:(1)−23+[18−(−3)×2]÷4=−8+(18+6)÷4=−8+6=−2;(2)2(3x2−5y)−[−3(x2−3y)]=6x2−10y+3x2−9y=9x2−19y,当x=13,y=−2时,原式=1+38=39;(3)x−64−x=x+52,去分母得2(x−6)−8x=4(x+5),去括号得2x−12−8x=4x+20,移项得2x−8x−4x=12+20,合并同类项得−10x=32,系数化为1得x=−3.2.【解析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据乘法分配律先去括号再合并同类项化简,然后代入求值.(3)此题先去分母,再去括号,然后移项合并同类项、系数化为1求解.此题考查的知识点是有理数的混合运算、解一元一次方程及整式的加减−化简求值.其关键是分析题意,按要求及解题方法进行解答.17.【答案】解:因为n<0,m>0,|n|>|m|>0,∴n<−m<0,将m,n,−m,|n|在数轴上表示如图所示:用“<”号连接为:n<−m<m<|n|.【解析】根据已知得出n<−m<0,|n|>|m|>0,在数轴上表示出来,再比较即可.本题考查了有理数的大小比较,绝对值的应用,注意:在数轴上表示的数,右边的数总比左边的数大.18.【答案】解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b−a−b−c+a=−2b.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简.此题考查了数轴,以及绝对值,正确判断出绝对值里边式子的正负是解本题的关键.19.【答案】(1)2,3 ;(2)71;(3)因为102.5>50,所以六月份的用水量超过25吨,设六月份用水量为x吨,则2×25+3(x−25)=102.5,解得:x=42.5答:小明家六月份用水量为42.5吨.【解析】=2;解:(1)由题意得:a=321625×2+(30−25)b=65,解得b=3.故答案是:2;3;(2)依题意得:25×2+(32−25)×3=71(元).即:若小明家五月份用水32吨,则应缴水费71元.故答案是:71;(3)见答案;【分析】(1)根据等量关系:“小明家1月份用水2016,交水费32元”;“53月份用水30吨,交水费65元”可列方程求解即可;(2)根据(1)中所求的a、b的值,可以得到收费标准,结合收费标准解答;(3)先求出小明家六月份的用水量范围,再根据6月份的收费标准列出方程并解答.本题考查一元一次方程的应用,将现实生活中的事件与数学思想联系起来,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.20.【答案】解:(1)77−4+11−4=2;(2)88−4+00−4=2,−1−1−4+99−4=2;(3)xx−4+8−x8−x−4=2,∵左边=xx−4+8−x4−x=xx−4+x−8x−4=2x−8x−4=2=右边,∴xx−4+8−x8−x−4=2.【解析】(1)由已知等式得出xx−4+8−x8−x−4=2,据此求解可得;(2)利用所得规律求解可得;(3)根据分式的加减运算法则计算即可验证.本题主要考查数字的变化规律,解题的关键是得出规律xx−4+8−x8−x−4=2,及分式的加减运算法则.。

七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)

七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)

七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)一、选择题1.向东行驶2km ,记作2km +,向西行驶7km 记作( )A .7km +B .7km -C .2km +D .2km -2.有理数中,负数的个数为( )A .1B .2C .3D .43.下列四个数中,绝对值最小的数是( )A .-3B .0C .1D .24.绍兴市1月份某天最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A .2 ℃B .8℃C .8℃D .2℃5.2023的倒数是( )A .-2023B .3202C .12023-D .120236.下列各组数中,互为相反数的是( )A .1||3-和13-B .1||3-和3-C .1||3-和13D .1||3-和37.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a b >B .0ab >C .a b >D .0a -<8.若0a b +>,且0ab <,则以下正确的选项为( )A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大9.宁波文创港三期已正式开工建设,总建筑面积约2272000m ,272000用科学记数法表示,正确的是( ) A .427.210⨯B .52.7210⨯C .42.7210⨯D .60.27210⨯10.下列说法不正确的是( )A .近似数1.8与1.80表示的意义不同B .0.0200精确到0.0001C .5.0万精确到万位D .1.0×104精确到千位二、填空题11.如果向西走30米记作30-米,那么20+米表示 . 12.数a ,b 在数轴上对应点的位置如图所示,化简a-|b-a|= .13.某地一天早晨的气温是2C ︒-,中午温度上升了9C ︒,则中午的气温是 ℃. 14.近似数68.4万精确到 位.三、计算题15.计算(1)-7-11+4-(-2) (2)(-2)×(-5)÷(-5)+9 (3)()155********⎛⎫-+-⨯-⎪⎝⎭ (4)()242512339--⨯---÷⎡⎤⎣⎦. 四、解答题16.把下列有理数填入它属于的集合的圈内:17.已知:〡a 〡=3,b 是最大的负整数,求a-b 的值。

沪科版七年级上册数学第1章 有理数 含答案

沪科版七年级上册数学第1章 有理数 含答案

沪科版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、-3的绝对值是( )A.3B.±3C.-3D.2、在这8个有理数中,负数的个数是()A.1B.2C.3D.43、的相反数是()A.2B.C.D.4、计算(﹣2)+(﹣4),结果等于()A.2B.﹣2C.﹣4D.﹣65、在-3,-1,0,-,2002各数中,是正数的有()A.0个B.1个C.2个D.3个6、在一张比例为1∶1000000的地图上,量得人民广场与淀山湖两地的距离为5.5厘米,那么人民广场到淀山湖的实际距离为()A.0.55千米B.5.5千米C.55千米D.550千米7、化简结果是().A.2B.-2C.D.8、一个数的偶次幂是正数,这个数是()A.正数B.负数C.正数或负数D.任何有理数9、一个数的倒数的绝对值是3,这个数是()A.3B.C.3或﹣3D. 或﹣10、有理数a,b在数轴上的位置如图所示,则下列结论正确的是A. B. C. D.11、已知a-1=b+2=c-3=d+4,则a,b,c,d的大小关系是()A.c>a>b>dB.a>c>b>dC.c>a>d>bD.c>b>a>d12、有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>bB.﹣ab<0C.|a|<|b|D.a<﹣b13、下列各组数中相等的是()A. 与B. 与C. 与D. 与14、实数,,,在数轴上的对应点的位置大致如图所示,则下列结论一定正确的是().A. B. C. D.15、已知,则的结果为()A.144B.24C.25D.49二、填空题(共10题,共计30分)16、将一根12cm长的木棒和一根9cm长的木棒捆在一起,长度为17cm,则两根木棒的捆绑长度(重叠部分的长度)为________ cm.17、下表列出了国外几个市与北京的时差(带正号的数表示同一时刻比北京时间早的点时数)城市纽约伦敦东京巴黎时差/时﹣13 ﹣8 +1 ﹣7如果现在的东京时间是8:00,那么北京的时间是________,伦敦的时间是________,纽约的时间是________.18、如果数轴上的点A对应的数为﹣1.5,那么与A点相距3个单位长度的点所对应的有理数为________.19、绝对值小于π的所有正整数的积等于________.20、在“百度”搜索引擎中输入“来自星星的你”,能搜索到与之相关的结果个数约为46 500 000,这个数用科学记数法表示为________.21、数轴上到数-2所表示的点的距离为4的点所表示的数是________.22、计算=________.23、先化简再求值:,其中=,则原式=________ .24、如图:把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体纸盒容积变________(填大或小)了________ .25、若a,b是整数,且ab=12 ,<,则a+b=________.三、解答题(共5题,共计25分)26、计算:(﹣+﹣)×|﹣24|27、某公司去年1~3月平均每月亏损1.6万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.9万元,11~12月平均每月亏损1.5万元,这个公司去年总的盈亏情况如何?28、请写出1.5的相反数及绝对值等于2的数,并画一条数轴,在数轴上表示:1.5和它的相反数,绝对值等于2的数,并把这些数由小到大用“<”号连接起来.29、在数轴上表示下列各数,并把这些数按从小到大的顺序用“<”连接. -(-1.5),3,,|- 4|30、若x,y互为相反数,|y-3|=0,求2(x3-2y2)-(x-3y)-(x-3y2+2x3)的值.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、H5、B6、C7、D8、C9、D10、C11、A12、D13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版数学7上第1章有理数测试卷 一、选择题(每小题3分,共40分) 1.下列说法中,正确的是( ) A .有理数就是正数和负数的统称 B .零不是自然数,但是正数 C .一个有理数不是整数就是分数 D .正分数、零、负分数统称分数
2.(2015咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()
3.(2015黔南)下列说法错误的是 A.-2的相反数是2 B.3的倒数是13
C.(3)(5)2---=
D.-11,0,4这三个数中最小的是0
4.(2015湘潭)在数轴上表示-2的点与表示3的点之间的距离是() A .5 B .-5 C .1 D .-1
5.(2015毕节)下列说法正确的是()
A .一个数的绝对值一定比0大
B .一个数的相反数一定比它本身小
C .绝对值等于它本身的数一定是正数
D .最小的正整数是1
6. 网上购物已成为现代人消费的新趋势,2014年天猫“11·11”购物狂欢节创造了一天571亿元的支付宝成交额,其中571亿用科学记数法表示为() A. B. C . D.
7.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角
线上三个数之和均相等,则幻方中的a-b 的值是( )
A .-3
B .-2
C .2
D .
3
8. 下列计算中,错误的是(

A. (﹣6)×(﹣5)×(﹣3)×(﹣2)=180
B. (﹣36)×(﹣﹣)=﹣6+4+12=10
2
1071.5⨯8
10571⨯10
1071.5⨯11
10571.0⨯A . B . C . D .
C. (﹣15)×(﹣4)×(+)×(﹣)=6
D. ﹣3×(﹣5)﹣3×(﹣1)﹣(﹣3)×2=24
9.如图,图中数轴的单位
长度
为1.如果点B ,C 表示的数的绝对值相等,那么点A 表示的数是( )
A .-4
B .-5
C .-6
D .-2
10.在一次数学游园活动中,有一个抽卡片游戏,游戏规则如下:连续抽取四张牌,如果抽到形如
的卡片,那么加上卡片上的数字;如果抽到形如
的卡
片,那么减去卡片上的数字,从而通过计算求得最终结果.佳佳在本次游戏中,抽到了以下四张卡片:,请你帮忙算一算,按照以上游戏规则,
正确的结果是( ) A .
1213 B .−12
13
C .
D .−
二、填空题(本大题共3小题,共24分) 11.(2015铜仁)18.6 =.
12.(2015衡阳)在-1,0,-2这三个数中,最小的数是.
13.(2015通辽)在数1,0,﹣1,|﹣2|中,最小的数是 .
14.(2015烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是.
15.如图,在数轴上从-1到1有3个整数,它们是-1,0,1;从-2到2有5个整数,它们
是-2,-1,0,1,2;……,则从-100到100有__________个整数.
16.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是______,最小的积是_______.
17.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数5正对着乙温度计的度数-18,那么此时甲温度计的度数-7正对着乙温度计的度数是______.
125125
18. 观察下面由△组成的图案和算式,解答问题。

(1) 试猜想: 1 +3 + 5 + 7 + 9 + ……+ 19 = ___________________
(2)请你运用分析观察出内涵规律计算:103 + 105 + 107 + …… + 203 + 205 = ___________________ 三、解答题(共66分)
19.把下列各数填在相应的大括号里:
1,45-
,8.9,-7
,5
6
,-3.2,+1 008,-0.06,28,-9. 正整数:{ …}; 负整数:{ …}; 正分数:{
…}; 负分数:{ …}. 20、计算: (1) (2) 22..学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又
快又对,有两位同学的解法如下: 小明:原式=﹣×5=﹣
=﹣249;
小军:原式=(49+
)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)对于以上两种解法,你认为谁的解法较好?
)30()32(32)4(-⨯--÷
-3
1
)3(24|85|22⨯-÷+-+-
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算:19
×(﹣8)
23. 如图,小红有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题。

(1)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取_____ _____,最大值是_____
(2) 从中抽出2张卡片,使这两张卡片上的数字相除的商最小,可抽取_____ ____ 最小值是_______
(3) 从中抽出2张卡片,使这两张卡片上的数字通过运算成为一个最大的数,可抽取______ ______,最大数是_______。

(4) 从中抽出4张卡片,用学过的运算方法,使结果为24,请写出一个运算式子:
_______________。

第1章有理数测试卷答案
一、选择题
1. C
2.C 3.D 4.A 5.D 6.C
7.A
提示:三阶幻方的和是3×5=15,右上角的数是15-5-8=2,a=15-2-9=4,5左边的数是15-8-4=3,b=15-5-3=7,a-b=4-7=-3,故选:A.
8.C.
提示:A、(﹣6)×(﹣5)×(﹣3)×(﹣2)=180正确,故本选项错误;
B、(﹣36)×(﹣﹣)=×(﹣36)﹣×(﹣36)﹣×(﹣36)=﹣6+4+12=10,正确,故本选项错误;
C、(﹣15)×(﹣4)×(+)×(﹣)=﹣15×4××=﹣6,故本选项正确;
D、﹣3×(﹣5)﹣3×(﹣1)﹣(﹣3)×2=15+3+6=24,正确,故本选项错误.故选C.
二、填空题
11. 6.18
12. -2
13. -1
14. 1
15.201
提示:原点左边和右边各有100个整数,加上原点表示的整数0,共有201个整数.
16. 75,-30
提示:在数-5,1,-3,5,-2中任取三个数相乘,
其中最大的积必须为正数,即(-5)×(-3)×5=75,
最小的积为负数,即(-5)×(-3)×(-2)=-30.
∴其中最大的积是75,最小的积是-30
17. -6
提示:∵从度数5移动到度数-7,移动了12个单位长度, ∵度数5正对着乙温度计的度数-18,
∴甲温度计的度数-7正对着乙温度计的度数是-18+12=-6; 故答案为:-6. 18. 100;8008
提示::(1)1+3+5+7+9+…+19=102=100; (2)103+105+107+…+203+205
=(1+3+5+…+203+205)﹣(1+3+5+…+99+101)=1032﹣512=10609﹣2601=8008. 故答案为100;8008
19.解:正整数:{1,+1 008,28,…};
负整数:{-7,-9,…};正分数:58.9,,6

⎫⋯⎨⎬⎩

; 负分数:4, 3.2,0.06,5⎧⎫
-
--⋯⎨⎬⎩⎭
. 20.解:(1)原式=﹣4×﹣×30=﹣6﹣20=﹣26 (2)原式=﹣4+3﹣=﹣3.
21.解:化简-4的相反数是4,-2-=-2,211
±=12
1
,绝对值最小的数是0, 如图:;
用“<”把所标的数连接起来为:-2<−121<0<12
1
<4 22..解:(1)小军解法较好; (2)还有更好的解法, 49
×(﹣5)=(50﹣
)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;
(3)19×(﹣8)
=(20﹣
)×(﹣8)=20×(﹣8)﹣
×(﹣8)=﹣160+=﹣159.
23.解:(1)﹣3×﹣5=15; (2)(﹣5)÷(+3)=﹣;
(3)(﹣5)4=625;
(4)方法不唯一,如:抽取﹣3、﹣5、0、3,则{0﹣[(﹣3)+(﹣5)]}×3=24 24.解:(1)4.5-3.2+1.1-1.4=1,所以升了1千米;
(2)4.5×2+3.2×2+1.1×2+1.4×2=20.4升;
(3)∵3.8-2.9+1.6=2.5,
∴第4个动作是下降,下降的距离=2.5-1=1.5千米.
所以下降了1.5千米.。

相关文档
最新文档