最新初中数学锐角三角函数的难题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学锐角三角函数的难题汇编含答案
一、选择题
1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且3cos 5
α=,则AC 的长为( )
A .3
B .163
C .203
D .165
【答案】C
【解析】
【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC .
【详解】
解:∵DE ⊥AC ,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE=α,
∵矩形ABCD 的对边AB ∥CD ,
∴∠BAC=∠ACD ,
∵cos α=
35,35AB AC ∴=, ∴AC=520433
⨯=. 故选:C .
【点睛】
本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键.
2.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( )
A .3
B .4
C .6
D .33
【答案】D
【解析】
【分析】 连接OA .证明OAB ∆是等边三角形即可解决问题.
【详解】
如图,连接OA .
∵AE EB =,
∴CD AB ⊥,
∴»»AD BD
=, ∴230BOD AOD ACD ∠=∠=∠=o ,
∴60AOB ∠=o ,
∵OA OB =,
∴AOB ∆是等边三角形,
∵3AE =,
∴tan 6033OE AE =⋅=o
故选D .
【点睛】
本题考查圆周角定理,勾股定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2
sin cos θθ-=( )
A .15
B .5
C .35
D .95
【答案】A
【解析】
【分析】
根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.
【详解】
解:∵大正方形的面积是125,小正方形面积是25,
∴大正方形的边长为55,小正方形的边长为5,
∴55cos 55sin 5θθ-=,
∴5cos sin θθ-=
, ∴()21sin cos 5
θθ-=
. 故选:A .
【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin 5
θθ-=.
4.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( )
A .35
B .45
C .34
D .43
【答案】C
【解析】
试题分析:如答图,过点O 作OD ⊥BC ,垂足为D ,连接OB ,OC ,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A=12∠BOC ,∴∠A=∠BOD. ∴tanA=tan ∠BOD=
43BD OD =. 故选D .
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
5.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )
A .23
B .3
C .33
D .3【答案】A
【解析】
【分析】
【详解】 设AC=x ,在Rt △ABC 中,∠ABC=30°,即可得AB=2x ,3,
所以BD=BA=2x ,即可得33)x ,
在Rt △ACD 中,tan ∠DAC=
(32)32CD x AC +==, 故选A.
6.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点
E ,连接AC 交DE 于点
F .若3sin 5
CAB ∠=,5DF =,则AB 的长为( )
A .10
B .12
C .16
D .20
【答案】D
【解析】
【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.
【详解】
解:连接BD ,如图,
AB Q 为直径,
90ADB ACB ∴∠=∠=︒,
AD CD =Q ,
DAC DCA ∴∠=∠,
而DCA ABD ∠=∠,
DAC ABD ∴∠=∠,
DE AB ∵⊥,
90ABD BDE ∴∠+∠=︒,
而90ADE BDE ∠+∠=︒,
ABD ADE ∴∠=∠,
ADE DAC ∴∠=∠,
5FD FA ∴==,
在Rt AEF ∆中,3sin 5
EF CAB AF ∠=
=Q , 3EF ∴=, 22534AE ∴-=,538DE =+=,
ADE DBE ∠=∠Q ,AED BED ∠=∠,
ADE DBE ∴∆∆∽,
::DE BE AE DE ∴=,即8:4:8BE =,
16BE ∴=,
41620AB ∴=+=.
故选:D .
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.
7.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且AB =BD ,则tan D 的值为( )
A .3
B .33
C .23
D .23
【答案】D
【解析】
【分析】 设AC =m ,解直角三角形求出AB ,BC ,BD 即可解决问题.
【详解】
设AC =m ,
在Rt △ABC 中,∵∠C =90°,∠ABC =30°,
∴AB =2AC =2m ,BC 33,
∴BD =AB =2m ,DC =3,
∴tan ∠ADC =
AC CD 23m m
+=23 故选:D .
【点睛】
本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.如图,在矩形ABCD 中E 是CD 的中点,EA 平分,BED PE AE ∠⊥交BC 于点P ,连接PA ,以下四个结论:①EB 平分AEC ∠;②PA BE ⊥;③32
AD AB =
;④2PB PC =.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
【答案】A
【解析】
【分析】
根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE 是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,再分别得出AD与AB,PB与PC的数量关系即可.
【详解】
解:∵在矩形ABCD中,点E是CD的中点,
∴DE=CE,
又∵AD=BC,∠D=∠C,
∴△ADE≌△BCE(SAS),
∴AE=BE,∠DEA=∠CEB,
∵EA平分∠BED,
∴∠AED=∠AEB,
∴∠AED=∠AEB=∠CEB=60°,故:①EB平分∠AEC,正确;
∴△ABE是等边三角形,
∴∠DAE=∠EBC=30°,AE=AB,
∵PE⊥AE,
∴∠DEA+∠CEP=90°,
则∠CEP=30°,
故∠PEB=∠EBP=30°,
则EP=BP,
又∵AE=AB,AP=AP,
∴△AEP≌△ABP(SSS),
∴∠EAP=∠PAB=30°,
∴AP⊥BE,故②正确;
∵∠DAE=30°,
∴tan∠DAE=DE
AD
=tan30°=
3
3
,
∴AD=3DE,即
3
2
AD CD
=,
∵AB=CD,
∴③
3
AD AB
=正确;
∵∠CEP=30°,
∴CP=1
2 EP,
∵EP=BP,
∴CP=1
2 BP,
∴④PB=2PC正确.
综上所述:正确的共有4个.
故选:A.
【点睛】
此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE是等边三角形是解题关键.
9.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A、B、C都是格点,则tan ABC
∠=()
A 3
B.
3
6
C
3
D
3
【答案】A
【解析】
【分析】
直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC
tan ABC
BE
∠=得出答案.
【详解】
解:连接DC ,交AB 于点E .
由题意可得:∠AFC=30°, DC ⊥AF,
设EC=x,则EF=x =3x tan 30︒, ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33=
===+∠, 故选:A
【点睛】
此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.
10.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )
(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)
A .65.8米
B .71.8米
C .73.8米
D .119.8米
【答案】B
【解析】
【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论.
【详解】
解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G ,
∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米,
∴设DG x =,则 2.4 CG x =.
在Rt CDG ∆中,
∵222DG CG DC +=,即222
(2.4)52x x +=,解得20x =,
∴20DG =米,48CG =米,
∴200.820.8EG =+=米,5248100BG =+=米.
∵EM AB ⊥,AB BG ⊥,EG BG ⊥,
∴四边形EGBM 是矩形,
∴100EM BG ==米,20.8BM EG ==米.
在Rt AEM ∆中,
∵27AEM ︒∠=,
∴•tan 271000.5151AM EM ︒=≈⨯=米,
∴5120.871.8AB AM BM =+=+=米.
故选B .
【点睛】
本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
11.已知B 港口位于A 观测点北偏东45°方向,且其到A 观测点正北风向的距离BM 的长为102km ,一艘货轮从B 港口沿如图所示的BC 方向航行47km 到达C 处,测得C 处位于A 观测点北偏东75°方向,则此时货轮与A 观测点之间的距离AC 的长为( )km .
A .3
B .3
C .3
D .3【答案】A
【解析】
【分析】
【详解】 解:∵∠MAB=45°,BM=102,
∴AB=22BM MA +=22(102)(102)+=20km , 过点B 作BD ⊥AC ,交AC 的延长线于D ,
在Rt △ADB 中,∠BAD=∠MAC ﹣∠MAB=75°﹣45°=30°,
tan ∠BAD=BD AD =33
, ∴AD=3BD ,BD 2+AD 2=AB 2,即BD 2+(3BD )2=202,
∴BD=10,∴AD=103,
在Rt △BCD 中,BD 2+CD 2=BC 2,BC=43,∴CD=23,
∴AC=AD ﹣CD=103﹣23=83km ,
答:此时货轮与A 观测点之间的距离AC 的长为83km .
故选A .
【考点】
解直角三角形的应用-方向角问题.
12.如图,在Rt ABC V 中,90ACB ∠=︒,3tan 4B =
,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD
的值( )
A .35
B .34
C .45
D .67
【答案】D
【解析】
【分析】
根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37
AB ,再由点D 为AB 中点
得AD =12AB ,进而可求得AE AD 的值. 【详解】 解:∵
CE 平分ACB ∠,
∴点E 到ACB ∠的两边距离相等,
设点E 到ACB ∠的两边距离位h ,
则S △ACE =12AC·h ,S △BCE =12BC·h , ∴S △ACE :S △BCE =
12AC·h :12
BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE ,
∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=︒,3tan 4B =
, ∴AC :BC =3:4,
∴AE :BE =3:4
∴AE =37
AB , ∵CD 为AB 边上的中线, ∴AD =
12AB , ∴36717
2
AB AE AD AB ==, 故选:D .
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键.
13.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东30°方向、在C 地北偏西45°方向.C 地在A 地北偏东75°方向.且BD=BC=30m .从A 地到D 地的距离是( )
A .3
B .5
C .2m
D .6m
【答案】D
【解析】
分析:过点D 作DH 垂直于AC ,垂足为H ,求出∠DAC 的度数,判断出△BCD 是等边三角形,再利用三角函数求出AB 的长,从而得到AB +BC +CD 的长.
详解:过点D 作DH 垂直于AC ,垂足为H ,由题意可知∠DAC =75°﹣30°=45°.∵△BCD 是等边三角形,∴∠DBC =60°,BD =BC =CD =30m ,∴DH =3×30=153,∴AD =2DH =156m .故从A 地到D 地的距离是156m .
故选D .
点睛:本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
14.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )
A .asinα+asinβ
B .aco sα+acosβ
C .atanα+atanβ
D .tan tan a a αβ
+ 【答案】C
【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.
【详解】
在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=
BC AB
,tanβ=BD AB , ∴BC =atanα,BD =atanβ,
∴CD=BC+BD=atanα+atanβ,
故选C.
【点睛】
本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD是解题的关键.
15.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()
A.B.C.D.
【答案】D
【解析】
【分析】
根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;
【详解】
解:当0<x⩽2时,如图1:
连接BD,AC,交于点O′,连接NM,过点C作CP⊥AB垂足为点P,
∴∠CPB=90°,
∵四边形ABCD是菱形,其中点B的坐标是(0,4),点D的坐标是3,4),
∴BO ′=43,CO′=4, ∴BC=AB=228O B O C
+'=',
∵AC=8,
∴△ABC 是等边三角形,
∴∠ABC=60°,
∴CP=BC×sin60°=8×
3=43,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2
BN x BC =, ∴=BM BN BP BC
, 又∵∠NBM=∠CBP ,
∴△NBM ∽△CBP ,
∴∠NMB=∠CPB=90°,
∴114438322
CBP S BP CP =⨯⨯=⨯⨯=V ; ∴2NBM CBP S BN S BC ⎛⎫= ⎪⎝⎭
V V , 即y=22
283=232NBM CBP BN x S S x BC ⎛⎫⎛⎫=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭V V , 当2<x ⩽4时,作NE ⊥AB ,垂足为E ,
∵四边形ABCD 是菱形,
∴AB ∥CD ,
∴3
BM=2x ,
∴y=
11=2434322
BM NE x x ⨯⨯=g g ; 故选D.
【点睛】
本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.
16.已知圆锥的底面半径为5cm ,侧面积为60πcm 2,设圆锥的母线与高的夹角为θ,则sinθ的值为( )
A .313
B .513
C .512
D .1213 【答案】C
【解析】
【分析】
先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案.
【详解】
解:∵圆锥底面周长为2510ππ⨯=,
且圆锥的侧面积为60π,
∴圆锥的母线长为
2601210ππ⨯=, ∴sin θ=
512. 故选C.
【点睛】
本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.
17.如图,△ABC 的顶点是正方形网格的格点,则cos A =( )
A .12
B .22
C 3
D 5 【答案】B
【解析】
【分析】
构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】
过A作AE⊥BE,连接BD,过D作DF⊥BF于F.
∵AE=BF,∠AEB=∠DFB,BE=DF,
∴△AEB≌△BFD,
∴AB=DB.∠ABD=90°,
∴△ABD是等腰直角三角形,
∴cos∠DAB=
2 2
.
答案选B.
【点睛】
本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.
18.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )
A.a B.4
5
a C.
2
2
a D
3
【答案】C
【解析】
【分析】
根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,
cos45°=DM CN
DE CE
,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即
可求出.【详解】
∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,∴∠ADM=∠MDC=∠NCD=45°,
∴
00
cos
4545
D CN
M
cos
+=CD,
在矩形ABCD中,AB=CD=a,
∴DM+CN=acos45°=2 a.
故选C.【点睛】
此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE
=
19.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交
于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=4
3
,⑤S△DOC=S四
边形EOFB
中,正确的有()
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.
详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.
∵AE=BF=1,∴BE=CF=4﹣1=3.
在△EBC和△FCD中,
BC CD
B DCF
BE CF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;
连接DE,如图所示,若OC=OE.
∵DF⊥EC,∴CD=DE.
∵CD=AD<DE(矛盾),故②错误;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠
DFC =DC FC =43
,故④正确; ∵△EBC ≌△FCD ,∴S △EBC =S △FCD ,∴S △EBC ﹣S △FOC =S △FCD ﹣S △FOC ,即S △ODC =S 四边形BEOF .故⑤正确;
故正确的有:①③④⑤.
故选D .
点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.
20.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )
A .1
B .2
C .2
D .3
【答案】A
【解析】
【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.
【详解】
解:作AH ⊥BC 于H ,
∵AB=AC ,AH ⊥BC ,
BH=12
BC=3, ∵∠BAC=120°,AB=AC ,
∴∠B=30°,
∴AB=30BH cos
由翻折变换的性质可知,
∴DE=BD •tan30°=1,
故选:A .
【点睛】
此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。