2015-2016 学年 七年级下学期期中考试数学试题
江苏省苏州市昆山市2015-2016学年七年级数学下学期期中试题(含解析) 苏科版
某某省某某市某某市2015-2016学年七年级数学下学期期中试题一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x52.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 4.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.75.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∥DC的条件为()A.①④ B.②③ C.①③ D.①③④6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2 B.﹣1 C.2 D.310.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.等腰三角形的两边长为4,9.则它的周长为.14.计算:20152一2014×2016=.15.如图,在△ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为.18.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.20.如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的△A′B′C′;(2)在△ABC中画出中线BD;(3)在△ABC中画出AB边上高(图中标上字母).21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.23.如图,在△ABC中,BD⊥AC,EF⊥AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=.(用α、β的代数式表示)26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求△BDF的面积.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.29.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.2015-2016学年某某省某某市某某市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x5【考点】单项式乘单项式.【分析】据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:2x2•x3=2x2+3=2x5.故选A.2.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 【考点】三角形三边关系.【分析】根据已知三角形的两边,则第三边的X围是:大于已知的两边的差,而小于两边的和,分别判断即可.【解答】解:根据三角形的三边关系,知A、2+2=4,不能组成三角形,故此选项错误;B、3+6>8,能够组成三角形,故此选项正确;C、2+3<6,不能组成三角形,故此选项错误;D、4+6<11,不能组成三角形,故此选项错误.故选B.4.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∥DC的条件为()A.①④ B.②③ C.①③ D.①③④【考点】平行线的判定.【分析】直接根据平行线的判定定理对各小题进行逐一分析即可.【解答】解:①∵∠1=∠2,∴AB∥CD,故本选项正确;②∵∠3=∠4,∴BC∥AD,故本选项错误;③∵∠A=∠CDE,∴AB∥CD,故本选项正确;④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确.故选D.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据三角形外角性质求出∠4,根据平行线性质得出∠2=∠4,代入求出即可.【解答】解:如图所示,∵∠4=∠1+∠3,∴∠4=30°+20°=50°,∵AB∥CD,∴∠2=∠4=50°,故选C.7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【考点】平方差公式的几何背景.【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选A.8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∵∠A+∠B=∠C=90°,∴△ABC是直角三角形,故小题正确;②、∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°,△ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;④∵设∠C=x,则∠A=∠B=2x,∴2x+2x+x=180°,解得x=36°,∴2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∴∠A+∠B+∠C=∠A+∠A+A=180°,∴∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2 B.﹣1 C.2 D.3【考点】幂的乘方与积的乘方;零指数幂.【分析】直接利用零指数幂的性质结合积的乘方运算法则将原式变形求出答案.【解答】解:10﹣(0.5)2015×(﹣2)2016=1﹣[0.5×(﹣2)]2015×(﹣2)=1﹣2=﹣1.故选:B.10.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4【考点】零指数幂;有理数的乘方.【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解答】解:当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∴x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选C二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n= 15 .【考点】同底数幂的乘法.【分析】由x m=3,x n=5,又由x m+n=x m•x n,即可求得答案.【解答】解:∵x m=3,x n=5,∴x m+n=x m•x n=3×5=15.故答案为:1512.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为0 .【考点】整式的混合运算—化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=1﹣2+1=0,故答案为:013.等腰三角形的两边长为4,9.则它的周长为22 .【考点】等腰三角形的性质;三角形三边关系.【分析】由于题目没有说明4和9,哪个是底哪个是腰,所以要分类讨论.【解答】解:当腰长为4,底长为9时;4+4<9,不能构成三角形;当腰长为9,底长为4时;9﹣4<9<9+4,能构成三角形;故等腰三角形的周长为:9+9+4=22.故填22.14.计算:20152一2014×2016= 1 .【考点】平方差公式.【分析】把2014×2016写成×,然后利用平方差公式计算即可得解.【解答】解:20152﹣2014×2016=20152﹣×=20152﹣=20152﹣20152+1=1.故答案是:1.15.如图,在△ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为115°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣65°=115°.故答案为:115°.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1 .【考点】多项式乘多项式.【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=﹣1.故答案为:﹣1.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为50°.【考点】翻折变换(折叠问题).【分析】根据翻折的性质可得∠BEF=∠BEC,∠EBF=∠EBC,然后求出∠BEC,再根据直角三角形两锐角互余求出∠EBC,然后根据∠ABF=90°﹣∠EBF﹣∠EBC代入数据进行计算即可得解.【解答】解:补全正方形如图,由翻折的性质得,∠BEF=∠BEC,∠EBF=∠EBC,∵∠DEF=30°,∴∠BEC===70°,∴∠EBC=90°﹣∠BEC=90°﹣70°=20°,∴∠ABF=90°﹣∠EBF﹣∠EBC=90°﹣20°﹣20°=50°.故答案为:50°.18.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影= 1 cm2.【考点】三角形的面积.【分析】根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.【解答】解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据绝对值、零指数幂、负指数幂计算即可;(2)根据同底数幂的乘法、单项式乘以多项式进行计算即可;(3)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=2﹣1﹣3=﹣2;(2)原式=﹣6x3y2+3x3y2﹣x3y3=﹣3x3y2﹣x3y3;(3)原式=b2﹣4a2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.20.如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的△A′B′C′;(2)在△ABC中画出中线BD;(3)在△ABC中画出AB边上高(图中标上字母).【考点】作图-平移变换.【分析】(1)分别作出点A、B、C向左平移2格,再向上平移3格的点,然后顺次连接;(2)作出AC的中点D,然后连接BD;(3)过点C作CD⊥AB延长线于点E,然后连接CE.【解答】解:(1)所作图形如图所示:(2)如图所示,BD即为所作中线;(3)如图所示,CE即为AB的高.21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【考点】整式的混合运算—化简求值.【分析】原式利用幂的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵n为正整数,且x2n=4,∴原式=(x2n)3﹣2(x2n)2=43﹣2×42=64﹣32=32.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,最后一项利用多项式乘多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣4ab+4b2+a2﹣b2﹣2a2+8ab﹣6b2=4ab﹣3b2,当a=,b=﹣3时,原式=﹣6﹣27=﹣33.23.如图,在△ABC中,BD⊥AC,EF⊥AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.【考点】平行线的判定与性质.【分析】根据平行线的判定求出EF∥BD,根据平行线的性质得出∠1=∠BDE,求出∠2=∠BDE,根据平行线的判定得出即可.【解答】解:DE∥BC,理由是:∵BD⊥AC,EF⊥AC,∴∠EAF=∠BDF=90°,∴EF∥BD,∴∠1=∠BDE,又∵∠1=∠2,∴∠2=∠BDE,∴DE∥BC.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)根据完全平方公式可得x2+y2=(x+y)2﹣2xy,然后把x+y=6,xy=4整体代入进行计算即可;(2)根据完全平方公式可得(x﹣y)2=(x+y)2﹣4xy,然后把x+y=6,xy=4整体代入进行计算即可.【解答】解:(1)∵x2+y2=(x+y)2﹣2xy,∴当x+y=6,xy=4,x2+y2=(x+y)2﹣2xy=62﹣2×4=28;(2)∵(x﹣y)2=(x+y)2﹣4xy,∴当x+y=6,xy=4,(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=(β﹣α).(用α、β的代数式表示)【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】(1))根据∠B=20°,∠C=60°,得出∠BAC的度数,再根据AE是角平分线,AD 是高,分别得出∠EAC和∠DAC的度数,从而求出答案;(2)证明过程同(1),只不过把∠B和∠C的度数用字母代替,从而用字母表示出各个角的度数.【解答】解:(1)∵∠B=20°,∠C=60°,∴∠BAC=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠EAC=50°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°;(2))∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=90°﹣α﹣β,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣β,∴∠EAD=∠EAC﹣∠DAC=(90°﹣α﹣β)﹣(90°﹣β)=(β﹣α).26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为(m+n)2﹣4mn=(m﹣n)2.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.【考点】完全平方公式的几何背景.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系;(2)根据(1)所得出的关系式,可求出(m﹣2n)2,继而可得出m﹣2n的值.【解答】解:(1)(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2(2)(m﹣2n)2=(m+2n)2﹣8mn=25,则m﹣2n=±5.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求△BDF的面积.【考点】整式的混合运算.【分析】由图形得三角形BDF的面积=正方形ABCD的面积+梯形DCEF﹣三角形ABD的面积﹣三角形BEF,再计算即可.【解答】解:S△BDF=S正方形ABCD+S梯形DCEF﹣S△ABD﹣S△BEF=a2+(a+b)•a﹣a2﹣•2a•b=a2﹣ab;由题意得:a2=6,ab=2,则S△BDF=6﹣×2=5.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∴(2n+1)2﹣4n2=4n+1.29.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.。
华师大版重庆市万州区2015-2016学年度华师大版七年级(下)期中考试数学试题(含答案)
华师大版七年级下册半期考试数学试题姓名: ,成绩: ;一、选择题(9个题,共27分)1、(2015•扬州)已知x =2是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1 B .a ≤2 C .1<a ≤2D .1≤a ≤22、(2015绵阳)若+|2a ﹣b +1|=0,则(b ﹣a )2015=( )A .﹣1B .1C .52015D .﹣520153、(2015春哈尔滨校级月考)如果方程组的解与方程组的解相同,则a 、b 的值是( ) A .B .C .D .4、(2016富顺县校级模拟)已知关于x 、y 的不等式组,若其中的未知数x 、y 满足x +y >0,则m 的取值范围是( )A .m >﹣4B .m >﹣3C .m <﹣4D .m <﹣35、(2015•永州)定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x ﹣[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)6、韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆7、甲乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%。
若设甲乙两种商品原来的单价分别为X 元、Y 元,则下列方程组正确的是( )⎩⎨⎧+=-++=+%)201(100%)401(%)101(100y x y x A 、⎩⎨⎧⨯=++-=+%20100%)401(%)101(100y x y x B 、 ⎩⎨⎧+=++-=+%)201(100%)401(%)101(100y x y x c 、 ⎩⎨⎧⨯=-++=+%20100%)401(%)101(100y x y x D 、 8、一批树苗按下列方法依次由各班领取:第一班取100棵和余下的101,第二班取200棵和余下的101,第三班取300棵和余下的101,……最后树苗全部被取完,且各班的树苗都相等。
七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题
2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。
2015-2016年人版初一下学期数学期中考试试题及答案讲解
.2013-2014 学年度第二学期七年级期中质量检测数学试卷(完卷时间:100 分钟 满分:120 分) 一、选择题:(选一个正确答案的序号填入括号,每小题 3 分,共 30 分)1.下面的四个图形中,∠1 与∠2 是对顶角的是( )。
A.2. 1 的平方根是( 4 A. 1 2B. )。
B. 1 23.下列式子正确的是( )。
A. 49 =7B. 3 7 = 3 7C.C. 1 2C. 25= 5D.D. 1 16D. (-3)2 = 34.如图,已知 AB⊥CD,垂足为 O,EF 为过O 点的一条直线,则∠1 与∠2 的关系一定成立的是( )。
A.相等B.互余C.互补D.互为对顶角5.下列说确的是( )。
A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数6.已知点 P(m,1)在第二象限,则点 Q(-m,3)在( )。
A.第一象限B.第二象限C.第三象限D.第四象限7.已知在同一平面三条直线 a、b、c,若 a‖c,b‖c,则 a 与 b 的位置关系是( )。
A.a⊥bB.a⊥b 或 a‖b C.a‖ bD.无法确定8.如图,把一块含有 45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2 的度数是( )。
A.30°B.25°C.20°D.15°9.一个正数 x 的平方根是 2a-3 与 5-a,则 x 的值是(A.64B.36C.81)。
D.4910.在平面直角坐标系中,已知点 A(-4,0)和 B(0,2),现将线段 AB 沿着直线 AB 平移,使点 A与点 B 重合,则平移后点 B 坐标是( )。
WORD 版本A.(0,-2)B.(4,2)二、填空题:(每小题 3 分,共 21 分)11. 3 11 的相反数是C.(4,4).D.(2,4),绝对值是。
12.如果 3=1.732 , 30 =5.477 ,那么 0.0003 的平方根是。
锡山区东亭片七年级数学下学期期中试卷(含解析) 苏科版(2021年整理)
江苏省无锡市锡山区东亭片2015-2016学年七年级数学下学期期中试卷(含解析)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省无锡市锡山区东亭片2015-2016学年七年级数学下学期期中试卷(含解析)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省无锡市锡山区东亭片2015-2016学年七年级数学下学期期中试卷(含解析)苏科版的全部内容。
2015-2016学年江苏省无锡市锡山区东亭片七年级(下)期中数学试卷一、选择题:1。
下列图形中,不能通过其中一个四边形平移得到的是( )A.B. C.D.2.下列各式中计算正确的是( )A.(﹣a2)5=﹣a10B.(x4)3=x7C.b5•b5=b25D.a6÷a2=a33.下列等式由左边到右边的变形中,属于因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2)+1 D.﹣18x4y3=﹣6x2y2•3x2y4.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD的条件为()A.①②③④B.①②④ C.①③④ D.①②③5.有4根小木棒,长度分别为3cm、5cm、7cm、9cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.4个C.3个D.2个6.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.A.6 B.7 C.8 D.97.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)8.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB 边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为()A.75°B.76°C.77°D.78°二、填空题:(本大题共10小题,每空2分,合计22分)9.近年来,我国大部分地区饱受“四面霾伏”的困扰,霾的主要成分是PM2。
山东省菏泽市定陶县七年级数学下学期期中试卷(含解析) 青岛版-青岛版初中七年级全册数学试题
2015-2016学年某某省某某市定陶县七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25° B.28° C.30° D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30° B.45° C.60° D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 C.7 D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题(共8小题,每小题3分,满分24分)11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2=.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD=.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p=,q=.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题(共8小题,满分66分)19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2015-2016学年某某省某某市定陶县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°【考点】余角和补角.【分析】首先根据互补得出∠α+∠β=180°,再根据∠α﹣∠β=30°组成方程组,即可求出∠α与∠β的大小.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选B.【点评】此题考查了余角和补角,解题时要根据若两个角互补,则两个角的和等于180°列出方程组是本题的关键.3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选B.【点评】本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.4.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm【考点】点到直线的距离.【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可知垂线段的长度不能超过PC的长.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.【点评】本题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.3【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式运算法则求出答案.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25° B.28° C.30° D.32°【考点】平行线的性质.【分析】首先过A作AE∥NM,然后判定AE∥GH,根据平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再根据平行线的性质可得答案.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选B.【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等.7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)【考点】解二元一次方程组.【分析】根据加减消元法适用的条件将方程进行适当变形,使方程中同一个未知数的系数相等或互为相反数即可.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选C.【点评】此题比较简单,考查的是用加减消元法求二元一次方程组的解时对方程进行合理变形的方法.8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30° B.45° C.60° D.120°【考点】平行线的性质.【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选C.【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 C.7 D.8【考点】一元一次方程的应用.【专题】应用题.【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【考点】幂的乘方与积的乘方.【分析】利用幂的乘方运算法则将a,b,c化为指数相同的数字,进而比较底数得出答案.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选B.【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于正确利用幂的乘方运算法则对各数进行化简.二、填空题(共8小题,每小题3分,满分24分)11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m= 1 .【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得m的值.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有,用科学记数法表示是×10﹣8克.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若x n﹣1•x n+5=x10,则n﹣2=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得关于n的方程,根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.【点评】本题考查了同底数幂的乘法,利用同底数幂的乘法得出关于n的方程是解题关键.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD= 80°.【考点】平行线的性质.【分析】根据EF∥AC,求出∠EFB=∠C=65°,再根据DF∥AB,求出∠DFC=∠B=35°,根据平角的定义即可得到结论.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.【点评】本题考查了平行线的性质,找到平行线、得到相应的同位角或内错角是解题的关键.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.【考点】负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.【分析】根据非负数的和为零,可得每个非负数同时为零,根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键,又利用了负整数指数幂、非零等零次幂.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1 .【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k 的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.17.若(2x+5)(4x﹣10)=8x2+px+q,则p= 0 ,q= ﹣50 .【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣50【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为320元、180元.【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的等量关系是:以7折优惠价购买甲种商品所付钱数+以9折优惠价购买乙种商品所付钱数=386元,甲种商品原价+乙种商品原价=500元.根据这两个等量关系可以列出方程组,然后求解即可.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共8小题,满分66分)19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值;(2)原式利用单项式乘以多项式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.解方程组(1)(2).【考点】解二元一次方程组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.【考点】同底数幂的除法;幂的乘方与积的乘方;余角和补角.【专题】计算题;实数.【分析】(1)设这个角为x,根据题意列出关于x的方程,求出方程的解即可得到结果;(2)原式利用幂的乘方及同底数幂的除法法则变形,将已知等式代入计算即可求出值.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.【点评】此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】(1)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE;(2)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.【点评】本题考查了垂线,利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?【考点】二元一次方程组的应用.【分析】设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,可表示出今年的上半年和下半年的出口创汇额,由条件可列出方程,求解即可.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.【点评】本题主要考查了二元一次方程组的应用,根据题意正确表示出种植两种作物的费用是解题关键.24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.【考点】平行线的判定与性质.【分析】由AC⊥BC,DG⊥BC,可证得AC∥DG,又由∠1=∠2,易证得EF∥CD,继而证得结论.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.【点评】此题考查了平行线的判定与性质.注意证得AC∥DG是关键.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并后根据结果与x取值无关,求出k的值即可.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,利用两个等量关系:A地到长青化工厂的公路里程×+B地到长青化工厂的公路里程×1.5y=这两次运输共支出公路运输费15000元;A地到长青化工厂的铁路里程×+B地到长青化工厂的铁路里程×1.2y=这两次运输共支出铁路运输费97200元,列出关于x与y的二元一次方程组,求出方程组的解得到x与y的值,即可得到该工厂从A地购买原料的吨数以及制成运往B地的产品的吨数;(2)由第一问求出的原料吨数×每吨1000元求出原料费,再由这两次运输共支出公路运输费15000元,铁路运输费97200元,两运费相加求出运输费之和,由制成运往B地的产品的吨数×每吨8000元求出销售款,最后由这批产品的销售款﹣原料费﹣运输费的和,即可求出所求的结果.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意得:,整理得:,①×12﹣②得:13y=3900,解得:y=300,将y=300代入①得:x=400,∴方程组的解为:,答:工厂从A地购买了400吨原料,制成运往B地的产品300吨;(2)依题意得:300×8000﹣400×1000﹣15000﹣97200=1887800(元),答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】此题考查了二元一次方程组的应用,是一道与实际密切相关的热点考题,解答此类题时,要弄清题中的等量关系,列出相应的方程组,进而得到解决问题的目的.。
2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷
2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷一、选择题(每小题3分,共36分1.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.63.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y) B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y)D.(2x﹣y)(﹣2x+y)4.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣25.(3分)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣36.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.(3分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°8.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°9.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°10.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°11.(3分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.12.(3分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.二、填空题(每小题3分;共12分)13.(3分)若a2﹣b2=,a﹣b=,则a+b的值为.14.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.15.(3分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=度.16.(3分)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是.(把你认为正确结论的序号都填上)三.解答题(共6大题,共52分)17.(12分)计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).18.(7分)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.19.(7分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(9分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)21.(8分)小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?22.(9分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分1.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣1【分析】根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.2.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.3.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y) B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y)D.(2x﹣y)(﹣2x+y)【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x项的符号相反,故能使用平方差公式,A 错误;B、两个括号中,含y项的符号相反,x项的符号相同,故能使用平方差公式,B 错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C 错误;D、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,D正确;故选:D.【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.4.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.5.(3分)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.6.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.7.(3分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.【点评】本题利用对顶角相等和平行线的性质,需要熟练掌握.8.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.9.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°【分析】先根据直角三角形的性质得出∠D的度数,再由平行线的性质即可得出结论.【解答】解:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.11.(3分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为B.故选:B.【点评】此题考查了函数的图象;用到的知识点是函数图象的应用,需注意容器粗细和水面高度变化的关联.12.(3分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题(每小题3分;共12分)13.(3分)若a2﹣b2=,a﹣b=,则a+b的值为.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.15.(3分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠ABC,根据平行线的性质得出∠1=∠ABC,即可得出答案.【解答】解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,故答案为:45.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠1=∠ABC和求出∠ABC的度数,注意:两直线平行,同位角相等.16.(3分)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是②③.(把你认为正确结论的序号都填上)【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【解答】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故②正确;火车的长度是150米,故①错误;整个火车都在隧道内的时间是:35﹣5﹣5=25秒,故③正确;隧道长是:35×30﹣150=1050﹣150=900米,故④错误.故正确的是:②③.故答案是:②③.【点评】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三.解答题(共6大题,共52分)17.(12分)计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).【分析】(1)根据同底数幂的乘法计算即可;(2)根据单项式与多项式的乘法计算即可;(3)根据整式的乘法计算即可.【解答】解:(1)原式=﹣x2y5•x3y3=﹣x5y8.(2)原式=4a2﹣4ab+4a.(3)原式=9xy﹣3x2﹣(4x2+12xy﹣3xy﹣9y2)=9xy﹣3x2﹣(4x2+9xy﹣9y2)=﹣7x2+9y2.【点评】此题考查整式的混合计算,关键是根据法则进行计算.18.(7分)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.【解答】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(7分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.20.(9分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.21.(8分)小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.22.(9分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).【分析】(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.【解答】解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.。
湖北省宜昌市五峰县2015-2016学年七年级下学期期中考试数学试题
123abc(第3题图)2016年春季初中数学七年级期中综合素质测评卷考生注意: 闭卷考试,试题共24小题 满分:120分 考试时间:120分钟一、选择题(下列各小题都给出了四个选项, 其中只有一项符合题目要求, 请将符合要求的选项的字母代号涂填在答题卡上指定的位置.本大题共15小题, 每小题3分, 计45分)1.如图所示,四幅汽车标志设计中,能通过平移得到的是(■).奥迪 本田 大众 铃木 (A ) (B ) (C ) (D ) 2.下列各图中,∠1与∠2是对顶角的是:(■).3.如图,三条直线a 、b 、c 相交于一点, 则∠1+∠2+∠3=(■).(A )360° (B )180° (C )120° (D )9004. 如下图,若m ∥n ,∠1=105º,则∠2=(■). (A )55º (B )60º (C )65º (D )75º5. 在直角坐标系中,点(-3,-2)在(■).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 6. 在下列点中,与点A (2-,4-)的连线平行于y 轴的是(■). (A )(2,-4) (B )(4,-2)(第4题图) 2 1m n(第2题图)( )( )( )( )(C )(-2,4) (D )(-4,2)7. 在数-3.14,2, 0, π, 16, 0.1010010001……中无理数的个数有(■).(A )3个 (B )2个 (C )1个 (D )0个 8.16的平方根是(■).(A )2 (B )4 (C )- 2或2 (D )- 4或49. 估计76的值在哪两个整数之间(■).(A )75和77 (B )6和7 (C )7和8 (D )8和9 10. 在下列各式中正确的是(■).(A )2)2(-=-2 (B )9±=3(C )16=8 (D )22=211.点P 在第二象限,若该点到x 轴的距离为3,到y 轴的距离为1,则点P 的坐标是(■). (A )(-1,3) (B )(-3,1) (C )(3,-1) (D )(1,3)12.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为(■). (A )(3,6) (B )(1,3) (D )(1,6) (D )(3,3)13.在平面直角坐标系中,点P (3,4)关于x 轴对称的点的坐标是(■). (A )(-3,4) (B )(3,-4) (D )(-3,-4) (D )(4, 3)14.下列图形中,正确画出AC 边上的高的是(■).(第14题图) 15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的邻补角相等;④垂直于同一条直线的两条直线互相平行.其中真命题的个数为(■).(A)1 (B)2 (C)3 (D)4二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16. (1) 3127164+-(2)17.求下列x的值x2 -81=01A BOFDEC (第18题)321CBAE D FG 18. 如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠B OF 的度数.19.如图,EF//AD ,1∠=2∠.说明:∠DGA+∠BAC=180°.请将说明过程填写完成. 解:∵EF//AD ,(已知)∴2∠=_____.(__________________). 又∵1∠=2∠,(______)∴1∠=3∠,(________________). ∴AB//______,(__________________) ∴∠DGA+∠BAC=180°.(_______________)(第19题图)20.在平面直角坐标系中,已知点A (-4,3)、B (0, -3)(1)描出A 、B 两点的位置,并连结AB 、AO 、BO. (2)求△AOB 的面积.(第20题图)21.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°, 求∠FEC 的度数.(第21题图)ABCEFD22.平面内有三点A(2,22),B(5,22),C(5,2)(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐标.(2)求这个四边形的面积(精确到0.01).(3)将这个四边形向右平移2个单位,再向下平移32个单位,求平移后四个顶点的坐标.23. 如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠AC B=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.(第23题图)24. 如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,如图1(1)求证:∠EDB+∠BDC=90°.FDC HG BEA NM(2)若∠ABD 的平分线与CD 的延长线交于F ,且∠F=55°,求∠ABC.如图2(3)若H 是BC 上一动点,F 是BA 延长线上一点,FH 交BD 于M ,FG 平分∠BFH ,交DE于N ,交BC 于G 。
2015-2016学年安徽省合肥市瑶海区七年级下期中数学试卷含答案解析
2015-2016学年安徽省合肥市瑶海区七年级(下)期中数学试卷一、单项选择题(本题共10小题,每小题只有1个选项符合题意,每小题4分,共40分)1.下列实数中,是无理数的为()A.0 B.﹣C.D.3.142.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个3.已知a<b,下列式子不成立的是()A.a+1<b+1 B.3a<3bC.﹣a>﹣ b D.如果c<0,那么<4.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)65.下列计算正确的是()A.=±3 B.32=6 C.(﹣1)2015=﹣1 D.|﹣2|=﹣26.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.下列运算正确的是()A.(a+b)2=a2+b2+2a B.(a﹣b)2=a2﹣b2C.(x+3)(x+2)=x2+6 D.(m+n)(﹣m+n)=﹣m2+n28.若关于x,y的二元一次方程组的解满足x+y<505,则a的取值范围()A.a>2016 B.a<2016 C.a>505 D.a<5059.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5 B.5 C.﹣13 D.﹣13或510.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2016的值为()A.﹣1007 B.﹣1008 C.﹣1009 D.﹣1010二、填空题11.不等式2x+9≥3(x+2)的正整数解是.12.一种病毒近似于球体,它的半径为0.00000000375,用科学记数法表示为.13.若x2+kx+81是完全平方式,则k的值应是.14.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.15.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=.三、解答题16.计算(﹣2)﹣1﹣+(﹣3)0.17.解不等式:1﹣+x.四、(共两小题,每小题8分,共16分)18.a3•a4•a+(a2)4+(﹣2a4)2.19.解不等式组,并把解集在数轴上表示出来..五、(共两小题,每小题10分,共20分)20.先化简,再求值:(2x+5)(2x﹣5)+2x(x+1)﹣3x(2x﹣5),其中x=2.21.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣2)的值;(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.六、(本题满分12分)22.如图所示,某计算装置有一数据的入口A和一运算结果的出口B.下表是小刚输入一些数后所得的结果:A 0 1 4 9 16 25 36B ﹣2 ﹣1 0 1 2 3 4(1)若输出的数是5,则小刚输入的数是多少?(2)若小刚输入的数是225,则输出的结果是多少?(3)若小刚输入的数是n(n≥10),你能用含n的式子表示输出的结果吗?试一试.七、(本题满分12分)23.瑶海教育局计划在3月12日植树节当天安排A,B两校部分学生到郊区公园参加植树活动.已知A校区的每位学生往返车费是6元,B校每位学生的往返车费是10元,要求两所学校均要有学生参加,且A校参加活动的学生比B校参加活动的学生少4人,本次活动的往返车费总和不超过210元.求A,B两校最多各有多少学生参加?八、(本题满分14分)24.南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x ﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.①求x、y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:C D投入(元/平方米)12 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2015-2016学年安徽省合肥市瑶海区七年级(下)期中数学试卷参考答案与试题解析一、单项选择题(本题共10小题,每小题只有1个选项符合题意,每小题4分,共40分)1.下列实数中,是无理数的为()A.0 B.﹣C.D.3.14【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣是有理数,故B错误;C、是无理数,故C正确;D、3.14是有理数,故D错误;故选:C.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个【考点】实数与数轴;估算无理数的大小.【分析】根据比1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答】解:∵1<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【点评】本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.已知a<b,下列式子不成立的是()A.a+1<b+1 B.3a<3bC.﹣a>﹣ b D.如果c<0,那么<【考点】不等式的性质.【分析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.【解答】解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,故本选项正确,不符合题意;D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意.故选D.【点评】本题考查了不等式的性质,解题的关键是牢记不等式的性质,特别是在不等式的两边同时乘以或除以一个负数时,不等号方向改变.4.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.5.下列计算正确的是()A.=±3 B.32=6 C.(﹣1)2015=﹣1 D.|﹣2|=﹣2【考点】实数的运算.【专题】常规题型;实数.【分析】原式各项利用算术平方根,乘方的意义,以及绝对值的代数意义化简得到结果,即可作出判断.【解答】解:A、原式=3,错误;B、原式=9,错误;C、原式=﹣1,正确;D、原式=2,错误,故选C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.【点评】本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.7.下列运算正确的是()A.(a+b)2=a2+b2+2a B.(a﹣b)2=a2﹣b2C.(x+3)(x+2)=x2+6 D.(m+n)(﹣m+n)=﹣m2+n2【考点】完全平方公式;多项式乘多项式;平方差公式.【专题】计算题.【分析】A、B选项中利用完全平方公式展开得到结果;C选项中利用多项式乘以多项式法则计算得到结果;D选项利用平方差公式化简得到结果,即可做出判断.【解答】解:A、(a+b)2=a2+b2+2ab,本选项错误;B、(a﹣b)2=a2+b2﹣2ab,本选项错误;C、(x+3)(x+2)=x2+5x+6,本选项错误;D、(m+n)(﹣m+n)=﹣m2+n2,本选项正确,故选D【点评】此题考查了完全平方公式,平方差公式,以及多项式乘以多项式法则,熟练掌握公式及法则是解本题的关键.8.若关于x,y的二元一次方程组的解满足x+y<505,则a的取值范围()A.a>2016 B.a<2016 C.a>505 D.a<505【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加表示出x+y,代入已知不等式求出a的范围即可.【解答】解:,①+②得:4(x+y)=a+4,即x+y=,代入已知不等式得:<505,解得:a<2016,故选B【点评】此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.9.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5 B.5 C.﹣13 D.﹣13或5【考点】多项式乘多项式.【分析】直接利用多项式乘法去括号,进而合并同类项求出答案.【解答】解:∵(x+a)(x+b)=x2﹣13x+36,∴x2+(a+b)x+ab=x2﹣13x+36,∴a+b=﹣13.故选:C.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2016的值为()A.﹣1007 B.﹣1008 C.﹣1009 D.﹣1010【考点】规律型:数字的变化类;列代数式.【专题】规律型;分类讨论;整式.【分析】根据题目条件求出前几个数的值,知当n为奇数时:,当n为偶数时:;把n的值代入进行计算可得.【解答】解:∵a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…∴a2=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…,所以当n为奇数时:,当n为偶数时:;.故选:B.【点评】本题主要考查数字的变化规律,通过归纳、想象、猜想,进行规律的探索,解答时要注意分类讨论思想在解题中的应用,培养了学生的发散思维,属中档题.二、填空题11.不等式2x+9≥3(x+2)的正整数解是1,2,3.【考点】一元一次不等式的整数解.【专题】计算题.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.12.一种病毒近似于球体,它的半径为0.00000000375,用科学记数法表示为 3.75×10﹣9.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000375=3.75×10﹣9.故答案为:3.75×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若x2+kx+81是完全平方式,则k的值应是±18.【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.【考点】估算无理数的大小.【专题】压轴题;新定义.【分析】求出的范围,求出+1的范围,即可求出答案.【解答】解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.【点评】本题考查了估计无理数的应用,关键是确定+1的范围,题目比较新颖,是一道比较好的题目.15.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=﹣3.【考点】多项式乘多项式.【专题】计算题.【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故答案为:﹣3.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.计算(﹣2)﹣1﹣+(﹣3)0.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣﹣+1=﹣2+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解不等式:1﹣+x.【考点】解一元一次不等式.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:去分母得,3﹣(x﹣1)≤2x+3+3x,去括号得,3﹣x+1≤2x+3x+3,移项得,﹣x﹣2x﹣3x≤3﹣3﹣1,合并同类项得,﹣6x≤﹣1,把x的系数化为1得,x≥.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.四、(共两小题,每小题8分,共16分)18.a3•a4•a+(a2)4+(﹣2a4)2.【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加计算a3•a4•a,再根据幂的乘方法则:底数不变,指数相乘计算(a2)4,再根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘计算(﹣2a4)2.最后算加减即可.【解答】解:原式=a3+4+1+a2×4+4a8,=6a8.【点评】此题主要考查了同底数幂的乘法、幂的乘方、积的乘方,关键是熟练掌握各种计算法则.19.解不等式组,并把解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x+6>1﹣x,得:x>﹣1,解不等式3(x﹣1)≤x+5,得:x≤4,所以不等式组的解集为:﹣1<x≤4,将不等式组解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.五、(共两小题,每小题10分,共20分)20.先化简,再求值:(2x+5)(2x﹣5)+2x(x+1)﹣3x(2x﹣5),其中x=2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4x2﹣25+2x2+2x﹣6x2+15x=17x﹣25,当x=2时,原式=34﹣25=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣2)的值;(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.【考点】解一元一次不等式;有理数的混合运算;在数轴上表示不等式的解集.【专题】新定义.【分析】(1)根据题意得出有理数混合运算的式子,再求出其值即可;(2)先得出有理数混合运算的式子,再根据3⊕x的值小于16求出x的取值范围,并在数轴上表示出来即可.【解答】解:(1)∵a⊕b=a(a﹣b)+1,∴3⊕(﹣2)=3(3+2)+1=3×5+1=16;(2)∵a⊕b=a(a﹣b)+1,∴3⊕x=3(3+x)+1=10﹣3x.∵3⊕x的值小于16,∴10﹣3x<16,解得x>﹣2.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.六、(本题满分12分)22.如图所示,某计算装置有一数据的入口A和一运算结果的出口B.下表是小刚输入一些数后所得的结果:A 0 1 4 9 16 25 36B ﹣2 ﹣1 0 1 2 3 4(1)若输出的数是5,则小刚输入的数是多少?(2)若小刚输入的数是225,则输出的结果是多少?(3)若小刚输入的数是n(n≥10),你能用含n的式子表示输出的结果吗?试一试.【考点】规律型:数字的变化类.【专题】图表型.【分析】(1)根据表格发现规律:A=(B+2)2;(2)根据表格发现规律:B=﹣2,根据这一规律进行计算;(2)根据表格中的规律进行表示.【解答】解:有表中数据可发现:有输入的A的值可发现输入的数字为n2,输出的B的值为n﹣2.(1)输出的数是5,则小刚输入的数是(5+2)2=49;(2)输入的数是225,则输出的结果是﹣2=15﹣2=13;(3)输入的数是n(n≥10),则输出结果为:﹣2.【点评】此题考查了数字的规律问题,能够从表格中发现规律.七、(本题满分12分)23.瑶海教育局计划在3月12日植树节当天安排A,B两校部分学生到郊区公园参加植树活动.已知A校区的每位学生往返车费是6元,B校每位学生的往返车费是10元,要求两所学校均要有学生参加,且A校参加活动的学生比B校参加活动的学生少4人,本次活动的往返车费总和不超过210元.求A,B两校最多各有多少学生参加?【考点】一元一次不等式的应用.【分析】设A校有x名学生参加,B校有(x+4)名学生参加,根据往返车费=单人费用×人数,可列出关于x的一元一次不等式,解不等式可得出x的取值范围,从而得出结论.【解答】解:设A校有x名学生参加,B校有(x+4)名学生参加,依题意得6x+10(x+4)≤210,解得:x≤10.∵x为整数,∴x最多为10,x+4=10+4=14.答:A校最多有10名学生参加,B校最多有14名学生参加.【点评】本题考查了一元一次不等式的应用,解题的关键是根据数量关系列出一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出一元一次不等式(或不等式组)是关键.八、(本题满分14分)24.南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x ﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.①求x、y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:C D投入(元/平方米)12 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)【考点】整式的混合运算.【专题】应用题.【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A、B两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x,y的值;②代入数值得到整改后A、B两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【解答】解:(1)(x+y)(x﹣y)+(x+3y)(x+3y)=x2﹣y2+x2+6xy+9y2=2x2+6xy+8y2(平方米)答:A、B两园区的面积之和为(2x2+6xy)平方米;(2)(x+y)+(11x﹣y)=x+y+11x﹣y=12x(米),(x﹣y)﹣(x﹣2y)=x﹣y﹣x+2y=y(米),依题意有:,解得.12xy=12×30×10=3600(平方米),(x+3y)(x+3y)=x2+6xy+9y2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A、B两园区旅游的净收益之和为57600元.【点评】此题考查整式的混合运算,找出问题中的已知条件和未知量及它们之间的关系是解决问题的关键.。
人教版2015-2016学年七年级下册期中考试数学试题含答案
2015-2016七年级下学期期中考试数学试题一.选择题(每题3分,共30分)1.下面四个图形中,∠1与∠2是对顶角的图形是( )12121212A B C D2.如图,若m ∥n ,∠1 = 105°,则∠2 =( )A .55°B .60°C .65°D .75°3.在平面直角坐标系中,点P(-3,4)到x 轴的距离为( )A .3B .-3C .4D .-4 4.下列等式正确的是( )34±113 C.393-=-13 5.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是( )若以A 点为原点建立直角坐标系,则B 点坐标为( )A .(-3,-4)B .(-3,4)C .(3,-4)D .(3,4)7.若一个数的平方根与它的立方根完全相同,则这个数是( )A .0B .1C .-1D .±1, 08.张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,其他四个景点大致用坐标表示肯定错误的是( )A.熊猫馆(1,4) B.猴山(6,0)C.百鸟园(5,-3) D.驼峰(3,-2)9.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线相交有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(12)=;(3)F(27)=3;(4)若n是一个完全平方数(正整数的平方),则F(n)=1.其中正确说法的个数是()A.1个B.2个C.3个D.4个二.填空题(每题3分,共18分)11..如图,已知a∥b,∠1=130°,∠2=90°,则∠3=12.如图,O是直线AB上一点,∠COB=30°,则∠1=°.13.若两个连续的整数,a b满足a,则1ab的值为.14.若32-x +y x +2=0,则4x -2y 的值是15.把命题”对顶角相等”写成“如果……那么……”的形式.___________________________________________________________________________ 16.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.三.解答题17.将下列各数的序号填在相应的集合里.(6分)①38,②π,③3.1415926,④-0.456,⑤3.030030003……(每相邻两个3之间0的个数逐渐多1),⑥0,⑦115,⑧-39,⑨2)7(-,⑩1.0 有理数集合:{ }; 无理数集合:{ }; 正实数集合:{ };18.计算题:(每小题4分,共8分)(1)2 (2)、19、已知:如图,AB⊥C D ,垂足为O ,EF 经过点O ,∠1=25°,求∠2,∠3的度数.(7分)b20. (8分)已知c b a 、、位置如图所示,试化简 : ()22a b c b c b a -+-+-+21.(8分) 已知:如图,∠A=∠D ,∠B=∠C ,那么∠1与∠2互补吗?为什么?22. (8分)已知x ,y 满足xx x y 289161622---+-=,求xy 的平方根.23.(8分)先阅读理解,再回答下列问题: 因为2112=+,且221<<,所以112+的整数部分为1;因为6222=+,且362<<,所以222+的整数部分为2;因为12332=+,且4123<<,所以332+的整数部分为3;以此类推,我们会发现n n n (2+为正整数)的整数部分为______,请说明理由。
河北省唐山市乐亭县七年级数学下学期期中试题(含解析) 北师大版-北师大版初中七年级全册数学试题
某某省某某市乐亭县2015-2016学年七年级数学下学期期中试题一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×1092.下列各组图形可以通过平移互相得到的是()A.B.C.D.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a104.下列各组数是二元一次方程组的解的是()A.B.C.D.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.78.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.29.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.410.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.211.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣3212.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.215.若3×9m×27m=311,则m的值为()A.5B.4C.3D.216.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠=∠,可得AD∥BC.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m=,n=.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y=;23x=;22x+y﹣1=.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=°.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:;(2)根据你发现的规律,请写出第n个等式;(3)你认为(2)中所写的等式一定成立吗?并说明理由.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).2015-2016学年某某省某某市乐亭县七年级(下)期中数学试卷参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:149 000 000=1.49×108,故选:C.2.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.4.下列各组数是二元一次方程组的解的是()A.B.C.D.【考点】二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.【解答】解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得x+3(1+x)=7,即4x=4,∴x=1.∴y=1+x=1+1=2.解为x=1,y=2.故选A.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、正确,根据平角的定义可以证明;B、错误,两直线平行,内错角相等;C、正确,是两点间距离的定义;D、正确,符合确定直线的条件.故选B.7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.7【考点】平行线之间的距离.【分析】根据题意可知△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,从而可以得到S△ACD的值.【解答】解∵四边形ABCD中,AD∥BC,AC与BD相交于点O,S△ABD=10cm2,∴△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,∴S△ACD=10cm2,故选A.8.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.2【考点】完全平方公式.【分析】两个代数式相等,即对应项的系数相同,把右边的式子化简,得到的常数项就是a 的值.【解答】解:∵(x+2)2﹣1=x2+4x+4﹣1=x2+4x+3,∴a的值为3.故选C.9.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.10.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【考点】解二元一次方程组.【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.11.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣32【考点】多项式乘多项式.【分析】把式子展开,根据对应项系数相等,列式求解即可得到m、n的值.【解答】解:∵(x﹣4)(x+8)=x2+mx+n,∴x2+4x﹣32=x2+mx+n,∴m=4,n=﹣32,故选B.12.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.【考点】完全平方公式.【分析】直接利用完全平方公式化简求出答案.【解答】解:∵(a+b)2=7,(a﹣b)2=4,∴a2+2ab+b2=7,a2﹣2ab+b2=4,∴2(a2+b2)=11,∴a2+b2=.故选:D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°【考点】平行线的性质.【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.2【考点】平方差公式.【分析】直接利用平方差公式计算,然后再合并同类项即可.【解答】解:(n+3)(n﹣3)﹣(n+2)(n﹣2),=(n2﹣9)﹣(n2﹣4),=n2﹣9﹣n2+4,=﹣5,故选C.15.若3×9m×27m=311,则m的值为()A.5B.4C.3D.2【考点】同底数幂的乘法.【分析】首先根据3×9m×27m=311,可得3×32m×33m=311;然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出m的值是多少即可.【解答】解:∵3×9m×27m=311,∴3×32m×33m=311,∴31+2m+3m=311,∴1+2m+3m=11,解得m=2.故选:D.16.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断【考点】同底数幂的乘法.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:由负整数指数幂与正整数指数幂互为倒数,得x,y互为相反数,故选:A.二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠ 1 =∠ 3 ,可得AD∥BC.【考点】平行线的判定.【分析】直接利用平行线的判定方法得出答案.【解答】解:如果∠1=∠3(答案不唯一),可得AD∥BC.故答案为:1,3.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m= 2 ,n= 1 .【考点】解二元一次方程组.【分析】由题目可知m和n同时满足两个等式,即可列方程组进行求解.【解答】解:由题意列出方程组得:,解出.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【考点】二元一次方程的应用.【分析】设甲种运动服买了x套,乙种买了y套,根据准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.【解答】解:设甲种运动服买了x套,乙种买了y套,20x+35y=365,得x=,∵x,y必须为正整数,∴>0,即0<y<,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为:2.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .【考点】规律型:数字的变化类.【分析】首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.【解答】解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y= 15 ;23x= 27 ;22x+y﹣1=.【考点】解二元一次方程组;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)利用加减法解方程组;(2)利用同底数乘法和幂的乘方的逆运算进行变形,再整体代入计算.【解答】解:(1),①×2得;2x﹣2y=4③,②﹣③得:x=1,把x=1代入①中:y=﹣1,∴;(2)2x+y=2x•2y=3×5=15,23x=(2x)3=33=27,22x+y﹣1=22x•2y•2﹣1=32×5×=,故答案为:15,25,.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.【考点】整式的混合运算—化简求值.【分析】首先利用完全平方公式和平方差公式计算,然后去括号、合并同类项即可化简,然后把x的值代入即可求解.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣2时,原式=4﹣5=﹣1.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=40 °.【考点】平行线的判定与性质.【分析】(1)根据平行线的性由AB∥CD得到∠EHD=∠1=50°,再根据对顶角相等可得到∠2的度数;(2)根据垂直的定义得到∠MGH=90°,∠NHF=90°,然后根据平行线的判定有HN∥GM;(3)先由HN⊥EF得到∠NHG=90°,再根据对顶角相等得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.【解答】解:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°﹣50°=40°.故答案为40.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:8×10+1=9 2;(2)根据你发现的规律,请写出第n个等式2n(2n+2)+1=(2n+1) 2;(3)你认为(2)中所写的等式一定成立吗?并说明理由.【考点】规律型:数字的变化类.【分析】(1)根据2×4+1=32;4×6+1=52;6×8+1=72;…得出规律,第4个等式是8×10+1即可得出答案;(2)根据(1)中规律得出第n个等式是连续偶数相乘,进而得出一般规律;(3)利用一般规律利用多项式的乘法得出即可.【解答】解;(1)∵2×4+1=32;4×6+1=52;6×8+1=72;….∴8×10+1=9 2;(2)2n(2n+2)+1=(2n+1) 2;(3)一定成立,理由:2n(2n+2)+1=4n 2+4n+1,=(2n+1) 2.故答案为:8×10+1=9 2;2n(2n+2)+1=(2n+1) 2.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于40°;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于60°.(在横线上填上答案即可).【考点】平行线的判定与性质.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=80°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB=40°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB,(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=40°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=80°﹣x,利用∠OEB=∠OCA得到40°+x=80°﹣x,解得x=20°,所以∠OCA=80°﹣x=60°.【解答】(1)证明:∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=80°,而∠A=100°,∴∠A+∠O=180°,∴OB∥AC;(2)解:∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×80°=40°;(3)解:不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)解:设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=40°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣100°=80°﹣x,∵∠OEB=∠OCA,∴40°+x=80°﹣x,解得x=20°,∴∠OCA=80°﹣x=80°﹣20°=60°.故答案为40°,60°.word 21 / 21。
南京市鼓楼区2015-2016学年七年级(下)期中考试数学试题
南京市鼓楼区2015-2016第二学期期中考试七年级数学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填在题号前的括号里)1.下列各组图形,可由一个图形平移得到另一个图形的是A B C D2.下列计算正确的是A.x3·x3=2x6B.(﹣2x3)2=﹣4x4C.(x3)2=x6D.x5÷x=x53.下列计算正确的是A.2(a-1)=2a﹣1B.(a﹢b)(b﹣a)=b2﹣a2C.(a﹢1)2=a2﹣1D.(﹣a﹣b)2=a2﹣2ab﹢b24.如图,x的值可能是A.11B.12C.13D.14(第4题)(第5题)5.如图,下列说法正确的是A.若AB∥DC,则∠1=∠2B.若AD∥BC,则∠3=∠4C.若∠1=∠2,则AB∥DCD.若∠2﹢∠3﹢∠A=180º,则AB∥DC6.下列代数式符合表中运算关系的是a0.5 3b0.25 3运算结果 1 3A.ab-1B.a2b-1C.a2bD.a-1b2二、填空题(本题共10小题,每题2分,共20分)7.计算:-3x·(4y-1)的结果为8.某球形病毒颗粒直径约为0.0000001m,将0.0000001用科学记数法表示为。
9.计算:0.54×25=10.命题“对顶角相等”的逆命题为。
11.若x+2y-3=0,则2x·4y的值为12.如图,∠1、∠2、∠3、∠4是五边形的外角,若∠A=120º,则∠1+∠2+∠3+∠4= º13.若x2+y2=8,xy=2,则(x-y)2=。
14.如图,四边形ABCD中,点M、N分别在AB、BC上,将∆BMN沿MN翻折,得∆FMN,若MF∥AD,FN∥DC,则∠D的度数为º(第12题)(第14题)(第16题)15.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角之间的数量关系。
江苏省无锡市东林中学2015-2016学年七年级数学下学期期中试题 苏科版
江苏省无锡市东林中学2015-2016学年七年级数学下学期期中试题(考试时间:100分钟 满分:100分)一.选择题(本大题共10小题,每题3分,共30分,请把正确答案的编号填在括号内.) 1.下列计算正确的是…………………………………………………………………( ) A .4a 2+3a 2=7 a 4B .5a 2-2a 2=3 C .a 3×2a 2=2a 6 D .5a 6÷a 2=5a 42.若一个多边形的内角和为1080°,则这个多边形的边数为………………… …( )A .6B .7C .8D .9 3.如果一个等腰三角形的两边长分别是2、4,那么这个三角形的周长可能是………( )A .8B .10C .8或10D .6 4.已知:a +b =2,ab =-3,计算:(a -3)(b -3)的结果是…………………… ( ) A .1B .-1C . 0D .-25.下列等式由左边到右边的变形中,属于因式分解的是………………………… ( ) A .x 2+5x -1=x(x +5)-1 B .x 2-4+3x =(x +2)(x -2)+3x C .(x +2)(x -2)=x 2-4D .x 2-9=(x +3)(x -3)6.已知a m=5,a n=2,则a 2m +n的值等于……………………………………………( )A .50B .27C .12D .257.如图,已知AB ∥CD ,则∠a 、∠β和∠γ之间的关系为……………………… ( ) A .α+β-γ=180° B .α+γ=β C .α+β+γ=360°D .α+β-2γ=180°8.如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是 ………………………………………………………………… ( ) A .15° B .20° C .25° D .30°9.下列说法正确的有 ………………………………………………………… ( )①一个多边形最多有3个锐角; ②n 边形有2)3(-n n 条对角线;③三角形的三条高一定交于一点;④当x 为任意有理数时,1062+-x x 的值一定大于1;⑤在△ABC 中,若∠A =2∠B =3∠C ,则△ABC为直角三角形;⑥平移后的线段与原线段平行且相等 A .2个B .3个C .4个D .5个10. 定义一种运算:⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--+=-5251511k k a a k k ,其中k 是正整数,且k ≥2,[x ]第7题第9题表示非负实数x 的整数部分,例如[2.6]=2,[0.8]=0.若11=a ,则2015a 的值为…( ) A .2015B .4C .2014D .5二.填空题(本大题共8小题,每空2分,共16分,请把结果直接填在题中的横线上.)11.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm ,这个数量用科学记数法可表示为_____________ cm . 12.(-0.25)2015×42014= .13.因式分解:ax 2—4ay 2=.14.已知a -b =-2,a -c =3,则(2a -b -c )2+(c -b )2的值为 . 15.如图所示,两个正方形的边长分别为a 和b ,如果a +b =8,ab =15, 那么阴影部分的面积是_________16.如图,在△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点, 且S △ABC =12cm 2,则S △BEF 的值为_____cm 217.一个多边形截去一个角,形成新多边形的内角和是720°,原多边形的边数是 . 18.一根长30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,MA 的长应为_______cm.三.解答题(本大题共7小题,共54分. 解答需写出必要的文字说明或演算步骤.) 19.(12分)计算:(1)220)31(23)2(--+----π (2)23)3()()3(m m m -⋅---(3)a 2b (a +b )—(2a —3ab )(a 2b -ab ) (4)(x +4)(x —4)-(x -2)220.(6分)把下列各式因式分解:(1)a 2(x —y )+b 2(y —x ) (2)16x 4—8x 2y 2+y 421.(5分)先化简,再求值:2(x +1)2-3(x —3)(3+x )+(x +5)(x -2),bCABF E第16题1 2 B A C E FDG其中x 满足x 2 +y 2= 2x -4y -522.(本题满分5分)如图,△ABC 的顶点都在方格纸的格点上. 将△ABC 向左平移1格,再向上平移3格. (1)请在图中画出平移后的△A ′B ′C ′; (2)利用网格在图中画出△ABC 的高CD 和中线AE . (3)图中BC 与B 1C 1的关系是: ; (4)在平移过程中线段AC 所扫过的面积为 .23.(6分)如图,在△ABC 中,已知AD ⊥BC ,AE 平分∠BAC ,∠B=60º,∠C =30º . 求∠BAE 和∠DAE 的度数.24.(本题6分)如图,在ΔA BC 中,∠1=∠2,点E 、F 、G 分别在BC 、AB 、AC 上且EF ⊥AB ,DG ∥BC ,请判断CD 与AB 的 位置关系,并说明理由。
2015-2016学年北京市西城区三帆中学七年级(下)期中数学试卷
2015-2016学年北京市西城区三帆中学七年级(下)期中数学试卷一、选择题1.(3分)64的平方根是()A.4B.±4C.8D.±82.(3分)图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)若a>2,则下列各式错误的是()A.a﹣2>0B.a+5>7C.﹣a>﹣2D.a﹣4>﹣2 4.(3分)如图,l1∥l2,∠1=110°,则∠2的度数是()A.68°B.70°C.105°D.110°5.(3分)下列说法正确的有()个.①负数没有平方根,但负数有立方根:②的平方根是±;③=﹣5;④﹣27的立方根是±3.A.1B.2C.3D.46.(3分)已知:12.52=156.25,12.62=158.76,12.72=161.29,12.82=163.84,下列说法正确的是()A.12.6<<12.7B.=40C.12.5<<12.6D.=±12.67.(3分)下列命题是假命题的是()A.同位角相等B.平行于同一直线的两直线平行C.在同一平面内,过一点且只有一条直线与已知直线垂直D.两直线平行,内错角相等8.(3分)如图,在平面直角坐标系xOy中,A(1,2),B(0,1),C(2,0)若将△ABC平移到△A1B1C1,使点A1与原点重合,则点C1的坐标和△A1B1C1的面积分别是()A.C1(0,1),2B.C1(0,1),1.5C.C1(1,﹣2),2D.C1(1,﹣2),1.59.(3分)在平面上,过一定点O作两条斜交的轴x和y,它们的交角是ω(ω≠90°),以定点O为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中ω叫做坐标角.对于平面内任意一点P,过P 作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x 和y,于是点P的坐标就是(x,y).如图,ω=60°,且y轴平分∠MOx,OM=2,则点M的坐标是()A.(2,﹣2)B.(﹣1,2)C.(﹣2,2)D.(﹣2,1)10.(3分)如果关于x,y的方程组的解是整数,那么整数m的值为()A.4,﹣4,﹣5,13B.4,﹣4,﹣5,﹣13C.4,﹣4,5,13D.﹣4,5,﹣5,13二、填空题11.(3分)“a的2倍减去b的差不小于﹣1”用不等式可表示为.12.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.13.(3分)的相反数是;﹣的绝对值是;比较大小:3﹣.14.(3分)如图,AB,CD交于点O,OE⊥CD于O,连接CE,(1)若∠AOC=25°,则∠BOE=.(2)若OC=2cm.OE=1.5cm,CE=2.5cm,那么点E到直线CD的距离是cm.15.(3分)如图,以点A为观测点,如果B点的位置用有序数对(2,60°)来表示,那么点C、点D的位置分别记为C(2,),D(,).16.(3分)下列说法:①无限小数一定是无理数;②两个无理数的和一定是无理数;③有理数和无理数统称实数;④数轴上的每个点都表示一个实数;⑤每个实数都可以用数轴上的一个点表示,其中正确的是(填序号).17.(3分)在解决“过直线AB外一点P画AB的平行线”的问题时,小明使用了一块三角板来完成作图,他的作法如下:第①步:如图①,用三角板的一条直角边贴住直线AB,并且使斜边正好经过点P,沿斜边画直线PQ;第②步:用同一块三角板的斜边贴住直线PQ,并使一条直角边经过点P,沿这条直角边画直线CD,则CD∥AB.请根据上面的信息,在图②中画出三角板的位置和直线CD,并写出这样画平行线的依据:.18.(3分)在平面直角坐标系中,把点向右平移2个单位,再向上平移1个单位记为一次“跳跃”,点A(﹣6,﹣2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…以此类推.(1)写出点A3的坐标:A3.(2)写出点A n的坐标:A n(用含n的代数式表示).(3)将A1、A2、A3…顺次连接起来,会发现它们都在一条直线上,记这条直线为l,则坐标系中的点M(201,101)与直线l的位置关系是(单选);①M在直线l上;②M在直线l的上方;③M在直线l的下方.三、解答题19.计算:﹣+.20.解方程:2(x﹣1)3=16.21.解方程组:.22.解方程组:.23.已知:如图,直线PQ分别与直线AB、CD交于点E和点F,∠1=∠2,射线EM、EN分别与直线CD交于点M、N,且EM⊥EN,∠3=40°,求∠4的度数.解:∵∠1=∠2,(已知)∴∥,()∵EM⊥EN,(已知)∴()∵∠3=40°,(已知)∴∠BEM=∠+∠=°+ °=°,∵AB∥CD(已证)∴∠4=∠()=°.(等量代换)24.列方程组解应用题,根据国家发改委实施“阶梯电价”的有关文件要求,某市决定从2012年6月1日起对居民生活用电试行“阶梯电价”的收费,具体收费标准见下表:若该市一户居民6月份用电320千瓦时,应缴电费164元,7月份用电450千瓦时,应缴电费248元,求a、b的值.一户居民一个月用电量的范围电费价格(单位:元千瓦时)不超过240千瓦时的部分a超过240千瓦时,但不超过400千瓦时的部分b超过400千瓦时的部分a+0.325.已知在平面直角坐标系中,四边形OABC的四个顶点坐标分别是O(0,0),A(0,3),B(5,4),C(4,0).(1)在坐标系中画出四边形OABC,并求四边形OABC的面积.(2)连接线段AC,将线段AC向左平移m个单位长度,再向下平移n个单位长度,使得A的对应点A′恰好落在x轴上,C的对应点C′恰好落在y轴上,写出m和n的值.26.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式.(2)观察图4,请写出图4所表示的代数恒等式:.(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2=a2+2ab+b2,仿照图4画出你的拼图并标出相关数据.27.在平面直角坐标系中,A为x轴负半轴上一点.B为x轴上一点,C(0,﹣2),D(﹣3,﹣2),直线MN经过C、D两点.(1)如图1.求△BCD的面积.(2)如图2,若A(﹣5,0),当BC=AD时,请尺规作图在图2中作出点B的位置,并直接写出点B的坐标.(3)如图3,当B恰好为∠ADC和∠ACN的角平分线交点时,记∠BDC=α,∠BCN=β,求∠DBC和∠DAC的度数(用含α、β的式子表示).并写出∠DAC 和∠DBC之间的数量关系.四、附加题28.五一假期,小明和小华共同设计了一款拼图,他们用乒乓球粘成了下面几种造型的拼板(每种一块,没有重复):A组A1A2A3B组B1B2B3B4B5B6(1)你能用部分拼板拼成图1中的平行四边形吗?所使用的拼板形状不能重复,请在图1中用不同颜色或底纹画出来.(2)如图2,小华想用拼板摆出一个三棱锥造型,三棱锥的每条棱上有三个乒乓球,他已经用A5和B完成了一部分(图2是从上往下看的样子),请从剩下的拼板中挑出一块完成拼图,你认为需要的拼板是.(3)小明试图用部分拼板拼出图3中的大三角形,请判断他能否成功?如果能,在图3中用不同颜色或底纹画出拼板的摆法;如果不能,请说明理由.29.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F的变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(﹣2,4)=.(2)若点P(2,﹣2)在F变换下的对应点是它本身,求a、b的值.(3)坐标平面内有不共线的三点A、B、C,若它们在变换下的对应点分别为D、E、F且D、E、F也不共线,猜想△ABC与△DEF的面积之间的关系:(用等式表示,不需要证明).30.光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射.在光的反射现象中,有以下基本概念(如图1所示):法线:过入射点所作的垂直于镜面的线叫做法线.入射角:入射光线与法线的夹角.反射角:反射光线与法线的夹角.法国土木工程兼物理学家菲涅耳(1788﹣1827),经过大量实验,提出光的反射定律:①反射光线与入射光线、法线在同一平面内,反射光线与入射光线分居在法线两侧;②反射角等于入射角;③在光的反射现象中,光路是可逆的.请你根据以上信息,完成下面问题.(1)在生活中,我们可以利用直角平面镜的反射规律,在自行车的尾部制作反光灯,如图2所示的两个平面镜互相垂直,请你在图中画出入射光线AB在两个平面镜上经过两次反射后的反射光线CD(不写作法,保留作图痕迹),则CD与AB的位置关系是.由此可见反光灯是有利于夜间行车安全的.(2)如图3所示,OP、OQ为两个足够长的平面镜,∠POQ=15°,AB为一条入射光线,B为入射点,且AB⊥OP,请问,经过次反射之后,光线将与其中的某一个平面镜平行射出.2015-2016学年北京市西城区三帆中学七年级(下)期中数学试卷参考答案与试题解析一、选择题1.(3分)64的平方根是()A.4B.±4C.8D.±8【解答】解:∵(±8)2=64,∴64的平方根是±8,故选:D.2.(3分)图中,∠1和∠2是同位角的是()A.B.C.D.【解答】解:A.∠1和∠2是两条直线被第三条直线所截形成的内错角,故A 错误;B.∠1和∠2不是两条直线被第三条直线所截形成的同位角,故B错误;C.∠1和∠2是两条直线被第三条直线所截形成的同位角,故C正确;D.∠1和∠2不是两条直线被第三条直线所截形成的同位角,故D错误;故选:C.3.(3分)若a>2,则下列各式错误的是()A.a﹣2>0B.a+5>7C.﹣a>﹣2D.a﹣4>﹣2【解答】解:A、∵a>2,∴a﹣2>0,正确;B、∵a>2,∴a+5>7,正确;C、∵a>2,∴﹣a<﹣2,错误;D、∵a>2,∴a﹣4>﹣2,正确;故选:C.4.(3分)如图,l1∥l2,∠1=110°,则∠2的度数是()A.68°B.70°C.105°D.110°【解答】解:∵l1∥l2,∴∠3=∠1=110°,∴∠2=180°﹣∠3=180°﹣110°=70°.故选:B.5.(3分)下列说法正确的有()个.①负数没有平方根,但负数有立方根:②的平方根是±;③=﹣5;④﹣27的立方根是±3.A.1B.2C.3D.4【解答】解:①负数没有平方根,但负数有立方根,故①正确;②的平方根是±,故②正确;③=5,故③错误;④﹣27的立方根是﹣3,故④错误.故选:B.6.(3分)已知:12.52=156.25,12.62=158.76,12.72=161.29,12.82=163.84,下列说法正确的是()A.12.6<<12.7B.=40C.12.5<<12.6D.=±12.6【解答】解:因为12.52=156.25,12.62=158.76,12.72=161.29,12.82=163.84,所以12.6<<12.7,<12.5,=12.6.故选:A.7.(3分)下列命题是假命题的是()A.同位角相等B.平行于同一直线的两直线平行C.在同一平面内,过一点且只有一条直线与已知直线垂直D.两直线平行,内错角相等【解答】解:A、两直线平行,同位角相等,故错误,是假命题;B、平行于同一直线的两条直线平行,正确,是真命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;D、两直线平行,内错角相等,正确,是真命题,故选:A.8.(3分)如图,在平面直角坐标系xOy中,A(1,2),B(0,1),C(2,0)若将△ABC平移到△A1B1C1,使点A1与原点重合,则点C1的坐标和△A1B1C1的面积分别是()A.C1(0,1),2B.C1(0,1),1.5C.C1(1,﹣2),2D.C1(1,﹣2),1.5【解答】解:∵点A1与原点重合,即点A(1,2)平移后原点,∴△ABC先向左平移1和单位,再向下平移2个单位得到△A1B1C1,∴点C1的坐标为(1,﹣2),∵△ABC的面积=(1+2)×2﹣×1×2=2,∴△A1B1C1的面积为2.故选:C.9.(3分)在平面上,过一定点O作两条斜交的轴x和y,它们的交角是ω(ω≠90°),以定点O为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中ω叫做坐标角.对于平面内任意一点P,过P 作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x 和y,于是点P的坐标就是(x,y).如图,ω=60°,且y轴平分∠MOx,OM=2,则点M的坐标是()A.(2,﹣2)B.(﹣1,2)C.(﹣2,2)D.(﹣2,1)【解答】解:如图,过M作x轴和y轴的平行线,与两轴分别交于A和B.∵ω=60°,且y轴平分∠MOx,∴∠MOB=∠BOX=60°,∠AOM=60°.∵AM∥OB,∴∠OMA=∠MOB=60°,∴∠OMA=∠AOM=60°,∴△OAM是等边三角形,∴OA=OM=2.同理可得△OBM是等边三角形,∴OB=OM=2.∴点M的坐标是(﹣2,2).故选:C.10.(3分)如果关于x,y的方程组的解是整数,那么整数m的值为()A.4,﹣4,﹣5,13B.4,﹣4,﹣5,﹣13C.4,﹣4,5,13D.﹣4,5,﹣5,13【解答】解:,①×3﹣②×2得:﹣9y﹣2my=18﹣52,解得:y=,由y为整数,得到2m+9=±1,±2,±17,±34,解得:m=﹣4,﹣5,4,﹣13,故选:B.二、填空题11.(3分)“a的2倍减去b的差不小于﹣1”用不等式可表示为2a﹣b≥﹣1.【解答】解:“a的2倍减去b的差不小于﹣1”用不等式可表示为2a﹣b≥﹣1.故答案为2a﹣b≥﹣1.12.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.13.(3分)的相反数是﹣;﹣的绝对值是;比较大小:3﹣>.【解答】解:的相反数是﹣;﹣的绝对值是;3﹣>.故答案为:﹣;;>.14.(3分)如图,AB,CD交于点O,OE⊥CD于O,连接CE,(1)若∠AOC=25°,则∠BOE=65°.(2)若OC=2cm.OE=1.5cm,CE=2.5cm,那么点E到直线CD的距离是 1.5cm.【解答】解:(1)∵OE⊥CD,∴∠DOE=90°,∵∠AOC=25°,∴∠BOD=90°,∴∠BOE=90°﹣25°=65°,(2)∵OE⊥CD,OE=1.5cm,∴点E到直线CD的距离是1.5cm,故答案为65°,1.5.15.(3分)如图,以点A为观测点,如果B点的位置用有序数对(2,60°)来表示,那么点C、点D的位置分别记为C(2,300°),D(3,150°).【解答】解:根据题意点C(2,300°)、点D(3,150°),故答案为:300°,3,150°.16.(3分)下列说法:①无限小数一定是无理数;②两个无理数的和一定是无理数;③有理数和无理数统称实数;④数轴上的每个点都表示一个实数;⑤每个实数都可以用数轴上的一个点表示,其中正确的是(填序号)③④⑤.【解答】解:①无限小数不一定是无理数,如无限循环小数;②两个无理数的和不一定是无理数,如:﹣+=0;③有理数和无理数统称实数,正确;④数轴上的每个点都表示一个实数,正确;⑤每个实数都可以用数轴上的一个点表示,正确;故答案为:③④⑤17.(3分)在解决“过直线AB外一点P画AB的平行线”的问题时,小明使用了一块三角板来完成作图,他的作法如下:第①步:如图①,用三角板的一条直角边贴住直线AB,并且使斜边正好经过点P,沿斜边画直线PQ;第②步:用同一块三角板的斜边贴住直线PQ,并使一条直角边经过点P,沿这条直角边画直线CD,则CD∥AB.请根据上面的信息,在图②中画出三角板的位置和直线CD,并写出这样画平行线的依据:内错角相等,两直线平行.【解答】解:如图②,CD∥AB.依据为:内错角相等,两直线平行.故答案为:内错角相等,两直线平行.18.(3分)在平面直角坐标系中,把点向右平移2个单位,再向上平移1个单位记为一次“跳跃”,点A(﹣6,﹣2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…以此类推.(1)写出点A3的坐标:A3(0,1).(2)写出点A n的坐标:A n(﹣6+2n,﹣2+n)(用含n的代数式表示).(3)将A1、A2、A3…顺次连接起来,会发现它们都在一条直线上,记这条直线为l,则坐标系中的点M(201,101)与直线l的位置关系是(单选)③;①M在直线l上;②M在直线l的上方;③M在直线l的下方.【解答】解:(1)根据题意知,A1坐标为(﹣6+2,﹣2+1),即(﹣4,﹣1),A2坐标为(﹣6+2×2,﹣2+1×2),即(﹣2,0),A3坐标为(﹣6+2×3,﹣2+1×3),即(0,1),故答案为:(0,1);(2)由(1)知,点A n的坐标为(﹣6+2n,﹣2+n),故答案为:(﹣6+2n,﹣2+n);(3)设直线l的解析式为y=kx+b,将点(﹣6,﹣2)、(﹣4,﹣1)代入得:,解得:,∴直线l的解析式为y=x+1,当x=201时,y=×201+1=101.5>1,∴点M在直线l的下方,故答案为:③.三、解答题19.计算:﹣+.【解答】解:原式=﹣+=1.20.解方程:2(x﹣1)3=16.【解答】解:(x﹣1)3=8,x﹣1=2,x=3.21.解方程组:.【解答】解:把②代入①得:2x﹣5(x﹣2)=1,去括号得:2x﹣5x+10=1,解得:x=3,把x=3代入②得:y=1,则方程组的解为.22.解方程组:.【解答】解:,①×3+②×5得:29x=58,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.23.已知:如图,直线PQ分别与直线AB、CD交于点E和点F,∠1=∠2,射线EM、EN分别与直线CD交于点M、N,且EM⊥EN,∠3=40°,求∠4的度数.解:∵∠1=∠2,(已知)∴AB∥CD,(同位角相等,两直线平行)∵EM⊥EN,(已知)∴∠MEN=90°(垂直定义)∵∠3=40°,(已知)∴∠BEM=∠3+∠MEN=40°+ 90°=130°,∵AB∥CD(已证)∴∠4=∠BEM(两直线平行,内错角相等)=130°.(等量代换)【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∵EM⊥EN,∴∠MEN=90°(垂直定义),∵∠3=40°,∴∠BEM=∠3+∠MEN=40°+90°=130°,∵AB∥CD,∴∠4=∠BEM=130°(两直线平行,内错角相等),故答案为:AB,CD,同位角相等,两直线平行,∠MEN=90°,垂直定义,3,MEN,40,90,130,BEM,两直线平行,内错角相等,130.24.列方程组解应用题,根据国家发改委实施“阶梯电价”的有关文件要求,某市决定从2012年6月1日起对居民生活用电试行“阶梯电价”的收费,具体收费标准见下表:若该市一户居民6月份用电320千瓦时,应缴电费164元,7月份用电450千瓦时,应缴电费248元,求a、b的值.一户居民一个月用电量的范围电费价格(单位:元千瓦时)不超过240千瓦时的部分ab超过240千瓦时,但不超过400千瓦时的部分超过400千瓦时的部分a+0.3【解答】解:根据题意得:,解得:.则a的值是0.5,b的值是0.55.25.已知在平面直角坐标系中,四边形OABC的四个顶点坐标分别是O(0,0),A(0,3),B(5,4),C(4,0).(1)在坐标系中画出四边形OABC,并求四边形OABC的面积.(2)连接线段AC,将线段AC向左平移m个单位长度,再向下平移n个单位长度,使得A的对应点A′恰好落在x轴上,C的对应点C′恰好落在y轴上,写出m和n的值.【解答】解:(1)如图,四边形OABC即为所求,S四边形OABC=4×5﹣×1×5﹣×1×4=20﹣﹣2=15.5;(2)∵A(0,3),C(4,0),将线段AC向左平移m个单位长度,再向下平移n个单位长度,使得A的对应点A′恰好落在x轴上,C的对应点C′恰好落在y 轴上,∴3﹣n=0,4﹣m=0,∴n=3,m=4.26.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=(a+b)2﹣4ab.(2)观察图4,请写出图4所表示的代数恒等式:(2a+b)(a+b)=2a2+3ab+b2.(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2=a2+2ab+b2,仿照图4画出你的拼图并标出相关数据.【解答】解:(1)(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=(a+b)2﹣4ab.(2)图4所表示的代数恒等式:(2a+b)(a+b)=2a2+3ab+b2.(3)如图所示:故答案为:(a﹣b)2=(a+b)2﹣4ab;(2a+b)(a+b)=2a2+3ab+b2.27.在平面直角坐标系中,A为x轴负半轴上一点.B为x轴上一点,C(0,﹣2),D(﹣3,﹣2),直线MN经过C、D两点.(1)如图1.求△BCD的面积.(2)如图2,若A(﹣5,0),当BC=AD时,请尺规作图在图2中作出点B的位置,并直接写出点B的坐标.(3)如图3,当B恰好为∠ADC和∠ACN的角平分线交点时,记∠BDC=α,∠BC N=β,求∠DBC和∠DAC的度数(用含α、β的式子表示).并写出∠DAC 和∠DBC之间的数量关系.【解答】解:(1)C(0,﹣2),D(﹣3,﹣2),∴OC=2,CD=0+3=3,∵点B在x轴上,∴S=CD•OC=×3×2=3;△BCD(2)如图2,以点C为为圆心,AD长为半径画弧与x交于点B和B',∴满足条件的点B如图2所示的点B和B'的位置,∵A(﹣5,0),D(﹣3,﹣2),∴AD==2,设B(m,0),∵C(0,﹣2),∴BC=,∴m=±2,∴B(﹣2,0)或(2,0);(3)∵BD是∠ADC的平分线,∴∠ADC=2∠BDC=2α,∵BC是∠BCN的角平分线,∴∠ACN=2∠BCN=2β,∵∠ACD是△ACD的外角,∴∠ACN=∠ADC+∠CAD,∴∠CAD=∠ACN﹣∠ADC=2α﹣2β=2(α﹣β),∵∠BCN是△BCD的外角,∴∠BCN=∠BDC+∠DBC,∴∠DBC=∠BCN﹣∠BDC=α﹣β,∴∠DAC=2∠DBC.四、附加题28.五一假期,小明和小华共同设计了一款拼图,他们用乒乓球粘成了下面几种造型的拼板(每种一块,没有重复):A组A1A2A3B组B1B2B3B4B5B6(1)你能用部分拼板拼成图1中的平行四边形吗?所使用的拼板形状不能重复,请在图1中用不同颜色或底纹画出来.(2)如图2,小华想用拼板摆出一个三棱锥造型,三棱锥的每条棱上有三个乒乓球,他已经用A5和B完成了一部分(图2是从上往下看的样子),请从剩下的拼板中挑出一块完成拼图,你认为需要的拼板是A1.(3)小明试图用部分拼板拼出图3中的大三角形,请判断他能否成功?如果能,在图3中用不同颜色或底纹画出拼板的摆法;如果不能,请说明理由.【解答】解:(1)答案见图1.(2)需要的拼板是A1(理由:三棱锥的底面是6个球,中层3个球,底层1个球).(3)不能成功,设需要x个A组材料,y个B组材料,由题意3x+4y=28,方程的整数解为或或,由此可见必须有重复,所以不可能拼出图3中的大三角形.29.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F的变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2).(2)若点P(2,﹣2)在F变换下的对应点是它本身,求a、b的值.(3)坐标平面内有不共线的三点A、B、C,若它们在变换下的对应点分别为D、E、F且D、E、F也不共线,猜想△ABC与△DEF的面积之间的关系:S△ABC=4•S(用等式表示,不需要证明).△DEF【解答】解:(1)由题意f(﹣2,4)=(﹣1,2),故答案为(﹣1,2).(2)由题意,解得,∴a=1,b=2.(3)设A(x1,y1),b(x2,y2),则AB=,由题意D(x1+a,y1﹣b),E(x2+a,y2﹣b),∴DE=== AB,同理可证,EF=BC,DF=AC,∴===2,∴△ABC∽△DEF,∴=22,∴S△ABC =4•S△DEF.故答案为S△ABC =4•S△DEF.30.光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射.在光的反射现象中,有以下基本概念(如图1所示):法线:过入射点所作的垂直于镜面的线叫做法线.入射角:入射光线与法线的夹角.反射角:反射光线与法线的夹角.法国土木工程兼物理学家菲涅耳(1788﹣1827),经过大量实验,提出光的反射定律:①反射光线与入射光线、法线在同一平面内,反射光线与入射光线分居在法线两侧;②反射角等于入射角;③在光的反射现象中,光路是可逆的.请你根据以上信息,完成下面问题.(1)在生活中,我们可以利用直角平面镜的反射规律,在自行车的尾部制作反光灯,如图2所示的两个平面镜互相垂直,请你在图中画出入射光线AB在两个平面镜上经过两次反射后的反射光线CD(不写作法,保留作图痕迹),则CD与AB的位置关系是CD∥AB.由此可见反光灯是有利于夜间行车安全的.(2)如图3所示,OP、OQ为两个足够长的平面镜,∠POQ=15°,AB为一条入射光线,B为入射点,且AB⊥OP,请问,经过5次反射之后,光线将与其中的某一个平面镜平行射出.【解答】解:(1)入射光线AB在两个平面镜上经过两次反射后的反射光线CD 如图所示,结论:CD∥AB.理由:易知四边形EBFC是矩形,∴∠BEC=90°,∴∠EBC+∠BCE=90°,∵∠ABE=∠EBC,∠BCE=∠ECD,∴∠ABC+∠BCD=180°,∴AB∥CD.(2)由图象可知经过5次反射之后,光线将与其中的某一个平面镜平行射出.。
河南省周口市太康县七年级数学下学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题
某某省某某市太康县2015-2016学年七年级数学下学期期中试题一、选择题下列各小题均有四个答案其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣cB.如果a=b,那么a+c=b+cC.如果a=b,那么D.如果a=b,那么ac=bc2.若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.23.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1B.a=﹣3,b=1C.a=3,b=﹣1D.a=﹣3,b=﹣14.不等式组的解集在数轴上可表示为()A.B.C.D.5.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+286.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种7.已知,且x﹣y<0,则m的取值X围为()A.m B.m C.m D.m8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.二、填空题9.已知关于x的方程2x﹣3a﹣9=0的解是x=﹣3,则a的值为.10.已知方程2x+y﹣5=0用含y的代数式表示x为:x=.11.一元一次不等式3x﹣2<0的解集为.12.在△ABC中,若∠A=80°,∠B=∠C,则∠C=度.13.方程组的解是.14.不等式组的整数解是.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.三、解答题(本大题共8个小题,满分65分)16.解下列方程(1)3(x﹣4)=12(2).17.用指定的方法解下列方程组:(1)(代入法)(2)(加减法)18.解下列不等式或不等式组(1)2x﹣3≤5(x﹣3)(2).19.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k的值.20.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?22.如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.23.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠B OC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.2015-2016学年某某省某某市太康县七年级(下)期中数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣cB.如果a=b,那么a+c=b+cC.如果a=b,那么D.如果a=b,那么ac=bc【考点】等式的性质.【分析】根据等式的基本性质可判断出选项正确与否.【解答】解:A、根据等式性质1,a=b两边都减c,即可得到a﹣c=b﹣c,故本选项正确;B、根据等式性质1,a=b两边都加c,即可得到a+c=b+c,故本选项正确;C、根据等式性质2,当c≠0时原式成立,故本选项错误;D、根据等式性质2,a=b两边都乘以c,即可得到ac=bc,故本选项正确;故选:C.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.2.若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.2【考点】解一元一次方程.【专题】计算题.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1B.a=﹣3,b=1C.a=3,b=﹣1D.a=﹣3,b=﹣1【考点】同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得方程,根据解方程,可得a、b的值.【解答】解:由2x2y a﹣b与﹣x ab y4是同类项,得a﹣b=2,a+b=4.解得:a=3,b=1,故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中的两个相同.4.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x+3>0,解得x>﹣3;由1﹣x≥0,解得x≤2,不等式组的解集为﹣3<x≤2,故选:A.【点评】本题考查了在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+28【考点】由实际问题抽象出一元一次方程.【专题】销售问题.【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选B.【点评】考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种【考点】二元一次方程的应用.【分析】设毽子能买x个,跳绳能买y根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.【解答】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点评】此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.7.已知,且x﹣y<0,则m的取值X围为()A.m B.m C.m D.m【考点】解二元一次方程组;解一元一次不等式.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减表示出x﹣y,代入已知不等式求出m的X围即可.【解答】解:,②﹣①得:x﹣y=6m+1,代入已知不等式得:6m+1<0,解得:m<﹣.故选D.【点评】此题考查了解二元一次方程组,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.二、填空题9.已知关于x的方程2x﹣3a﹣9=0的解是x=﹣3,则a的值为﹣5 .【考点】一元一次方程的解.【分析】把x=﹣3代入方程计算即可求出a的值.【解答】解:把x=﹣3代入方程2x﹣3a﹣9=0得:﹣6﹣3a﹣9=0,解得:a=﹣5.故答案为:﹣5.【点评】此题考查了一元一次方程的解,掌握方程的解即为能使方程左右两边相等的未知数的值是解决问题的关键.10.已知方程2x+y﹣5=0用含y的代数式表示x为:x= \frac{5﹣y}{2} .【考点】解二元一次方程.【分析】把x看做已知数求出y即可.【解答】解:2x+y﹣5=02x=5﹣y,x=.故答案为:.【点评】此题考查了解二元一次方程,解题的关键是把x看做已知数求出y.11.一元一次不等式3x﹣2<0的解集为x<\frac{2}{3} .【考点】解一元一次不等式.【分析】把﹣2移的不等式的右边,然后不等式的两边同时除以3即可求解.【解答】解:3x﹣2<0移项得3x<2,系数化为1得,x<;故答案为x<.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.在△ABC中,若∠A=80°,∠B=∠C,则∠C=50 度.【考点】三角形内角和定理.【分析】由三角形内角和定理可知.【解答】解:∵∠A=80°,∠B=∠C,∠A+∠B+∠C=180°,∴80°+2∠C=180°,∴∠C=50°.【点评】本题利用了三角形内角和定理求解.三角形的内角和是180°.13.方程组的解是\left\{\begin{array}{l}{x=﹣3}\\{y=﹣2.5}\end{array}\right. .【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:2x=﹣6,即x=﹣3,把x=﹣3代入②得:y=﹣2.5,则方程组的解为.故答案为:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.不等式组的整数解是﹣1,0 .【考点】一元一次不等式组的整数解.【分析】首先解不等式组求得不等式的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x≥﹣1,解②得:x<1,则不等式组的解集是:﹣1≤x<1,则整数解是:﹣1,0.故答案是:﹣1,0.【点评】本题考查了不等式组的整数解,正确解不等式组是解题的关键.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为\left\{\begin{array}{l}{5x+2y=10}\\{2x+5y=8}\end{array}\right. .【考点】由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.三、解答题(本大题共8个小题,满分65分)16.解下列方程(1)3(x﹣4)=12(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣12=12,移项合并得:3x=24,解得:x=8;(2)去分母得:3x+3﹣2+3x=6,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【考点】解二元一次方程组.【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.18.解下列不等式或不等式组(1)2x﹣3≤5(x﹣3)(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)根据不等式的性质直接求出x的取值X围,但要记得不等式的两边同乘于一个负数时不等式变号;(2)先解出不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀来求得不等式的解集.【解答】解:(1)2x﹣3≤5(x﹣3)2x﹣3≤5x﹣152x﹣5x≤﹣15+3﹣3x≤﹣12x≥4;(2)解不等式①得:x<2,解不等式②得:x≤6,所以不等式组的解集为x<2.【点评】此题考查解一元一次不等式和一元一次不等式组;其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.19.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k的值.【考点】二元一次方程组的解.【分析】首先解关于x的方程组,求得x,y的值,然后代入方程2x+3y=6,即可得到一个关于k的方程,从而求解.【解答】解:由方程组得:∵此方程组的解也是方程2x+3y=6的解∴2×7k+3×(﹣2k)=6k=.【点评】能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.20.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【考点】二元一次方程组的应用.【分析】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可;(2)总利润=甲的利润+乙的利润.【解答】解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.【点评】本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?【考点】一元一次不等式的应用.【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买的金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x的最大值为7,答:孔明应该买7个球拍.【点评】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.22.如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用三角形的外角性质,先求∠ABD,再根据角平分线的定义,可得∠DBC=∠ABD,运用平行线的性质得∠BDE的度数,根据三角形内角和定理可求∠BED的度数.【解答】解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是∠ABC的角平分线,∴∠DBC=∠EBD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°;∴∠BED=180°﹣∠EBD﹣∠EDB=150°.【点评】本题综合考查了平行线的性质及三角形内角与外角的关系,三角形内角和定理.23.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.【考点】三角形三边关系;三角形的外角性质.【分析】(1)延长BO交AC于点D,首先利用三角形的外角性质得到∠BOC>∠ODC,让根据∠ODC >∠A,证得∠BOC>∠A;(2)根据三角形的三边关系证得AB+AD>OB+OD,OD+CD>OC,从而得到AB+AD+CD>OB+OC,进而得到AB+AC>OB+OC.【解答】解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.【点评】本题考出了三角形的三边关系及三角形的外角的性质,解题的关键是能够正确的构造三角形,难度不大.。
广东省汕头市龙湖实验中学2015-2016学年七年级下学期期中考试数学试卷
N M FE D C B A 21汕头市龙湖实验中学2015-2016学年第二学期期中考试卷初一数学1.计算9的结果是( ) A .±3 B. 3 C .-3 D .92.把点(2,﹣3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是( )A .(5,﹣1)B .(﹣1,﹣5)C .(5,﹣5)D .(﹣1,﹣1)3. 如图,∠1 = 50°,则∠2 =( )A .100°B . 130°C .120°D .140°4. 下列各组数中互为相反数的是( )A. 2与2-B.38和8-- C . ﹣2与 D. -4与165.已知5,7.x y =⎧⎨=⎩满足方程kx - 2y = 1,则k 等于( ). A.3 B. 4 C. 5 D. 66.如图,直线EF 分别交CD 、AB 于M 、N ,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( ).A.∠A=∠CB.∠E=∠FC.AE ∥FCD.AB ∥DC7.实数a ,b 在数轴上的位置如图所示,则下列结论正确的是( ) A.a+b>0, B.a-b>0 C.ab>0D.-ab<08.如图,下列条件中,可得到AD ∥BC 的是( )①AC ⊥AD ,AC ⊥BC ; ②∠1=∠2,∠3=∠D ;③∠4=∠5; ④∠BAD+∠ABC=180°.A .①②③B .②③④C .①②④D .①③④9. 下列说法:① ②64的平方根是±8,立方根是±4;③④,则x=1;其中结论错误的序号是( ) A .①③ B .①② C .③④ D .①②④6题图 8题图10. 估计的值( )A . 在3到4之间B . 在4到5之间C . 在5到6之间D . 在6到7之间二、填空题(每小题4分,共24分)11.点P (x,y )中,有xy=0,则点P 的位置是在 上.12、若033=+y x ,则y x 和的关系是13.已知方程x k+1+y m-2=8是关于x ,y 的二元一次方程,则k=,m= .14. 的算术平方根是 ,1﹣的相反数为 . 15.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD ,则∠AOC = , OD 与AB 的位置关系是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年七年级下数学期中测试题
数 学 试 题
一、选择题(本大题共8小题,每小题3分,共24分)
1.如图,∠1和∠2是同位角的图形有 ( )
A .1个
B .2个
C .3个
D .4个
2.若三角形的一边长为12+a ,这边上的高为12-a ,则此三角形的面积为 ( )
A.142-a
B.1442+-a a
C.1442
++a a D.
2122-
a
3.在下列四个算式:3227()()a a a -⋅-=-,326()a a -=-,3342
()a a a -÷=-, 633
()()a a a -÷-=-,正确的有 ( )
A .0个
B .1个
C .2个
D .3
4.若2()(1)x x m x m x --=-+,且0x ≠,则m 等于 ( )
A .0
B .-1
C .1
D .2
5.画△ABC 的边AB 上的高,下列画法中,正确的是 ( )
6.一辆汽车在笔直的公路上行驶,两次转弯后,仍在原来的方向上平行前进,那么这两次转 弯的角度可能是 ( )
A.第一次向右转40o,第二次向左转140o
B.第一次向左转40o,第二次向右转40o
C.第一次向左转40o,第二次向右转140o
D.第一次向右转40o,第二次向右转40o
7.如图,AB ∥CD ,若EG 平分∠BEF ,FM 平分∠EFD 交EG 于 M ,EN 平分∠AEF ,则与∠FEM 互余的角有( )
A.3个
B.4个
C.5个
D.6个
如图所示,把一个四边形纸片ABCD 的四个顶角分别向内折叠,折叠之后,4个顶点不重合,那么图
中 ∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8的度数是( ) A.540° B.630° C.720° D.810°
G
第7题
A B 第8题 C
D C ′ 1 2 4 3 6 5 7 8 B ′ D ′ A ′
二.填空题(本大题共10小题,每空2分,共20分)
9.数据0.00000078,这个数据用科学记数法表示为 .
10.要使如果
)2)(1(2
2a ax x x +-+的乘积中不含2x 项,则a =_________. 11.若多项式2
(1)4x k x --+是完全平方式,则k = .
12.一个多边形截去一个角后,所形成的另一个多边形的内角和是2520°,则原多边形的 边数
为 .
13如图,小亮从A 点出发前10m ,向右转15°,再前进10m ,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了 .
14.如图:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2= .
15.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC=150°, 则∠θ的度数是 .
16.如果等式
()2x
21
x -=,则x= .
17.若21m
x =+,34m
y =+,则用含x 的代数式表示y 为 .
18.如图,它是由6个面积为1的小正方形组成的长方形,点A 、B 、 C 、D 、E 、
F 是小正方形的顶点, 以这六个点中的任意三点为顶点,组成面积是1的三角形的个数是 . 三、解答题(本大题共6小题,共56分)
19.计算 :(1)(1
2)-2-π0+(-3)2
(2)(-3x)3+(x4)2÷(-x)5
(3)(x +3)2-(x -1)(x -2) (4)(a +b -2)(a -b +2)
20.因式分解:(1) x3+2x2y +xy2 (2)m2(m -1)+4(1-m)
(3)
()()
2
41x y x y ++++ (4)bc ac b a 242
2+--
21.若n m n n m x x x x ++≠==2),0(,3,12求的值
第13题 第14题 第15题
A B C
D
E
F
(第18题)
60°45°
┓
┗
22.已知有理数x 满足x2-x -1=0,求(x -1)3+(x -1)2-(x -1)的值
23.将一副标准的直角三角尺如图放置,已知AE ∥BC ,求∠AFD 的度数.
24.我们运用图(I )中大正方形的面积可表示为2
()a b +,也可表示为
2142c ab ⎛⎫+ ⎪⎝⎭ ,即22
1()42a b c ab ⎛⎫+=+ ⎪⎝⎭ 由此推导出一个重要的结论222a b c +=,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(II )(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a, 较小的直角边长都为b,斜边长都为c ). (2)请你用(III )提供的图形进行组合,用组合图形的面积表达式验证:
222()2x y x xy y +=++
(3)请你自己设计图形的组合,用其面积表达式验证: (a+b )(a+2b)=a2+3ab+2b2.
25.探究发现
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
如图甲,∠FDC 、∠ECD 为△ADC 的两个外角,则∠A 与∠FDC+∠ECD 的数量关系 .
探究二:如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;
(1)如图①,α+β>180°,则∠F= ;(用α,β表示)
(2)如图②,α+β<180°,请在图中画出∠F ,且∠F= ;(用α,β表示)
(3)一定存在∠F 吗?如有,直接写出∠F 的值,如不一定,直接指出α,β满足什么条件时,不存在∠F .
图① A D
C F E 图甲。