黄山市一中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄山市一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .
B .
C .
D .
2. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2)
C .f (a+1)≤f (b+2)
D .f (a+1)<f (b+2)
3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( ) A

B

C

D

4. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )
A .x ﹣y+1=0,2x ﹣y=0
B .x ﹣y ﹣1=0,x ﹣2y=0
C .x+y+1=0,2x+y=0
D .x ﹣y+1=0,x+2y=0
5. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .
14 B .1
2
C .
D . 6. 已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=

则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11 C .10 D .9
7. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
8. 已知
||=3,
||=1


的夹角为,那么
|﹣
4|等于( )
A .2 B

C

D .13
9. 二项式(x 2
﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24
C .30
D .36
10.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}01
2
|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
11.与函数 y=x 有相同的图象的函数是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
12.已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
二、填空题
13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;
②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;
⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.
14.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .
15.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ . 16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
17.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.
①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;
③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;
⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是 .
18.已知[2,2]a ∈-,不等式2
(4)420x a x a +-+->恒成立,则的取值范围为__________.
三、解答题
19.证明:f(x)是周期为4的周期函数;
(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
18.已知函数f(x)=是奇函数.
20.设常数λ>0,a>0,函数f(x)=﹣alnx.
(1)当a=λ时,若f(x)最小值为0,求λ的值;
(2)对任意给定的正实数λ,a,证明:存在实数x0,当x>x0时,f(x)>0.
21.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2
(1)当a=1,b=0时解不等式;
(2)a,b∈R,a≠b解不等式.
22.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)
件与月份x的近似关系是且x≤12),该商品的进价q(x)元与
月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).
(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?
23.已知函数f(x)=1+(﹣2<x≤2).
(1)用分段函数的形式表示函数;
(2)画出该函数的图象;
(3)写出该函数的值域.
24.在△ABC中,D为BC边上的动点,且AD=3,B=.
(1)若cos∠ADC=,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?
黄山市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
13.②③④
14.
6,1
2
,2,
n
n
a n
n n
n
*
=


=+

≥∈
⎪⎩N
15.2-
16.[0,2].17.①②⑤.18.(,0)(4,)
-∞+∞三、解答题
19.
20.
21.
22.
23.
24.。

相关文档
最新文档