中考数学圆与相似的综合复习附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学圆与相似的综合复习附答案
一、相似
1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式.
【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入
得:,解得:,
∴抛物线的解析式为:,
对称轴为:直线x=﹣;
(2)解:存在,∵AD=2t,
∴DF=AD=2t,
∴OF=4﹣4t,
∴D(2t﹣4,0),
∵直线AC的解析式为:,∴E(2t﹣4,t),
∵△EFC为直角三角形,分三种情况讨论:
①当∠EFC=90°,则△DEF∽△OFC,
∴,即,解得:t= ;
②当∠FEC=90°,
∴∠AEF=90°,
∴△AEF是等腰直角三角形,
∴DE= AF,即t=2t,
∴t=0,(舍去),
③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;
(3)解:∵B(1,0),C(0,2),
∴直线BC的解析式为:y=﹣2x+2,
当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);
当D在y轴的右侧时,如图2,
∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即
(2<t<).
综上所述:
【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
(2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可;
②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。
(3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。
2.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点
C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.
(1)求证:D是弧EC的中点;
(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;
(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长
【答案】(1)证明:如图1中,连接OC.
∵AC是⊙O的切线,
∴OC⊥AC,
∴∠ACO=90°,
∴∠A+∠AOC=90°,
∵CA=CB,
∴∠A=∠B,
∵EF⊥BC,
∴∠OGB=90°,
∴∠B+∠BOG=90°,
∴∠BOG=∠AOC,
∵∠BOG=∠DOE,
∴∠DOC=∠DOE,
∴点D是的中点
(2)证明:如图2中,连接OC.
∵EF⊥HC,
∴CG=GH,
∴EF垂直平分HC,
∴FC=FH,
∵∠CFK= ∠COE,
∵∠COD=∠DOE,
∴∠CFK=∠COD,
∵∠CHK= ∠COD,
∴∠CHK= ∠CFK,
∴点K在以F为圆心FC为半径的圆上,∴FC=FK=FH,
∵DO=OF,
∴DO+OK=OF+OK=FK=CF,
即CF=OK+DO;
(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),
∵CG2=CF2﹣FG2=CO2﹣OG2,
∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,
解得x= ,
∴CF=5,FG=4,CG=3,OG= ,
∵∠CFE=∠BOG,
∴CF∥OB,
∴ = = ,
可得OB= ,BG= ,BH= ,
由△BHM∽△BOG,可得 = = ,
∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=
在Rt△HMQ中,
QH= = =
【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;
(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代
换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;
(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=
﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x
的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。
3.定义:如图,若点D在的边AB上,且满足,则称满足这样条件的点为的“理想点”
(1)如图,若点D是的边AB的中点,,,试判断点D是不是的“理想点”,并说明理由;
(2)如图,在中,,,,若点D是的“理想点”,求CD的长;
(3)如图,已知平面直角坐标系中,点,,C为x轴正半轴上一点,且满足,在y轴上是否存在一点D,使点A,B,C,D中的某一点是其余三点围成的三角形的“理想点” 若存在,请求出点D的坐标;若不存在,请说明理由.
【答案】(1)解:结论:点D是的“理想点”.
理由:如图中,
是AB中点,,
,
,,
,
,
,
∽,
,
点D是的“理想点”,
(2)解:如图中,
点D是的“理想点”,
或,
当时,
,
,
,
当时,同法证明:,
在中,,,,
,
,
.
(3)解:如图中,存在有三种情形:
过点A作交CB的延长线于M,作轴于H.
,,
,
,
,,
,
≌,
,,设,
,,
,,,,,
,
,
解得或舍弃,
经检验是分式方程的解,
,,
①当时,点A是的“理想点” 设,
,,
∽,
,
,
解得,
.
②当时,点A是的“理想点”.
易知:,
,
.
③当时,点B是的“理想点”.
易知:,
,
.
综上所述,满足条件的点D坐标为或或 .
【解析】【分析】(1)结论:点D是的“理想点” 只要证明∽
即可解决问题;(2)只要证明即可解决问题;(3)如图中,存在有三种情形:过点A作交CB的延长线于M,作轴于构造全等三角形,利用平行线分线段成比例定理构建方程求出点C坐标,分三种情形求解即可解决问题;
4.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由. 【答案】(1)解:∵y=(x-a)(x-3)(0<a<3)与x轴交于点A、B(点A在点B的左侧)
∴A(a,0),B(3,0),
当x=0时,y=3a,
∴D(0,3a).
(2)解:∵A(a,0),B(3,0),D(0,3a).
∴对称轴x= ,AO=a,OD=3a,
当x= 时,y=- ,
∴C(,- ),
∴PB=3- = ,PC= ,
①当△AOD∽△BPC时,
∴ ,
即,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴ ,
即,
解得:a1=3(舍),a2= .
综上所述:a的值为 .
(3)解:能;连接BD,取BD中点M,
∵D、B、O三点共圆,且BD为直径,圆心为M(, a),若点C也在此圆上,
∴MC=MB,
∴,化简得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1= ,a2=- ,a3=3(舍),a4=-3(舍),
∵0<a<3,
∴a= ,
∴当a= 时,D、O、C、B四点共圆.
【解析】【分析】(1)根据二次函数的图像与x轴相交,则y=0,得出A(a,0),B (3,0),与y轴相交,则x=0,得出D(0,3a).
(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x= ,AO=a,OD=3a,代入求得顶点C(,- ),从而得PB=3- = ,PC= ;再分情况
讨论:①当△AOD∽△BPC时,根据相似三角形性质得,解得:a= 3(舍去);
②△AOD∽△CPB,根据相似三角形性质得,解得:a1=3(舍),a2= .(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M为圆心
(, a)的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
5.在平面直角坐标系中,抛物线经过点,、,,其中、
是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点
,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,
∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
6.如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.
(1)求证:MC=MQ
(2)当BQ=1时,求DM的长;
(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.
【答案】(1)解:证明:∵四边形ABCD是矩形,
∴DC AB
即∠MCQ=∠CQB,
∵△BQC沿CQ所在的直线对折得到△CQN
∴∠CQN=∠CQB,
即∠MCQ=∠MQC,
∴MC=MQ.
(2)解:∵四边形ABCD是矩形,△BQC沿CQ所在的直线对折得到△CQN,
∴∠CNM=∠B=90°,
设DM=x,则MQ=MC=6+x,MN=5+x,
在Rt△CNM中,MB2=BN2+MN2,
即(x+6)2=42+(x+5)2,
解得:x= ,
∴DM= ,
∴DM的长2.5.
(3)解:解:分两种情况:
①当点M在CD延长线上时,如图所示:
由(1)得∠MCQ=∠MQC,
∵DE⊥CQ,
∴∠CDE=∠F,
又∵∠CDE=∠FDM,
∴∠FDM=∠F,
∴MD=MF.
过M点作MH⊥DF于H,则DF=2DH,
又,
∴,
∵DE⊥CQ MH⊥DF,
∴∠MHD=∠DEC=90°,
∴△MHD∽△DEC
∴,
∴DM=1,MC=MQ=7,
∴MN=
∴BQ=NQ=
②当点M在CD边上时,如图所示,类似可求得BQ=2.
综上所述,BQ的长为或2.
【解析】【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.(2)设DM=x,则MQ=MC=6+x,MN=5+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作MH⊥DF于H,则DF=2DH,证明△MHD∽△CED,得
出,求出MD= CD=1,MC=MQ=7,由勾股定理得出MN即可解决问题.
②当点M在CD边上时,同①得出BQ=2即可.
7.问题提出;
(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=________时,△APE的周长最小.
(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)
问题解决;
(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?
【答案】(1)
(2)解:点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,
∵PQ=3,DE=CE=2,AE=2 ,
∴要使四边形APQE的周长最小,只要AP+EQ最小就行,
即AP+EQ=MQ+EQ,过M作MN⊥BC于N,
∴MN∥CD
∴△MNQ∽△FCQ,
∴
∴
∴NQ=4
∴BP=BQ﹣PQ=4+2﹣2=4
(3)解:如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.
∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,
∵∠PAM+∠PAN=60°,
∴∠GAH=120°,且AG=AH,
∴∠AGH=∠AHG=30°,
过点A作AO⊥GH,
∴AO=50米,HO=GO=50 米,
∴GH=100 米,
∴S△AGH= GH×AO=2500 平方米,
∵S四边形AMPN=S△AGM+S△ANH=S△AGH﹣S△AMN,
∴S△AMN的值最小时,S四边形AMPN的值最大,
∴MN=GM=NH=时
∴S四边形AMPN=S△AGH﹣S△AMN=2500 ﹣=平方米.
【解析】【解答】(1)∵四边形ABCD是矩形,
∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,
∵E为CD中点,
∴DE=CE=2,
在Rt△ADE中,由勾股定理得:AE===2 ,
即△APE的边AE的长一定,
要△APE的周长最小,只要AP+PE最小即可,
延长AB到M,使BM=AB=4,则A和M关于BC对称,
连接EM交BC于P,此时AP+EP的值最小,
∵四边形ABCD是矩形,
∴AB∥CD,
∴△ECP∽△MBP,
∴
∴
∴CP=
故答案为:
【分析】(1)延长AB到M,使BM=AB,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,根据勾股定理求出AE长,根据矩形性质得出AB∥CD,推出△ECP∽△MBP,得出比例式,代入即可求出CP长;(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,要使四边形APQE的周长最小,只要AP+EQ最小就行,证△MNQ∽△FCQ即可求BP的长;(3)作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.S四=S△AGM+S△ANH=S△AGH-S△AMN,即S△AMN的值最小时,S四边形AMPN的值最大.
边形AMPN
8.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
【答案】(1)解:当x=0,y=3,
∴C(0,3)
设抛物线的解析式为y=a(x+1)(x- ).
将c(0,3)代入得:- a=3,解得a=2,
∴抛物线的解析式为y=-2x2+x+3
(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N。
∵OC=3,AO=1,
∴tan∠CAO=3,
∴直线AC的解析式为y=3x+3.
∵AC⊥BM,
∴BM的一次项系数为。
设BM的解析式为y= +b,将点B的坐标代入得:,解得b= 。
∴BM的解析式为y= .
将y=3x+3与y= 联立解得:x= ,y= .
∴MC=BM= =
∴∆MCB为等腰直角三角形。
∴∠ACB=45º.
(3)解:如图2所示,延长CD,交x轴于点F,
∵∠ACB=45º,点D是第一象限抛物线上一点,
∴∠ECD>45º.
又∵∆DCE与∆AOC相似,∠AOC=∠DEC=90º,
∴∠CAO=∠ECD.
∴CF=AF.
设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.
∴F(4,0).
设CF的解析式为y=kx+3,将F(4,0)代入得4k+3=0,解得k= 。
∴CF的解析式为y= x+3.
将y= x+3与y=-2x2+x+3联立,解得x=0(舍去)或x= .
将x= 代入y= x+3得y= .
∴D(,)
【解析】【分析】(1)易求得C的坐标,利用交点式设出解析式,再把C的坐标代入可求出;
(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.由tan∠CAO=3先求出直线AC的解析式,从而求出BM的解析式,两个解析式联立求出M的坐标,再由两点之
间的距离求出MC=BM ,进而得出∆MCB 的形状,求出答案;
(3)延长CD ,交x 轴于点F ,由∆DCE 与∆AOC 相似可得出CF=AF ,利用勾股定理求出F 的坐标,由待定系数法求出CF 的解析式,再与二次函数的解析式联立求出D 的坐标.
二、圆的综合
9.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.
(1)求证:CE 是半圆的切线;
(2)若CD=10,2tan 3
B =,求半圆的半径.
【答案】(1)见解析;(2)413
【解析】
分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;
(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.
详解:(1)证明:如图,连接CO .
∵AB 是半圆的直径,
∴∠ACB =90°.
∴∠DCB =180°-∠ACB =90°.
∴∠DCE+∠BCE=90°.
∵OC =OB ,
∴∠OCB =∠B.
∵=DCE B ∠∠,
∴∠OCB =∠DCE .
∴∠OCE =∠DCB =90°.
∴OC ⊥CE .
∵OC 是半径,
∴CE 是半圆的切线. (2)解:设AC =2x , ∵在Rt △ACB 中,2
tan 3
AC B BC ==, ∴BC =3x
. ∴()()
22
2313AB x x x =
+=.
∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴
AC AO
AB AD
=. ∵1132OA AB x =
=,AD =2x +10, ∴
1
132
210
13x
x x =+. 解得 x =8. ∴13
8413OA =
⨯=. 则半圆的半径为413.
点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.
10.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC == AD BC ⊥,垂足为D ,过
,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .
(1)求证:ADE ∆≌CDF ∆;
(2)当BC 与⊙O 相切时,求⊙O 的面积.
【答案】(1)见解析;(2)2
4
π.
【解析】
分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;
(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC 2可得AD =1,利用圆的面积
公式可得答案.
详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.
又∵AD ⊥BC ,AB =AC ,∴∠
1=
1
2
∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD .
又∵∠
EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°. 又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.
∵123C AD CD ∠=∠⎧⎪
=⎨⎪∠=∠⎩
,∴△ADE ≌△CDF (ASA ).
(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC =2,
∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为2
4
π.
点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.
11.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC . (Ⅰ)求∠ACB 的大小;
(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.
【答案】(Ⅰ)60°;(Ⅱ33
【解析】
分析:(Ⅰ)连接AO ,根据切线的性质和切线长定理,得到OA ⊥AP ,OP 平分∠APB ,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB 的度数;
(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.
详解:(Ⅰ)连接OA,如图,
∵PA、PB是⊙O的切线,
∴OA⊥AP,OP平分∠APB,
∴∠APO=1
2
∠APB=30°,
∴∠AOP=60°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACO=1
2
AOP=30°,
同理可得∠BCP=30°,
∴∠ACB=60°;
(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,
∴OP=2OC,
而S△OPA=1
2
×1×3,
∴S△AOC=1
2S△PAO=
3
4
,
∴S△ACP=33
4
,
∴四边形ACBP的面积=2S△ACP=33.
点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.
12.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.
【答案】见解析
【解析】
试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得
OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.
试题解析:
图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.
证明如下:
∵AE是小⊙O的直径,
∴OA=OE.
连接OF,
∵BD与小⊙O相切于点F,
∴OF⊥BD.
∵BD是大圆O的弦,
∴DF=BF.
∵CE⊥BD,
∴CE∥OF,
∴AF=CF.
∴四边形ABCD是平行四边形.
∴AD=BC,AB=CD.
∵CE:AE=OF:AO,OF=AO,
∴AE=EC.
连接OD、OC,
∵OD=OC,
∴∠ODC=∠OCD.
∵∠AOD=∠ODC,∠EOC=∠OEC,
∴∠AOC=∠EOC,
∴△AOD≌△EOC,
∴AD=CE.
∴BC=AD=CE=AE.
【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.
13.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连结AF . (1)判断AF 与⊙O 的位置关系并说明理由; (2)若AC =24,AF =15,求sin B .
【答案】(1) AF 与⊙O 相切 理由见解析;(2)35
【解析】
试题分析:(1)连接OC ,先证∠OCF =90°,再证明△OAF ≌△OCF ,得出∠OAF =∠OCF =90°即可;
(2)先求出AE 、EF ,再证明△OAE ∽△AFE ,得出比例式OA AE
AF EF
=,可求出半径,进而求出直径,由三角函数的定义即可得出结论. 试题解析:解:(1)AF 与⊙O 相切.理由如下:
连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;
(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =
1
2
AC =12,∴EF 2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12
159
OA =,∴OA =20,∴AB =40,sin B =
243
405
AC AB ==.
点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.
14.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB . (1)如图1,求证:∠DAC=∠ABO;
(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;
(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。
【答案】(1)详见解析;(2)详见解析;(3)1114
. 【解析】
试题分析:(1)延长BO 交⊙O 于点Q ,连接AQ .由圆周角定理可得:∠AQB =∠ACB ,再由等角的余角相等即可得出结论; (2)证明△DFG 是等边三角形即可;
(3)延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .设AF =k ,则FE =9k ,AE =10k .在△AHE 中, AH =5k .设NH =x ,则AN =5k -x , AD =10k -2x .在△AQF 中, AF =k ,AQ =
2k ,FQ =
3
2
k .由(2)知:△GDF 是等边三角形,得到GD =GF =DF ,进而得到AG =9k -2x .
OM =NH =x ,BC =23, GF =BC =23.在△GQF 中,GQ =AG +AQ =192k -2x ,QF 3
,GF =3,由勾股定理解出74x k
,得到AG =9k -2x =11
2
k ,AR =2OB =4OM =4x =7k .在△GAR 中,由sin ∠ADG =sin ∠R 即可得出结论.
试题解析:解:(1)证明:如图1,延长BO 交⊙O 于点Q ,连接AQ .
∵BQ 是⊙O 直径,∴∠QAB =900.∵AD ⊥BC ,∴∠AHC =900. ∵弧AB =弧AB ,∴∠AQB =∠ACB . ∵∠AQB +∠ABO =900,∠ACB +∠CAD =900 ∴∠ABO =∠CAD
(2)证明:如图2,连接DF .
∵AG ∥OB ,∴∠ABO =∠BAG .∵∠ABO =∠CAD ,∴∠CAD =∠BAG . ∵∠BAC =600,∴∠BAD +∠CAD =∠BAD +∠BAG =600,即
∠GAD =∠BAC =60°.∵∠BAD =∠CAF .∴∠CAF +∠CAD =600,∴∠GAD =∠DAF =600,∴∠DGF =∠DAF =60°.
∵弧GD =弧GD ,∴∠GAD =∠GFD =600,∴∠GFD =∠DGF =600,∴△DFG 是等边三角形,∴GD =GF . (3)如图3,
延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .
∵AF :FE =1:9,∴设AF =k ,则FE =9k ,AE =10k .在△AHE 中,∠E =300,∴AH =5k . 设NH =x ,则AN =5k -x .∵ON ⊥AD ,∴AD =2AN =10k -2x 又在△AQF 中,∵∠GAF =1200,∴∠QAF =600,AF =k ,∴AQ =2k ,FQ 3
. 由(2)知:△GDF 是等边三角形,∴GD =GF =DF ,
∵∠GAD =∠DAF =600,∴DP =DK ,∴△GPD ≌△FKD ,△APD ≌△AKD ∴FK =GP ,AP =AK ,∠ADK =300,∴AD =2AK =AP +AK =AF +AG ∴AG =10k -2x -k =9k -2x .
∵作OM ⊥BC ,ON ⊥AD ,∴OM =NH =x .∵∠BOD =
1
2
∠BOC =∠BAC =600 ∴BC =2BM =23.∵∠BOC =∠GOF ,∴GF =BC =23 在△GQF 中,GQ =AG +AQ =
192k -2x ,QF =32
k ,GF =23
∵222GQ FQ GF +=
∴()
2
2
21932232k x k x ⎛⎫
⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭
, ()12713
42
x k x k =
=-,舍去. ∴AG =9k -2x =11
2
k ,AR =2OB =4OM =4x =7k , 在△GAR 中,∠RGA =900,
∴sin ∠ADG =sin ∠R =
AG AR =11
14
.
点睛:本题是圆的综合题.熟练掌握圆的基本性质和常用的辅助线做法是解答本题的关键.
15.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233
384
y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3
34
y x =
+或3
34
y x =--.
【解析】 【分析】
(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过
点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4
5
PC ,所以5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=
18
5
,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】
解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣
38
∴抛物线解析式为y =﹣
38(x+2)(x ﹣4)=﹣38x 2+34
x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴
PC PD
BC OB
= ∵B (4,0),C (0,3)
∴OB =4,OC =3,BC ∴PD =
45
PC ∴5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =1
2
BC•AE ∴AE =
6318
55
AB OC BC ⨯==n ∴5AE =18
∴5PA+4PC 的最小值为18.
(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =
3
5
FQ TF = ∵Rt △FGQ 中,cos ∠QFT =3
5
FG FQ = ∴FG =
35FQ =95
∴x Q =1﹣9455=-,QG =2
222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭
①若点Q 在x 轴上方,则Q (412
55
-,) 设直线l 解析式为:y =kx+b
∴404125
5k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧
=⎪⎨
⎪=⎩ ∴直线l :3
34
y x =
+ ②若点Q 在x 轴下方,则Q (41255
--,
) ∴直线l :3
34
y x =-
- 综上所述,直线l 的解析式为3
34
y x =
+或3
34
y x =--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论
16.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=1
2
AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)6;(2)①证明见解析;33.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.
考点:圆的综合题。