八年级上学期期末学业水平调研数学卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末学业水平调研数学卷(含答案)
一、选择题 1.在平面直角坐标系中,下列各点位于第四象限的点是( )
A .(2,3)-
B .()4,5-
C .(1,0)
D .(8,1)--
2.下列四个图标中,是轴对称图形的是( )
A .
B .
C .
D .
3.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )
A .31︒
B .62︒
C .87︒
D .93︒
4.在平面直角坐标系中,点(1,2)P 到原点的距离是( )
A .1
B .3
C .2
D .5
5.下列图案中,不是轴对称图形的是( )
A .
B .
C .
D .
6.点(3,2)A -关于y 轴对称的点的坐标为( )
A .(3,2)
B .(3,2)-
C .(3,2)--
D .(2,3)-
7.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.
A .6
B .5
C .4
D .3
8.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )
A .SSS
B .SAS
C .AAS
D .ASA 9.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限 10.如图,若BD 为等边△ABC 的一条中线,延长BC 至点
E ,使CE =CD =1,连接DE ,则
DE 的长为( )
A .3
B .3
C .5
D .5
二、填空题
11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为
__________.
12.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).
13.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.
14.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.
15.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.
16.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.
17.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.
18.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.
19.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)
20.点P (3,-4)到 x 轴的距离是_____________.
三、解答题
21.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.
(1)甲队单独完成这项工程,需要多少天?
(2)求乙队单独完成这项工程需要的天数;
(3)实际完成的时间比甲独做所需的时间提前多少天?
22.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .
(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ;
(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重
合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .
23.如图,四边形ABCD 中,AC=5,AB=4,CD=12,AD=13,∠B=90°.
(1)求BC 边的长;
(2)求四边形ABCD 的面积.
24.求下列各式中的x : (1)2x 2=8
(2)(x ﹣1)3﹣27=0
25.阅读下列材料:
∵4<5<9,即2<5<3
∴5的整数部分为2,小数部分为5﹣2
请根据材料提示,进行解答:
(1)7的整数部分是 .
(2)7的小数部分为m ,11的整数部分为n ,求m +n ﹣7的值.
四、压轴题
26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.
(1)1的内数是______,20的內数是______,6的內数是______;
(2)若3是x 的內数,求x 的取值范围;
(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……
①用n 表示t 的內数;
②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)
27.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).
(1)如图2,点B 的坐标为(b ,0).
①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;
②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .
(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;
(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.
28.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点
()0,2D ,点P 为矩形AC 、CB 两边上的一个点.
(1)当点P 与C 重合时,求直线DP 的函数解析式;
(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.
(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.
29.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.
(深入探究)
第一种情况:当∠B 是直角时,△ABC ≌△DEF .
(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .
第二种情况:当∠B 是钝角时,△ABC ≌△DEF .
(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .
第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.
(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.
30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;
(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A.(2,-3)在第四象限,故本选项正确;
B.(-4,5)在第二象限,故本选项错误;
C.(1,0)在x轴正半轴上,故本选项错误;
D.(-8,-1)在第三象限,故本选项错误.
故选A.
【点睛】
本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.
2.B
解析:B
【解析】
【分析】
直接根据轴对称图形的概念分别解答得出答案.
【详解】
A、不是轴对称图形,不合题意;
B、是轴对称图形,符合题意;
C、不是轴对称图形,不符合题意;
D、不是轴对称图形,不合题意.
故选:B.
【点睛】
本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.C
解析:C
【解析】
【分析】
根据垂直平分线的性质,可以得到∠C=∠ABC,再根据角平分线的性质,得到∠ABC的度数,最后利用三角形内角和即可解决.
【详解】
∵DE垂直平分BC,
∴=,
DB DC
C DBC︒
∴∠=∠=,
31
∠,
∵BD平分ABC
∴∠=∠=,
262
ABC DBC︒
180A ABC C ︒∴∠+∠+∠=,
180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=
故选C
【点睛】
本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.
4.D
解析:D
【解析】
【分析】
根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.
【详解】
在平面直角坐标系中,点(1,2)P =
故选:D
【点睛】
考核知识点:勾股定理.理解点的坐标意义是关键.
5.D
解析:D
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】
解:A 、是轴对称图形,故此选项不合题意;
B 、是轴对称图形,故此选项不合题意;
C 、是轴对称图形,故此选项不合题意;
D 、不是轴对称图形,故此选项符合题意.
故选:D .
【点睛】
此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.
6.A
解析:A
【解析】
【分析】
根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数.
【详解】
解:根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,
∴点(3,2)A -关于y 轴对称的点为(3,2).
故选:A
【点睛】
本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x 轴对称的点,横坐标相同,纵坐标互为相反数,关于y 轴对称的点,纵坐标相同,横坐标互为相反数.
7.D
解析:D
【解析】
【分析】
在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.
【详解】
解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,
∴由勾股定理得,10AB cm =
==. 由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.
∴BE=AB-AE=10-6=4cm ,
在Rt △BDE 中,由勾股定理得,
DE 2+BE 2=BD 2
即CD 2+42=(8-CD)2,
解得:CD=3cm .
故选:D .
【点睛】
本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键. 8.D
解析:D
【解析】
【分析】
图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.
【详解】
解:由图可知,三角形两角及夹边还存在,
∴根据可以根据三角形两角及夹边作出图形,
所以,依据是ASA .
故选:D .
【点睛】
本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.
9.C
解析:C
【解析】
试题解析:∵k=-2<0,
∴一次函数经过二四象限;
∵b=3>0,
∴一次函数又经过第一象限,
∴一次函数y=-x+3的图象不经过第三象限,
故选C.
10.B
解析:B
【解析】
【分析】
由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.
【详解】
解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,
∴∠DBC=1
2
∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=1,
∴AD=CD=1,
∵△ABC是等边三角形,
∴BC=AC=1+1=2,且BD⊥AC,
在Rt△BDC中,由勾股定理得:BD==
即DE=BD
故选:B.
【点睛】
本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.
二、填空题
11.y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
解析:y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
12.①②④
【解析】
【分析】
根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.
【详解】
解:∵∠A=∠B﹣∠C,
∴∠A+∠C=∠B,
∵∠A+∠C+∠B=180°,
∴∠B=90°,
∴△A
解析:①②④
【解析】
【分析】
根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.
【详解】
解:∵∠A=∠B﹣∠C,
∴∠A+∠C=∠B,
∵∠A+∠C+∠B=180°,
∴∠B=90°,
∴△ABC是直角三角形,故①符合题意;
∵a2=(b+c)(b﹣c)
∴a2+c2=b2,
∴△ABC是直角三角形,故②符合题意;
∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,
∴∠A=45°,∠B=60°,∠C=75°,
∴△ABC不是直角三角形,故③不符合题意;
∵a:b:c=5:12:13,
∴a2+b2=c2,
∴△ABC是直角三角形,故④符合题意;
故答案为:①②④.
此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.
13.【解析】
【分析】
过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.
--
解析:(1,1)
【解析】
【分析】
过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.
【详解】
解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,
∵直线y=x,
∴∠AOC=45°,
∴∠OAC=45°=∠AOC,
∴AC=OC,
由勾股定理得:2AC2=OA2=4,
∴2,
由三角形的面积公式得:AC×OC=OA×CD,
22=2CD,
∴CD=1,
∴OD=CD=1,
∴B(-1,-1).
故答案为:(-1,-1).
【点睛】
本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.
14.3
【分析】
根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.
【详解】
解:∵点是的平分线上一点,且,
∴P 点到AB 上的距离也是3.
故答案为3.
【点睛】
本题考
解析:3
【解析】
【分析】
根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.
【详解】
解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,
∴P 点到AB 上的距离也是3.
故答案为3.
【点睛】
本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.
15.x >−2
【解析】
【分析】
直线y =3x +b 与y =ax−2的交点的横坐标为−2,求不等式3x +b >ax−2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax−2的图象上方.
【详解】
解析:x >−2
【解析】
【分析】
直线y =3x +b 与y =ax−2的交点的横坐标为−2,求不等式3x +b >ax−2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax−2的图象上方.
【详解】
解:从图象得到,当x >−2时,y =3x +b 的图象在y =ax−2的图象上方,
∴不等式3x +b >ax−2的解集为:x >−2.
故答案为x >−2.
【点睛】
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是
仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
16.4.
【解析】
【分析】
把百分位上的数字6进行四舍五入即可.
【详解】
62.36千克精确到0.1千克为62.4千克.
故答案为:62.4.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的
解析:4.
【解析】
【分析】
把百分位上的数字6进行四舍五入即可.
【详解】
62.36千克精确到0.1千克为62.4千克.
故答案为:62.4.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
17.108°
【解析】
【分析】
连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.
【详解】
连接AE,如图所示:
∵AB
解析:108°
【解析】
【分析】
连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.
【详解】
连接AE,如图所示:
∵AB=AC,
∴∠B=∠C,
∵AB的垂直平分线分别交边AB,BC于D,E点,
∴AE=BE,
∴∠B=∠BAE,
∵AC=EC,
∴∠EAC=∠AEC,
设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,
在△AEC中,
x+2x+2x=180,
解得:x=36,
∴∠BAC=3x°=108°,
故答案为:108°.
【点睛】
此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.
18.8
【解析】
【分析】
根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.
【详解】
解:∵四边形
解析:3
【解析】
【分析】
根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.
【详解】
解:∵四边形AECF是菱形,AB=6,
∴设BE=x,则AE=6-x,CE=6-x,
∵四边形AECF是菱形,∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,
∴CE=2x ,∴2x=6-x ,解得:x=2,
∴CE=AE=4.
利用勾股定理得出: BC=22EC BE -=2242-=23,
∴菱形的面积=AE •BC=83.
故答案为:83.
【点睛】
此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
19.或或
【解析】
【分析】
根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案
【详解】
解:如图所示
∵,
∴OB=4,OA=2
∵△BOC≌△ABO
∴OB=OB=4,OA=OC=2
解析:()2,4或()2,0-或()2,4-
【解析】
【分析】
根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案
【详解】
解:如图所示
∵()2,0A ,()0,4B
∴OB=4,OA=2
∵△BOC≌△ABO
∴OB=OB=4,OA=OC=2
∴123
C (2,0),C (2,4),C (2,4)-- 故答案为:
()2,4或()2,0-或()2,4- 【点睛】
本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 20.4
【解析】
试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,
故点P (3,﹣4)到x 轴的距离是4.
解析:4
【解析】
试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,
故点P (3,﹣4)到x 轴的距离是4.
三、解答题
21.(1)40天;(2)60天;(3)12天 .
【解析】
【分析】
(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;
(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;
(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.
【详解】
(1)因为甲队独做10天完成总工作量的0.25,
所以甲一天做了0.25÷10=140
, 于是甲队单独完成这项工程需要的天数为:1÷
140
=40天; (2)甲乙6天完成总量的(0.5-0.25)即0.25, 则乙6天的工作量是0.25-140×6=110,
所以乙的效率是110÷6=160
, 所以乙队单独完成这项工程需要的天数为1÷160
=60天; (3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,
即0.75÷(
140+160
)+10=18+10=28(天), 因为甲队独做需用40天,
所以40-28=12天, 故实际完成的时间比甲独做所需的时间提前12天.
考点:实际问题与一次函数.
22.(1)详见解析;1A 的坐标(-1,3);(2)3)1<m ≤1.25
【解析】
【分析】
(1)根据轴对称定义画图,写出坐标;
(2)作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小. (3)证AE//x 轴,再求线段AE 中点的横坐标,根据轴对称性质可得.
【详解】
解:(1)如图,111A B C ∆为所求,1A 的坐标(-1,3);
(2)如图,作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小.
即PA+PB=A B '==
(3)由已知可得,BC 的中点坐标是(
3415,22++),即(3.5,3) 所以AE//x 轴,
所以线段AE 中点的横坐标是:3.51 1.252
-= 所以根据轴对称性质可得,m 的取值范围是1<m≤1.25
【点睛】
考核知识点:轴对称,勾股定理.数形结合分析问题,理解轴对称关系是关键.
23.(1)3;(2)36.
【解析】
【分析】
(1)先根据勾股定理求出BC的长度;
(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC 和△ACD的面积和,再利用三角形的面积公式求解即可.
【详解】
解:(1)∵∠ABC=90°,AC=5,AB=4
∴2222
543
AC AB
--=,
(2)在△ACD中,AC2+CD2= 52+122=169
AD2 =132=169,
∴AC2+CD2= AD2,
∴△ACD是直角三角形,
∴∠ACD=90°;
由图形可知:S四边形ABCD=S△ABC+S△ACD= 1
2
AB•BC+
1
2
AC•CD,
= 1
2
×3×4+
1
2
×5×12,
=36.
【点睛】
本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.
24.(1)x=±2;(2)x=4
【解析】
【分析】
(1)先将方程化系数为1,然后两边同时开平方即可求解;
(2)先移项,再两边同时开立方即可求解.
【详解】
解:(1)∵2x 2=8,
∴x 2=4,
∴x =±2;
(2)∵(x ﹣1)3﹣27=0
∴(x ﹣1)3=27,
∴x ﹣1=3,
∴x =4.
【点睛】
本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.
25.(1)2;(2)1
【解析】
【分析】
(1<
(2<<,进而得出答案.
【详解】
解:(1<
∴23<<,
2.
故答案为:2;
(2)由(1)可得出,2m =
,
<,
∴n =3,
∴231m n +-=
+=.
【点睛】
本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根. 四、压轴题
26.(1)2,7,4;(2)83
x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.
【解析】
【分析】
(1)根据内数的定义即可求解;
(2)根据内数的定义可列不等式2331x ≤+,求解即可;
(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.
【详解】
解:(1)22311=⨯+,所以1的内数是2;
232017⨯+>,所以20的内数是7;
23614⨯+>,所以6的内数是4;
(2)∵3是x 的內数,
∴2331x ≤+, 解得83
x ≥; (3)①当1t =时,即t 的内数为2时,4n =;
当4t =时,即t 的内数为3时,9n =,
当5t =时,即t 的内数为4时,16n =,
……
∴t 的内数=
②当t 的内数为2时,最大实心正方形有1个;
当t 的内数为3时,最大实心正方形有2个,
当t 的内数为4时,最大实心正方形有1个,
……
即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;
∴当t 的內数为9时,符合条件的最大实心正方形有2个,
由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,
∴此时最大实心正方形的边长为8,
离原点最远的格点的坐标有两个,为()8,4-±.
【点睛】
本题考查图形类规律探究,明确题干中内数的定义是解题的关键.
27.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的
取值范围为﹣3≤m ≤﹣或2m ≤3.
【解析】
【分析】
(1)①由矩形的性质即可得出结果;
②由矩形的性质即可得出结果;
(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;
(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=1
2
DE=
1,EF=DF=DE=2,得出OF OD
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则
点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣
≤m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣
≤m≤1;即可得出结论.
【详解】
解:(1)①∵b=﹣2,
∴点B的坐标为(﹣2,0),如图2﹣1所示:
∵点A的坐标为(1,2),
∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,
故答案为:6;
②如图2﹣2所示:
由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,
∴|b﹣1|=4,
∴b=5或b=﹣3,
故答案为:5或﹣3;
(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,
∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,
∴正方形AGCH的边长为3,
当点C在直线x=1右侧时,如图3﹣1所示:
CG=3,
则C(4,﹣1),
设直线AC的表达式为:y=kx+a,
则
2
14
k a
k a
=+
⎧
⎨
-=+
⎩
,
解得;
1
3
k
a
=-
⎧
⎨
=
⎩
,
∴直线AC的表达式为:y=﹣x+3;
当点C在直线x=1左侧时,如图3﹣2所示:CG=3,
则C(﹣2,﹣1),
设直线AC的表达式为:y=k′x+b,
则
2
12
k b
k b
=+
⎧
⎨
-=-+
'
'
⎩
,
解得:
k1 b1
=
⎧
⎨
=
'
⎩
,
∴直线AC的表达式为:y=x+1,
综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;
(3)∵点M的坐标为(m,2),
∴点M在直线y=2上,
∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),
∴OD=OE=1
2
DE=1,EF=DF=DE=2,
∴OF=3OD=3,
分两种情况:如图4所示:
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(﹣2+3,2)或(2﹣3,2);
∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(2﹣3,2)或(﹣2+3,2);
∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;
综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.
【点睛】
此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.
28.(1)y=4
3
x+2;(2)(
10
3
,10);(3)存在, P坐标为(6,6)或(6,7+2)
或(6,7).
【解析】
【分析】
(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;
(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
【详解】
解:(1)∵C(6,10),D(0,2),
设此时直线DP解析式为y=kx+b,
把D(0,2),C(6,10)分别代入,得
2610b
k b =⎧⎨+=⎩
, 解得432
k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43
x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,
∵OB′=OB=10,OA=6,
∴AB′=22OB OA '-=8,
∴B′C=10-8=2,
∵PC=6-m ,
∴m 2=22+(6-m )2,解得m=
103 则此时点P 的坐标是(
103
,10); (3)存在,理由为:
若△BDP 为等腰三角形,分三种情况考虑:如图3,
①当BD=BP 1=OB-OD=10-2=8,
在Rt △BCP 1中,BP 1=8,BC=6,
根据勾股定理得:CP 1228627-=
∴AP 17P 1(6,7);
②当BP 2=DP 2时,此时P 2(6,6);
③当DB=DP 3=8时,
在Rt △DEP 3中,DE=6,
根据勾股定理得:P 3228627-
∴AP 3=AE+EP 37,即P 3(6,7+2),
综上,满足题意的P 坐标为(6,6)或(6,7+2)或(6,7).
【点睛】
此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.
29.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.
【解析】
【分析】
(1)根据直角三角形全等的方法“HL”证明;
(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;
(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;
(4)根据三种情况结论,∠B不小于∠A即可.
【详解】
(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.
(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角
∴G、H分别在AB、DE的延长线上.
∵CG⊥AG,FH⊥DH,
∴∠CGA=∠FHD=90°.
∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,
∴∠CBG=∠FEH.
在△BCG和△EFH中,
∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,
∴△BCG≌△EFH.
∴CG=FH.
又∵AC=DF.∴Rt△ACG≌△DFH.
∴∠A=∠D.
在△ABC和△DEF中,
∵∠ABC=∠DEF,∠A=∠D,AC=DF,
∴△ABC≌△DEF.
(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.
【点睛】
本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.
30.(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=
12
CF=3. 【详解】
解:(1)∵AB=AC ,
∴∠ABC=∠ACB ,
∵DE=DC ,
∴∠E=∠DCE ,
∴∠ABC-∠E=∠ACB-∠DCB ,
即∠EDB=∠ACD ;
(2)∵△ABC 是等边三角形,
∴∠B=60°,
∴△BEF 是等边三角形,
∴BE=EF ,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD ,
在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△DEF ≌△CAD (AAS ),
∴EF=AD ,
∴AD=BE ;。