高考数学压轴专题新备战高考《三角函数与解三角形》易错题汇编附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】《三角函数与解三角形》专题解析
一、选择题
1.在ABC ∆中,060,A BC D ∠==是边AB 上的一点,CD CBD =∆的面积为
1,
则BD 的长为( )
A .32
B .4
C .2
D .1
【答案】C 【解析】 1
sin 1sin
2BCD BCD ∠=∴∠=
2
242
BD BD ∴=-=∴=,选C
2.已知函数()sin f x a x x =的一条对称轴为56
x π
=
,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:
①实数a 的值为1;
②()()1,x f x 和()()
22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为
23
π. 其中所有正确结论的编号是( ) A .①②③ B .①③④
C .①④
D .③④
【答案】B 【解析】 【分析】 根据56
x π
=
是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为
2
T
π=,然后由()()12f x f x =-,得到()()1
1
,x f x 和()()2
2
,x f x 两点关于函数()f x 的一个对称中心对称求解验证.
【详解】 ∵56x π
=
是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-
⎪⎝⎭
,
令0x =,得()503
f f π
⎛⎫=
⎪⎝⎭
,即-1a =,①正确; ∴(
)sin 2sin 3π⎛
⎫=-=- ⎪⎝
⎭f x x x x .
又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为
2
T
π=,且()()12f x f x =-, ∴()(
)11,x f x 和()()
22,x f x 两点关于函数()f x 的一个对称中心对称,
∴121233223
x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π
,k Z ∈, ∴12223
x x k π
π+=+,k Z ∈,
当0k =时,12x x +取最小值23
π
,所以①③④正确,②错误. 故选:B 【点睛】
本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.
3.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且ABC ∆
的面积S C =
,且
1,a b ==c =( )
A
B
C
D
【答案】B 【解析】
由题意得,三角形的面积1
sin 2
S ab C C ==,所以tan 2C =,
所以cos 5
C =
, 由余弦定理得2222cos 17c a b ab C =+-=
,所以c =,故选B.
4.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至
BC ,在旋转的过程中,记([0,])2
ABP x x π
∠=∈,BP 所经过的在正方形ABCD 内的区
域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )
A .
B .
C .
D .
【答案】D 【解析】 【分析】
根据条件列()y f x =,再根据函数图象作判断. 【详解】
当0,4x π⎡⎤
∈⎢⎥⎣⎦时,()112y f x tanx ==⨯⨯; 当,42x ππ⎛⎤∈ ⎥⎝⎦
时,()11112y f x tanx ==-⨯⨯
; 根据正切函数图象可知选D. 【点睛】
本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题.
5.已知函数f (x )=2x -1
,()2cos 2,0?
2,0a x x g x x a x +≥⎧=⎨+<⎩
(a ∈R ),若对任意x 1∈[1,+
∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()
A .1,
2⎛⎫-∞ ⎪⎝⎭
B .2,3⎛⎫+∞
⎪⎝⎭
C .[]1,
1,22⎛
⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦
U 【答案】C 【解析】 【分析】
对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】
当a =0时,函数f (x )=2x
-1
的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意.
当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <
1
2
,即a <0. 当a >0时,y =2
2(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥
2
3时,-a +2≤2a ,由题得21,1222a a a a
-+≤⎧∴≤≤⎨
+≥⎩. 当0<a <
23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <1
2
. 综合得a 的范围为a <1
2
或1≤a ≤2, 故选C . 【点睛】
本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.
6.已知函数()sin 26f x x π⎛⎫
=-
⎪⎝
⎭
,若方程()2
3
f x =
的解为12,x x (120x x π<<<),则()21sin x x -=( )
A .
23
B .
49
C D 【答案】C 【解析】 【分析】 由已知可得2123
x x π
=
-,结合x 1<x 2求出x 1的范围,再由()121122236sin x x sin x cos x ππ⎛
⎫⎛
⎫-=-
=-- ⎪ ⎪⎝
⎭⎝
⎭求解即可. 【详解】
因为0<x π<,∴112666
x π
ππ⎛⎫
-
∈- ⎪⎝⎭
,,
又因为方程()2
3
f x =的解为x 1,x 2(0<x 1<x 2<π), ∴
1223x x π+=,∴2123
x x π
=-, ∴()12112223
6sin x x sin x cos x ππ⎛
⎫⎛
⎫-=-=-- ⎪ ⎪⎝
⎭⎝⎭
, 因为122123
x x x x π=-<,,∴0<x 13π
<,
∴12662x π
ππ⎛⎫
-
∈- ⎪⎝⎭
,, ∴由()112263f x sin x π⎛⎫
=-= ⎪⎝
⎭
,得1263cos x π⎛⎫-= ⎪⎝
⎭, ∴(
)123
sin x x -=-,故()21sin x x -
=3
故选C . 【点睛】
本题考查了三角函数的恒等变换及化简求值和三角函数的图象与性质,属中档题.
7.△ABC 中,已知tanA =13
,tanB =1
2,则∠C 等于( )
A .30°
B .45°
C .60°
D .135°
【答案】D 【解析】 【分析】
利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】 在△ABC 中,
11
tan tan 32tan tan()tan(+)=-1111tan tan 132
A B
C A B A B A B π+
+=--=-=-=---⋅,
所以135C ?o .
故选:D. 【点睛】
本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.
8.将函数()()sin 0,π2f x x ϕωϕω⎛
⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关
于y 轴对称,且1π2f ω⎛⎫
=- ⎪⎝⎭
,则当ω取最小值时,函数()f x 的解析式为( )
A .()sin 26f x x π⎛
⎫
=+
⎪⎝
⎭
B .()sin 2π6f x x ⎛
⎫=- ⎪⎝
⎭
C .()sin 4π6f x x ⎛
⎫=+ ⎪⎝
⎭
D .()sin 4π6f x x ⎛
⎫=- ⎪⎝
⎭
【答案】C 【解析】 【分析】
由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由
12f πω⎛⎫
=- ⎪⎝⎭
,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.
【详解】
解:将函数()()sin (0,)2
f x x π
ωφωφ=+><
的图象向右平移
6
π
个单位长度后,可得sin 6y x ωπωφ⎛⎫
=-+ ⎪⎝⎭
的图象;
∵所得图象关于y 轴对称,∴6
2
k ωπ
π
φπ-+=+
,k Z ∈.
∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪
⎝⎭
,即1sin 2φ=,26ππφφ<=,. ∴63
k ωπ
π
π-
=+
,620k ω=-->,
则当ω取最小值时,取1k =-,可得4ω=,
∴函数()f x 的解析式为()sin 46f x x π⎛⎫
=+ ⎪⎝
⎭
. 故选C . 【点睛】
本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.
9.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
【答案】C 【解析】
由正弦定理得sin sin 22a b A B a b R R
>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.
10.已知角α的终边与单位圆交于点34(,)55
P -,则cos α的值为( ) A .
35
B .35
-
C .
45
D .45
-
【答案】B 【解析】 【分析】
根据已知角α的终边与单位圆交于点34(,)55
P -,结合三角函数的定义即可得到cos α的值. 【详解】
因为角α的终边与单位圆交于点34(,)55
P -, 所以34
,,155
x y r =-==, 所以3cos 5
α=-, 故选B. 【点睛】
该题考查的是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.
11.已知函数f (x )=sin 2x +sin 2(x 3
π
+),则f (x )的最小值为( )
A .
12
B .
14
C .
4
D .
2
【答案】A 【解析】 【分析】
先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛
⎫=-+ ⎪⎝
⎭,再求最值. 【详解】
已知函数f (x )=sin 2x +sin 2(x 3
π
+
),
=21cos 21cos 2322
x x π⎛
⎫
-+
⎪-⎝⎭
+
,
=1cos 2111cos 22223x x π⎛⎛
⎫-=-+ ⎪ ⎝⎭⎝⎭
, 因为[]cos 21,13x π⎛⎫
+
∈- ⎪⎝
⎭
, 所以f (x )的最小值为12
. 故选:A 【点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
12.函数()2sin sin cos y x x x =+的最大值为( ) A
.1B
1 C
D .2
【答案】A 【解析】
由题意,得()2
2sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+
π2114x ⎛
⎫=-+≤ ⎪⎝
⎭;故选A.
13.已知函数()3cos(
2)2
f x x π
=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟
成立,则12x x -的最小值为( ) A .4 B .1
C .
1
2
D .2
【答案】D 【解析】 【分析】
由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】
对任意的x ∈R ,()()()12f x f x f x 剟
成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12
min
22
T
x x -=
=,故选D .
本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.
14.若函数tan 23y x k π⎛
⎫
=-+ ⎪⎝
⎭,0,6x π⎛⎫
∈ ⎪⎝⎭
的图象都在x 轴上方,则实数k 的取值范围为( )
A .)
+∞ B .
)
+∞
C .()
+∞
D .()
【答案】A 【解析】 【分析】
计算tan 203x π⎛
⎫
<-< ⎪⎝
⎭,tan 23x k π⎛
⎫->- ⎪⎝⎭
恒成立,得到答案.
【详解】
∵0,
6x π⎛
⎫
∈ ⎪⎝
⎭
,∴203
3x π
π
-<-
<,∴tan 203x π⎛
⎫-< ⎪⎝
⎭,
函数tan 23y x k π⎛⎫
=-+ ⎪⎝
⎭,0,6x π⎛⎫
∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,
6x π⎛⎫∈ ⎪⎝
⎭
,都有tan 203x k π⎛
⎫
-
+> ⎪⎝
⎭,即tan 23x k π⎛
⎫->- ⎪⎝⎭
,
∵tan 23x π⎛
⎫-> ⎪⎝
⎭k -≤,k ≥
故选:A . 【点睛】
本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.
15.已知双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若
121
cos 4
F MF ∠=
,122MF MF =,则此双曲线渐近线方程为( )
A .y =
B .3
y x =±
C .y x =±
D .2y x =±
【答案】A 【解析】 【分析】
因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案.
Q 双曲线()222210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 1212
22MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:
∴ 1212
122
2
122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅
可得:2
2
2
1
(2)(4)(2)2424
c a a a a =+-⋅⋅⋅ 化简可得:2c a =
由双曲线性质可得:22222243b c a a a a =-=-= 可得
:b =
Q 双曲线渐近线方程为:b y x a
=±
则双曲线渐近线方程为
: y = 故选:A. 【点睛】
本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.
16.函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则()f x 的最大值为( ) A .2
B
C
.D
或【答案】D 【解析】 【分析】
根据函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则有()(0)2
f f π
-=,解得a ,得到函数再求最值. 【详解】
因为函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称, 所以()(0)2f f π
-=,
即220a a +-=,
解得2a =-或1a =,
当2a =-时,()sin 2cos 2cos 44f x x x x x π⎛
⎫=--=- ⎪⎝⎭
,此时()f x 的最大值为
;
当1a =时,()sin cos 2cos 4f x x x x x π⎛⎫=+-=
- ⎪⎝⎭,此时()f x ;
综上()f x 或.
故选:D
【点睛】
本题主要考查三角函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.
17.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且
tanC cos cos c B A =,若c =4a =,则b 的值为( )
A .6
B .2
C .5
D 【答案】A
【解析】
【分析】
由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合
sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值.
【详解】
解:∵tan cos cos c C B A =,
∴由正弦定理可得:
)()
sin tan sin cos sin cos C C A B B A A B C =+=+=,
∵sin 0C ≠,
∴可得tan C =
∵()0,C π∈, ∴3C π
=,
∵c =4a =,
∴由余弦定理2222cos c a b ab C =+-,可得212816242
b b =+-⨯⨯⨯,可得24120b b --=,
∴解得6b =,(负值舍去).
故选:A .
【点睛】
本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.
18.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( ) A .23 B .2 C .2 D .1
【答案】B
【解析】 1333,sin sin sin 22sin cos A B A A A ===3cos 2
A =, 所以()22231323c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,0030,60A C
B ===不满足内角和定理,排除.
【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.
当求出3cos A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.
19.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( )
A .152km
B .30km
C .15km
D .153km 【答案】D
【解析】
【分析】
如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离.
【详解】
设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,
可得60DBC ∠=︒,30ABD ∠=︒,45BC =
30ABC ∴∠=︒,120BAC ∠=︒
在三角形ABC 中,利用正弦定理可得:
sin sin AC BC ABC BAC
=∠∠,
可得sin 1sin 2
BC ABC AC BAC ∠===∠ 故选D
【点睛】
本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.
20.4
0cos2d cos sin x x x x
π
=+⎰( ) A
.1)
B
1 C
1 D
.2【答案】C
【解析】
【分析】
利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.
【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x
-==-++,
∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x π
ππ
=-=+=+⎰⎰,故选C . 【点睛】
本题考查三角恒等变换知与微积分基本定理的交汇.。