二次函数的实际应用题专项训练卷(3)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的实际应用题专项训练卷(3)
1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.若设每件衬衫降价x元,解答下列问题:
(1)当每件衬衫降价5元,则每件利润元,平均每天可售出件.(2)若平均每天获利为Q元,请求出Q与x的函数关系式.
(3)若商场想平均每天盈利1200元,每件衬衫应降价多少元?
2.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.设每天的总利润为w元.
(1)根据图象求出y与x之间的函数关系式;
(2)请写出w与x之间的函数关系式,并写出自变量x的取值范围;
(3)当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?
3.普洱茶是中国十大名茶之一,也是中华古老文明中的一颗瑰宝.某公司经销某种品牌普洱茶,每千克成本为50元.经市场调查发现:每周销售量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据如下表所示,
销售单价x(元/千克)566575
销售量y(千克)12811090
解答下列问题:
(1)求y与x的函数关系式;
(2)求这一周销售这种品牌普洱茶获得的利润W元的最大值;
(3)物价部门规定茶叶销售单价不得高于90元/千克,公司想获得不低于2000元周利润,请计算销售单价范围.
4.为了研究飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的关系,
测得一些数据如表:
滑行的时间t02468
滑行的距离s0114216306384
(1)若滑行的距离和时间之间是一个一次函数或二次函数关系,用你学过的知识进行判断并求出这个函数关系式;
(2)飞机着陆后滑行多远才能停下来?
5.有一如图所示的纸片,拱形边缘呈抛物线形状,MN=8米,抛物线顶点到边MN的距离是8米.点A和点D是抛物线上的两动点,且AD∥BC,过点A作AB⊥BC作DC⊥BC,过点B作DC⊥BC,点B、C在边MN上.
(1)四边形ABCD是否可能为正方形?试说明明理由;
(2)试求四边形ABCD周长的最大值.
6.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x天的销售量与销售单价如下(每天内单价和销售量保持一致):
销售量m(千克)m=40﹣x
销售单价n(元/千克)当1≤x≤15时,n=20+x
当16≤x≤30时,n=10+
设第x天的利润w元.
(1)请计算第几天该品种草莓的销售单价为25元/千克?
(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价﹣成本)×销售量
(3)在实际销售的前15天中,草莓生产基地为刺激销售,鼓励销售商批发草莓,每多批发1千克就发给a(a≥2)元奖励.通过销售记录发现,前8天中,每天获得奖励后的利润随时间x(天)的增大而增大,试求a的取值范围.
7.受我国经济刺激政策和全球经济复苏的影响,2009年我国房地产市场开始回暖,下图反映08年7月至09年6月我国70个大城市房价同比增长率变化情况(注:同比增长率是指房价与上一年同时期相比增长的百分比)
(1)看图分析:2008年7月房价比2007年7月的房价;2008年8月的房价比2008年7月的房价;(填“高”、“相等”、“低”、“不能确定”.)
(2)从图上可以看出:同比增长率与月份之间折线图可以“近似”的看成一段抛物线,以2008年7月的坐标为(0,7.0)建立平面直角坐标系.请你根据图中信息求出同比增长率与月份之间“近似”的函数关系式,并据此推算2009年9月同比增长率会达到多少?
(3)若从2008年7月到2008年9月房价持平,求从2009年7月开始到2009年9月房价月平均增长率.(结果精确到0.01,可能用到数据:)
8.现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=120°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
9.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y 元/千克,y关于x的函数解析式为y=,且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入﹣成本).
(1)m=,n=;
(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?
(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
10.近年来,西部某民族聚居区扶贫工作小组结合当地实际,大力开发乡村旅游扶贫项目,积极挖掘乡村生态休闲、旅游观光、文化教育价值,发展乡村民宿.某民宿建有40个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆每天需对每个房间支出40元的各种费用,设每个房间的定价为x元,相应的住房数为y间.
(1)求y与x的函数关系式;
(2)求每个房间定价为多少元时,该民宿当天利润W最大?最大利润是多少?
11.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可卖出120套(两套服装的市场行情互不影响).目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转
让价格(元/套)与转让数量(套)有如下关系:
转让数量
120011001000900800700600500400300200100(套)
240250260270280290300310320330340350价格
(元/套)
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;
方案3:部分转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装.
问:
①经销商甲选择方案1与方案2一年内分别获得利润各多少元?
②经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给
经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?12.一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:≈2.24,≈2.45,计算结果保留两个有效数字.)Array 13.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?.(本小题只需直接写出答案)
14.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高
度不超过8m,那么两排灯的水平距离最小是多少米?
15.【问题实验】如图①,在地面BD上有两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.
(1)求绳子最低点到地面的距离;
(2)如图②,因实际需要,需用一根立柱MN撑起绳子.
①若在离AB为4米的位置处用立柱MN撑起,使立柱左侧的抛物线的最低点距MN为1
米,离地面1.8米,求MN的长;
②将立柱MN来回移动,移动过程中,在一定范围内,总保持立柱MN左侧抛物线的形
状不变,其函数表达式为y=x2﹣mx+3,当抛物线最低点到地面距离为0.5米时,求m 的值.
【问题抽象】如图③,在平面直角坐标系中,函数y=﹣mx+3(x<0)的图象记为M1,函数y=﹣mx+3(x≥0)的图象记为M2,其中m是常数,图象M1、M2合起来得到的图象记为M.设M在﹣3≤x≤2上的最低点纵坐标为y0,当﹣6≤y0≤2时,直接写出m的取值范围.
16.某水果超市以每千克6元的价格购进了一批水果,经测算,此水果超市每天需支出固定费用(包括房租,水电费,员工工资等)为600元.若该种水果的销售单价不超过10元,则日销售量为300千克;若该种水果的销售单价超过10元,则每超过1元,日销售就减少12千克.设该种水果的销售单价为x(x>6,且x为整数)元,日净收入为y元(日
净收入=日销售利润﹣每天固定支出的费用).
(1)求y与x之间的函数关系式;
(2)此水果超市销售该种水果的日净收入能否达到1560元?否能,请求出此时的销售单价.
17.我市一家电子计算器专卖店每只进价12元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.
(1)求一次至少买多少只,才能以最低价购买;
(2)求该专卖店当一次销售x只时(x>10),所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少元?
18.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=﹣50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:
月份1月5月
销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:≈5.831,≈5.916,≈6.083,≈6.164)。

相关文档
最新文档