利用导数求极值和最值

合集下载

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。

导数与函数的极值、最值-高考数学复习

导数与函数的极值、最值-高考数学复习
2
1
解:当 a = 时, f ( x )=ln
2
1
x - x ,函数的定义域为
2
1
1
2−
(0,+∞),且f'( x )= - =


2Hale Waihona Puke 2令f'( x )=0,得 x =2,
目录
高中总复习·数学
于是当 x 变化时,f'( x ), f ( x )的变化情况如下表:
x
(0,2)
2
(2,+∞)
f'( x )
则函数在(0,+∞)上是增函数,此时函数在定义域上无
极值点;
当 a >0时,若 x ∈
若x∈
1
,+∞

1
0,

,则f'( x )>0,
,则f'( x )<0,
目录
高中总复习·数学
1

故函数在 x = 处有极大值.
综上可知,当 a ≤0时,函数 f ( x )无极值点;
当 a >0时,函数 y = f ( x )有一个极大值点,且为
2. 函数的最值与导数
(1)如果在区间[ a , b ]上函数 y = f ( x )的图象是一条
连续不

断 的曲线,那么它必有最大值和最小值;
(2)若函数 f ( x )在[ a , b ]上单调递增,则 f ( a )为函数

最小值 , f ( b )为函数的
最大值 ;若函数 f ( x )
在[ a , b ]上单调递减,则 f ( a )为函数的
导数与函数的极值、最值
1. 借助函数的图象,了解函数在某点取得极值的必要条件和充分条件.

第22讲 利用导数研究函数的极值和最值(解析版)

第22讲 利用导数研究函数的极值和最值(解析版)

第22讲利用导数研究函数的极值和最值【基础知识回顾】1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A.1B.2C.3D.4【答案】B【解析】由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点.其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.2、已知a为函数f(x)=x3-12x的极小值点,则a等于()A.-4B.-2C.4D.2【答案】D【解析】由题意得f′(x)=3x2-12,由f′(x)=0得x=±2,当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.3、.函数f (x )=e xx 2-3在[2,+∞)上的最小值为( )A.e 36B.e2C.e 34D.2e【答案】 A【解析】 依题意f ′(x )=e x(x 2-3)2(x 2-2x -3) =e x(x 2-3)2(x -3)(x +1),故函数在区间(2,3)上单调递减,在区间(3,+∞)上单调递增,故函数在x =3处取得极小值也即是最小值,且最小值为f (3)=e 332-3=e 36.4、函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【解析】 设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C. 5、设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 【答案】D【解析】 因为f (x )=2x +ln x ,所以f ′(x )=-2x 2+1x =x -2x2,x >0.当x >2时,f ′(x )>0,f (x )为增函数;当0<x <2时,f ′(x )<0,f (x )为减函数,所以x =2为f (x )的极小值点,故选D.考向一 利用导数研究函数的极值例1、已知函数()32331(R,0)f x ax x a a a=-+-∈≠,求函数()f x 的极大值与极小值.【解析】:由题设知a ≠0,f ′(x )=3ax 2-6x =3ax 2x a ⎛⎫- ⎪⎝⎭. 令f ′(x )=0得x =0或2a.当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 综上,f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 变式1、已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.【解析】(1)因为f (x )=x -1+ae x ,所以f ′(x )=1-aex ,又因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0, 即1-ae1=0,所以a =e.(2)由(1)知f ′(x )=1-ae x ,当a ≤0时,f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增, 因此f (x )无极大值与极小值; 当a >0时,令f ′(x )>0,则x >ln a , 所以f (x )在(ln a ,+∞)上单调递增, 令f ′(x )<0,则x <ln a ,所以f (x )在(-∞,ln a )上单调递减, 故f (x )在x =ln a 处取得极小值, 且f (ln a )=ln a ,但是无极大值,综上,当a ≤0时,f (x )无极大值与极小值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,但是无极大值.变式2、 (1)若函数f (x )=(x 2-ax -1)e x 的极小值点是x =1,则f (x )的极大值为( ) A .-e B .-2e 2 C .5e -2 D .-2【答案】 C【解析】 由题意,函数f (x )=(x 2-ax -1)e x , 可得f ′(x )=e x [x 2+(2-a )x -1-a ], 所以f ′(1)=(2-2a )e =0, 解得a =1,故f (x )=(x 2-x -1)e x , 可得f ′(x )=e x (x +2)(x -1),则f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )的极大值为f (-2)=5e -2.(2)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫52,103 B.⎣⎡⎭⎫52,103 C.⎝⎛⎦⎤52,103 D.⎣⎡⎦⎤2,103 【答案】 B【解析】 ∵f (x )=ln x +12x 2-ax (x >0),∴f ′(x )=1x+x -a ,∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x +x .设g (x )=1x+x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增, ∴g (x )min =g (1)=2, 又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.方法总结:(1)求函数()f x 极值的步骤: ①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.(2)若函数()y f x =在区间内有极值,那么()y f x =在(),a b 内绝不是单调函数,即在某区间上单调函数没有极值.考向二 利用导数研究函数的最值例2、(2020届山东省潍坊市高三上期中)已知函数. (1)当时,求曲线在点处的切线方程;(2)若函数处有极小值,求函数在区间上的最大值.【答案】(1);(2). 【解析】(1)当时,,, 所以,又,所以曲线在点处切线方程为,即.(2)因为,因为函数处有极小值,所以,()32112f x x x ax =-++2a =()y f x =()()0,0f ()1f x x =在()f x 32,2⎡⎤-⎢⎥⎣⎦210x y -+=49272a =321()212f x x x x =-++2()32f x x x '=-+(0)2f '=(0)1f =()y f x =()()0,0f 12y x -=210x y -+=2()3f x x x a '=-+()1f x x =在(1)202f a a '=+=⇒=-所以 由,得或, 当或时,, 当时,, 所以在,上是增函数,在上是减函数, 因为,, 所以的最大值为. 变式1、已知函数f (x )=3-2xx 2+a.(1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =-1处取得极值,求f (x )的单调区间,以及最大值和最小值. 【解析】(1)当a =0时,f (x )=3-2xx 2,则f ′(x )=x 2·(-2)-(3-2x )·2xx 4=2x -6x 3. 当x =1时,f (1)=1,f ′(1)=-4, 故y =f (x )在(1,f (1))处的切线方程为 y -1=-4(x -1), 整理得4x +y -5=0. (2)已知函数f (x )=3-2xx 2+a,则f ′(x )=(x 2+a )·(-2)-(3-2x )·2x(x 2+a )2=2(x 2-3x -a )(x 2+a )2.若函数f (x )在x =-1处取得极值, 则f ′(-1)=0,即2(4-a )(a +1)2=0,解得a =4.经检验,当a =4时,x =-1为函数f (x )的极大值,符合题意.2()32f x x x '=--()0f x '=23x =-1x =23x <-1x >()0f x '>213x -<<()0f x '<()f x 22,3⎛⎫--⎪⎝⎭31,2⎛⎫ ⎪⎝⎭2,13⎛⎫- ⎪⎝⎭249327f ⎛⎫-= ⎪⎝⎭3124f ⎛⎫= ⎪⎝⎭()f x 249327f ⎛⎫-=⎪⎝⎭此时f (x )=3-2x x 2+4,其定义域为R ,f ′(x )=2(x -4)(x +1)(x 2+4)2,令f ′(x )=0,解得x 1=-1,x 2=4. f (x ),f ′(x )随x 的变化趋势如下表:故函数f (x )极大值为f (-1)=1,极小值为f (4)=-14.又因为x <32时,f (x )>0;x >32时,f (x )<0,所以函数f (x )的最大值为f (-1)=1, 最小值为f (4)=-14.变式2、 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】 (1)易知f (x )的定义域为(0,+∞), 当a =-1时,f (x )=-x +ln x , f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1. 当0<x <1时,f ′(x )>0; 当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增, 在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2, 即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.方法总结:1.利用导数求函数f(x)在[a ,b]上的最值的一般步骤: (1)求函数在(a ,b)内的极值.(2)求函数在区间端点处的函数值f(a),f(b).(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.考向三 极值(最值)的综合性问题例3、已知函数()323(,)f x ax bx x a b R =+-∈在1x =-处取得极大值为2. (1) 求函数()f x 的解析式;(2) 若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值. 【解析】 :(1)f′(x)=3ax 2+2bx -3.由题意得()12(1)0f f ⎧-=⎪⎨'-=⎪⎩,即⎩⎪⎨⎪⎧-a +b +3=23a -2b -3=0), 解得⎩⎪⎨⎪⎧a =1b =0),经检验成立,所以f(x)=x 3-3x.(2) 令f′(x)=0,即3x 2-3=0.得x =±1. 列表如下:因为max min 间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4,所以c≥4.所以c 的最小值为4.变式1、设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1 B.m +1m -1 C.1-m m +1 D.m +11-m【答案】 B 【解析】由f ′(x )=cos x -x sin x =0, 得tan x =1x ,所以tan m =1m,故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 变式2、已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( ) A .1≤b <a B .b <a ≤1 C .a <1≤b D .a <b ≤1【答案】 B 【解析】令f (x )=(x -a )2(x -b )(e x -1-1)=0, 得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析. 对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意.方法总结: 1. 当面对不等式恒成立(有解)问题时,往往是转化成函数利用导数求最值;2. 当面对多次求导时,一定要清楚每次求导的目的是什么.1、若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .2、已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12),所以当cosx <12时函数单调递减,当cosx >12时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 3、(2021·广东高三月考)已知函数()322f x x ax b =-+,若()f x 区间[]0,1的最小值为1-且最大值为1,则a 的值可以是( )A .0B .4C .D .【答案】AB【解析】()26263a f x x ax x x ⎛⎫'=-=- ⎪⎝⎭,令()603a f x x x '⎛⎫=-= ⎪⎝⎭,解得0x =或3a .①当0a ≤时,可知()f x 在[]0,1上单调递增,所以()f x 在区间[]0,1的最小值为()0f b =,最大值为()12f a b =-+. 此时a ,b 满足题设条件当且仅当1x =-,21a b -+=, 即0a =,1b =-.故A 正确.②当3a ≥时,可知()f x 在[]0,1上单调递减,所以()f x 在区间[]0,1的最大值为()0f b =,最小值为()12f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,1b =,即4a =,1b =.故B 正确.③当0<<3a 时,可知()f x 在[]0,1的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭, 最大值为b 或2a b -+或3127a b -+=-,1b =,则a =,与0<<3a 矛盾. 若3127a b -+=-,21a b -+=,则a =a =-0a =,与0<<3a 矛盾.故C 、D 错误.故选:AB4、(2021·广东宝安·高三月考)(多选题)已知函数()e e x x f x -=-,()e e x x g x -=+,则以下结论错误的是( )A .任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x -<- B .任意的1x ,2x ∈R 且12x x ≠,都有()()12120g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值【答案】ABC【解析】对A, ()e e x x f x -=-中e x y =为增函数,e x y -=为减函数.故()e e x x f x -=-为增函数.故任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x ->-.故A 错误.对B,易得反例11(1)e e g -=+,11(1)(1)e e g g --=+=.故()()12120g x g x x x -<-不成立.故B 错误. 对C, 当因为()e e x x f x -=-为增函数,且当x →-∞时()f x →-∞,当x →+∞时()f x →+∞.故()f x 无最小值,无最大值.故C 错误.对D, ()e e 2x x g x -=+≥=,当且仅当e e =x x -即0x =时等号成立. 当x →+∞时()g x →+∞.故()g x 有最小值,无最大值.故选:ABC5、(2020全国Ⅰ理21)已知函数()2e xf x ax x =+-. (1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.【解析】(1)当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当(),0x ∈-∞时,()()'0,f x f x <单调递减;当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x=0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 记()32112xe x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-, 令()()21102x e x x h x x ---≥=,则()'1x h x e x =--,()''10x h x e =-≥, 故()'h x 单调递增,()()''00h x h ≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21102x e x x ---恒成立,故当()0,2x ∈时,()'0g x >,()g x 单调递增; 当()2,x ∈+∞时,()'0g x <,()g x 单调递减;因此,()()2max 724e g x g -⎡⎤==⎣⎦.综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 6、(2020全国Ⅱ文21)已知函数()2ln 1f x x =+.(1)若()2f x x c ≤+,求c 的取值范围;(2)设0a >,讨论函数()()()f x f ag x x a -=-的单调性.【解析】(1)函数()f x 的定义域为:(0,)+∞,()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x -'=-=, 当1x >时,()0,()h x h x '<单调递减;当01x <<时,()0,()h x h x '>单调递增,∴当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-.(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠,因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,∴()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即 ()0g x '<,∴()g x 单调递减;当0x a <<时,ln ln x a <,∴()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减,∴函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.。

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。

求极值的若干方法

求极值的若干方法

求极值的若干方法求解函数的极值是数学分析中重要的问题之一、找出函数的极值可以帮助我们确定函数的最大值或最小值,并且有助于解决各种实际问题。

本文将介绍常见的求解极值的若干方法。

一、导数法(一阶导数法、二阶导数法)导数是函数在其中一点的变化率,求导数的过程可以帮助我们确定函数的增减性,从而找出函数的极值点。

常见的导数法包括一阶导数法和二阶导数法。

1.一阶导数法:首先求函数的一阶导函数,然后将导函数等于零,解出方程得到函数的临界点,再将临界点代入函数,找出对应的函数值,最终从函数值中找出最大值或最小值。

2.二阶导数法:首先求函数的二阶导函数,然后将二阶导函数等于零,解出方程得到函数的拐点,再将拐点代入函数,找出对应的函数值,最终从函数值中找出最大值或最小值。

二阶导数法可以帮助我们判断函数的临界点是极值点还是拐点。

二、边界法(最大最小值定理)边界法是基于最大最小值定理求解函数极值的方法。

最大最小值定理指出,在闭区间内的连续函数中,最大值和最小值一定存在。

因此,我们可以通过求解函数在闭区间端点和临界点处的函数值,找出函数的最大值或最小值。

三、拉格朗日乘数法拉格朗日乘数法是用于求解带约束条件的极值问题的方法。

在求解极值问题时,如果还存在一些约束条件,可以引入拉格朗日乘数,通过构建拉格朗日函数,将约束条件加入目标函数中,然后求解拉格朗日函数的极值点。

最终,通过求解得到的极值点,再进行函数值的比较,找出最大值或最小值。

四、二分法二分法是一种在有序列表中查找特定元素的方法,也可以用于求解函数的极值。

二分法的基本思想是通过将区间一分为二,然后比较中间点与两侧点的大小关系,逐步缩小范围,最终找出函数的极值点。

二分法的效率较高,适用于一些连续单调函数。

五、牛顿法牛顿法是一种用于求解多项式函数的根的方法,也可以用于求解函数的极值。

牛顿法的基本思想是通过构建一个逼近曲线,以曲线与函数的交点为新的逼近值。

然后不断迭代逼近,最终找到函数的极值点。

导数与函数的极值、最值

导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.

函数的极值与最值的求解方法

函数的极值与最值的求解方法

函数的极值与最值的求解方法在数学中,函数的极值与最值是我们经常遇到的问题。

极值是指函数在某一区间内达到的最大值或最小值,而最值则是函数在整个定义域内的最大值或最小值。

正确地求解函数的极值与最值对于解决实际问题和优化算法具有重要意义。

本文将介绍一些常见的函数极值与最值的求解方法。

一、导数法求函数极值导数法是求解函数极值的常用方法之一。

对于一元函数,我们可以通过求取其导数来确定函数的极值点。

具体步骤如下:1. 求取函数的导数。

根据函数的表达式,求取其一阶导数。

对于高阶导数存在的情况,可以继续求取导数直到找到导数不存在的点。

2. 解方程求取导数为零的点。

导数为零的点对应着函数的极值点。

将导数等于零的方程进行求解,找到函数的极值点。

3. 判断极值类型。

在找到导数为零的点后,可以通过二阶导数或借助函数图像来判断该点处的极值类型。

若二阶导数大于零,则为极小值;若二阶导数小于零,则为极大值。

二、边界法求函数最值边界法是求解函数最值的一种有效方法。

当函数在闭区间上连续且有界时,最值一定是在该闭区间的端点处取得的。

具体步骤如下:1. 确定函数定义域的闭区间。

根据函数表达式或实际问题,找到函数定义域所对应的闭区间。

2. 计算函数在端点处的取值。

将函数在闭区间的端点处依次带入函数表达式,计算函数的取值。

3. 比较函数取值找到最值。

对于最大值,选取函数取值最大的端点;对于最小值,选取函数取值最小的端点。

三、拉格朗日乘数法求函数约束条件下的极值当函数需要满足一定的约束条件时,可以使用拉格朗日乘数法来求解函数的极值。

该方法适用于带有约束条件的最优化问题,具体步骤如下:1. 设置拉格朗日函数。

将原函数与约束条件构建为一个拉格朗日函数,其中拉格朗日乘子为未知数。

2. 求取拉格朗日函数的偏导数。

对拉格朗日函数进行偏导数运算,得到一组方程。

3. 解方程求取极值点。

将得到的偏导数方程组求解,找到满足约束条件的极值点。

4. 判断极值类型。

导数的单调性极值最值

导数的单调性极值最值

第十三讲 利用导数求函数的单调性、极值 、最值一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当,)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<当()22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,-∞和)+∞,单调递减区间为(.(2)函数2()ln f x x x =-的定义域为(0,)+∞.1()2f x x x '=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<. 故函数2()ln f x x x =-的单调递增区间为(,)2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2]. f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【解析】 由y =4x 2+1x ,得y ′=8x -1x 2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 2.函数f (x )=x ·e x -e x+1的单调增区间是________.【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

函数的极值与最值的求解(导数法)

函数的极值与最值的求解(导数法)

函数的极值与最值的求解(导数法)函数的极值与最值是数学中重要的概念,它们在数学建模、优化问题等方面具有广泛的应用。

在本文中,我们将介绍如何使用导数法求解函数的极值与最值问题。

一、函数的极值与最值在介绍如何求解函数的极值与最值之前,我们首先需要明确这两个概念的定义。

对于函数f(x),如果存在一个区间I,对于区间内的任意x,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么f(x0)就是函数在区间I内的极小值(或极大值)。

而函数f(x)在整个定义域内的最小值和最大值则被称为函数的最小值和最大值。

二、导数法求解极值与最值导数法是求解函数极值与最值常用的方法之一。

通过求解函数的导数和判断导数的正负,可以找到函数的极值点及其对应的极值。

1. 求解函数的极值点首先,我们需要求解函数f(x)的导数,并令导数等于零,即f'(x)=0。

解这个方程可以得到函数的临界点(即导函数为零的点),也就是可能的极值点。

2. 判断极值类型在求得了函数的临界点之后,我们需要判断每个临界点对应的极值类型,即是极小值还是极大值。

我们可以通过求解导数的二阶导数来判断,即求解f''(x),其中f''(x)表示函数f(x)的二阶导数。

若f''(x) > 0,则说明该临界点对应的极小值;若f''(x) < 0,则说明该临界点对应的极大值;若f''(x) = 0,则需要进行其他方法进一步判断。

3. 比较端点值除了求解临界点之外,我们还需要比较函数在区间的端点值,并找出其中的最大值和最小值。

三、实例分析为了更好地理解导数法求解极值与最值的过程,我们举一个实例来进行说明。

假设我们要求解函数f(x)=x^3-3x^2+2x在区间[-1, 3]的极值和最值。

1. 求解导数和临界点首先,求解函数f(x)的导数,得到f'(x)=3x^2-6x+2。

利用导数解决最值问题

利用导数解决最值问题

利用导数解决最值问题导数是微积分中一个非常重要的概念,它不仅可以用来求函数的斜率,还可以用来解决最值问题。

利用导数求函数的最大值和最小值是微积分中一个常见的应用。

本文将介绍如何利用导数来解决最值问题,包括求函数的极值点和边界点,以及判断最值是否存在的条件。

在解决最值问题前,我们首先需要了解什么是导数。

导数可以理解为函数在某一点的瞬时变化率,表示函数在该点的斜率。

通过求导数,我们可以知道函数的变化趋势,从而得出函数的最值。

首先,我们来看一下求函数的极值点的方法。

极值点包括最大值和最小值。

为了求函数的极值点,我们需要先求出函数的导数,然后再求得导数为零的点,即导数的零点。

这些点就是原函数的极值点。

设函数为f(x),则其导数为f'(x)。

假设我们要求函数f(x) = x^2的极值点。

我们首先计算出它的导数f'(x) = 2x。

然后,我们令f'(x) = 0,解方程得到x = 0。

因此,函数f(x)的极值点为x = 0。

接下来,让我们来看一下如何求函数的边界点。

边界点是函数定义域的端点。

对于一个闭区间[a, b]上的函数,其边界点就是a和b。

我们需要将这些边界点与函数的极值点进行比较,找出最大值和最小值。

举一个例子,假设我们要求函数f(x) = x^2在闭区间[-1, 1]上的最值。

我们首先计算出函数的导数f'(x) = 2x。

然后,我们将闭区间的边界点a = -1和b = 1代入导数,得到f'(-1) = -2和f'(1) = 2。

因此,函数的最小值为f(-1) = (-1)^2 = 1,最大值为f(1) = 1^2 = 1。

所以在闭区间[-1, 1]上,函数f(x)的最值都是1。

除了求得导数为零的点和边界点之外,我们还需要考虑最值是否存在的条件。

最值存在的条件有两个:一是函数在这些点上有定义,二是函数在这些点的左侧和右侧的导数符号相反。

举一个例子来说明这个条件。

高中数学导数的应用之极值和最值

高中数学导数的应用之极值和最值

利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。

2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。

3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。

(2)如果在附近的左侧,右侧,那么是极小值点。

4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。

(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。

三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。

利用导数研究函数的极值最值

利用导数研究函数的极值最值

利用导数研究函数的极值最值导数是研究函数的极值、最值的重要工具之一、通过计算函数的导数,我们可以找到函数的临界点,进而确定函数的极值和最值。

极值是函数在定义域内取得的最大值或最小值。

极大值是函数在其中一点上取得的最大值,极小值是函数在其中一点上取得的最小值。

首先,我们可以通过计算函数的导数来找到函数的临界点。

临界点是函数导数等于0的点,也包括导数不存在的点。

然后,通过进一步的分析,可以确定临界点中的极值点。

假设函数f(x)在区间[a,b]上连续且可导。

首先,我们需要计算函数f(x)的导数f'(x)。

然后,我们找出导数f'(x)等于0的点,这些点就是函数f(x)的临界点。

接下来,我们进一步分析导数f'(x)的符号。

在临界点两侧,如果导数f'(x)由正变负,则表明在该点上函数f(x)取得极大值;如果导数f'(x)由负变正,则表明在该点上函数f(x)取得极小值。

当然,也可能存在导数f'(x)不存在的点,这些点也是函数的临界点。

最值是函数在定义域内取得的最大值或最小值。

最大值是函数在定义域内所有点上取得的最大值,最小值是函数在定义域内所有点上取得的最小值。

通过求解函数的导数,我们可以找到函数的临界点。

然后,通过分析函数在临界点、定义域的边界点和导数不存在的点上的取值,可以确定函数的最值。

当函数在闭区间[a,b]上连续时,最大值和最小值一定在定义域的边界点上或者在临界点上取得。

因此,在求解函数最值时,我们需要计算函数在闭区间的端点上的取值,并将其和临界点上的取值相比较。

需要注意的是,导数仅能帮助我们找到函数的临界点,但临界点未必都是极值点。

为了判断极值点是否为极大值或极小值,我们还需要进行二阶导数测试。

如果二阶导数大于0,则表示该点为极小值;如果二阶导数小于0,则表示该点为极大值;如果二阶导数等于0,则需要进行其他方法的分析。

总之,利用导数研究函数的极值、最值是一种有效的方法。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

考点 利用导数求函数的单调性、极值、最值

考点    利用导数求函数的单调性、极值、最值

考点:利用导数求函数的单调性、极值、最值知识点1.求函数单调区间的步骤:①确定f(x)的定义域;②求导数y ′;③令y ′>0(y ′<0),解出相应的x 的范围。

当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数2.求极值常按如下步骤:① 确定函数的定义域;② 求导数;③ 求方程/y =0的根及导数不存在的点,这些根或点也称为可能极值点;④通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。

3.设函数f(x)在[a,b]上连续,在(a,b )内可导,求f(x)在[a,b]上的最大(小)值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

4.最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。

5.求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x );②求方程f ′(x )=0的根 ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查f ′(x )在方程根左右的值的符号,若左正右负,则f (x )在这个根处取得极大值;若左负右正,则f (x )在这个根处取得极小值;若左右不改变符号即都正或都负,则f (x )在这个根处无极值例题1. 函数()ln (0)f x x x x =>的单调递增区间为_______________.2. 讨论下列函数的单调性:(1)x x a a x f --=)((0>a 且1≠a );(2))253(log )(2-+=x x x f a (0>a 且1≠a );3.求下列函数的极值:(1)x x x f 12)(3-=;(2)x ex x f -=2)(;(3).212)(2-+=x x x f练习1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.函数y =216x x +的极大值为( ) A.3 B.4 C.2 D.53.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0B.1C.2D.44.y =ln 2x +2ln x +2的极小值为( )A.e -1B.0C.-1D.15.函数y=xsinx+cosx 在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π)6.已知函数y=xf′(x)的图象如下图所示(其中f′(x )是函数f (x )的导函数).下面四个图象中y=f (x )的图象大致是( )7.函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>yC .增函数,且0<yD .减函数,且0<y8.函数f (x )=x 3-3x 2+7的极大值为___________.9. 求下列函数的单调区间:(1)32)(24+-=x x x f ; (2)22)(x x x f -=; (3)).0()(>+=b xb x x f10.已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .(1)试求常数a 、b 、c 的值;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由.11.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.【答案】(1)极大值为;(2)综上所述:时,恒成立.【解析】(1)通过“求导数、求驻点、讨论驻点附近导数值的符号、确定极值”,“表解法”形象直观;(2)应用转化与化归思想.要使得恒成立,即时,恒成立;构造函数,应用导数研究函数的最值,注意分以下情况:(ⅰ)当时,(ii)当时,(iii)当时,(iv)当a>1时,综上所述:时,恒成立.试题解析:(1)是的极值点解得 2分当时,当变化时,+4分的极大值为 6分(2)要使得恒成立,即时,恒成立 8分设,则(ⅰ)当时,由得单减区间为,由得单增区间为,得 10分(ii)当时,由得单减区间为,由得单增区间为,此时,不合题意. 10分(iii)当时,在上单增,不合题意. 12分(iv)当a>1时,由得单减区间为,由得单增区间为,此时不合题意. 13分综上所述:时,恒成立. 14分【考点】1.应用导数研究函数的单调性、极(最)值,2.应用导数证明不等式3.转化与化归思想.2.设函数在处取极值,则= .【答案】2.【解析】因为,又函数在处取极值,所以,从而.【考点】1.函数导数的求法;2.三角恒等变形公式.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.已知曲线.(1)若曲线C在点处的切线为,求实数和的值;(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.【答案】(1),,(2).【解析】(1)根据导数几何意义,所以.因为,所以.因为过点,所以,(2)由题意得:不等式恒成立,恒成立问题一般转化为最值问题.一是分类讨论求函数最小值,二是变量分离为恒成立,求函数最小值.两种方法都是,然后对实数a进行讨论,当时,,所以.当时,由得,不论还是,都是先减后增,即的最小值为,所以.试题解析:解(1), 2分因为曲线C在点(0,1)处的切线为L:,所以且. 4分解得, -5分(2)法1:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令, 7分①若a=0,则,所以实数b的取值范围是; 8分②若,,由得, 9分的情况如下:+11分所以的最小值为, 12分所以实数b的取值范围是;综上,实数b的取值范围是. 13分法2:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令,则等价于∀,恒成立,令,则, 7分由得, 9分的情况如下:+-11分所以的最小值为, 12分实数b的取值范围是. 13分【考点】利用导数求切线、最值.5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图像不可能为y=f(x)的图像的是()【答案】D【解析】若x=-1为函数f(x)e x的一个极值点,则易得a=c.∵选项A、B的函数为f(x)=a(x+1)2,其中a≠0,则[f(x)e x]′=f′(x)e x+f(x)(e x)′=a(x+1)·(x+3)e x,∴x=-1为函数f(x)e x的一个极值点,满足条件;选项C中,对称轴x=->0,且开口向下,∴a<0,b>0,∴f(-1)=2a-b<0,也满足条件;选项D中,对称轴x=-<-1,且开口向上,∴a>0,b>2a,∴f(-1)=2a-b<0,与图像矛盾,故选D.6.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.7.若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.(Ⅰ)函数是否关于1可线性分解?请说明理由;(Ⅱ)已知函数关于可线性分解,求的取值范围;(Ⅲ)证明不等式:.【答案】(Ⅰ)是关于1可线性分解;(Ⅱ)a的取值范围是;(Ⅲ)详见解析.【解析】(Ⅰ)函数是否关于1可线性分解,关键是看是否存在使得成立,若成立,是关于1可线性分解,否则不是关于1可线性分解,故看是否有解,构造函数,看它是否有零点,而,观察得,,有根的存在性定理可得存在,使;(Ⅱ)先确定定义域为,函数关于可线性分解,即存在,使,即有解,整理得有解,即,从而求出的取值范围;(Ⅲ)证明不等式:,当时,,对求导,判断最大值为,可得,分别令,叠加可得证结论.试题解析:(Ⅰ)函数的定义域是R,若是关于1可线性分解,则定义域内存在实数,使得.构造函数.∵,且在上是连续的,∴在上至少存在一个零点.即存在,使. 4分(Ⅱ)的定义域为.由已知,存在,使.即.整理,得,即.∴,所以.由且,得.∴a的取值范围是. 9分(Ⅲ)由(Ⅱ)知,a =1,,.当时,,所以的单调递增区间是,当时,,所以的单调递减区间是,因此时,的最大值为,所以,即,因此得:,,,,,以上各式相加得:,即,所以,即.14分【考点】导数在最大值、最小值问题中的应用.8.如图,已知点,函数的图象上的动点在轴上的射影为,且点在点的左侧.设,的面积为.(Ⅰ)求函数的解析式及的取值范围;(Ⅱ)求函数的最大值.【答案】(Ⅰ).(Ⅱ)当时,函数取得最大值8.【解析】(Ⅰ)确定三角形面积,主要确定底和高.(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论驻点两侧导数正负,比较极值与区间端点函数值”.利用“表解法”形象直观,易以理解.试题解析:(Ⅰ)由已知可得,所以点的横坐标为, 2分因为点在点的左侧,所以,即.由已知,所以, 4分所以所以的面积为. 6分(Ⅱ) 7分由,得(舍),或. 8分函数与在定义域上的情况如下:2+↘12分所以当时,函数取得最大值8. 13分【考点】三角形面积,应用导数研究函数的最值.9.设.(1)若时,单调递增,求的取值范围;(2)讨论方程的实数根的个数.【答案】(1);(2)见解析.【解析】(1)求出函数导数,当时,单调递增,说明当时,,即在恒成立,又函数在上递减,所以;(2)将方程化为,令,利用导数求出的单调区间,讨论的取值当时,,当时,,所以当时,方程无解,当时,方程有一个根,当时,方程有两个根.试题解析:(1)∵∴∵当时,单调递增∴当时,∴,,函数在上递减∴(2)∴令当时∵∴即在递增当时∵∴即在递减∵当时当时∴①当时,方程无解②当时,方程有一个根③当时,方程有两个根【考点】利用导数求函数最值、利用导数研究函数取值、函数和方程思想.10.函数上有最小值,实数a的取值范围是()A.(-1,3)B.(-1,2)C.D.【答案】D【解析】由题 f'(x)=3-3x2,令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1,由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值.∴a2-12<-1<a,解得-1<a<,又当x=2时,f(2)=-2,故有a≤2,综上知a∈(-1,2],故选D.【考点】用导数研究函数的最值11.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析12.定义在上的函数满足:①(为正常数);②当时,.若函数的所有极大值点均在同一条直线上,则_____________.【答案】或.【解析】当时,,故函数在上单调递增,在上单调递增,故函数在处取得极大值,当时,则,此时,此时,函数在处取得极大值,对任意,当时,函数在处取得极大值,故函数的所有极大值点为,由于这些极大值点均在同一直线上,则直线的斜率为定值,即为定值,故或,即或.【考点】1.函数的极值;2.直线的斜率13.若不等式对恒成立,则实数的取值范围是 .【答案】【解析】由得或,即或.又,所以或.因为不等式对恒成立,所以或.(1)令,则.令得,当时,;当时,.所以在上是增函数,在是减函数.所以,所以.(2)令,则,因为,所以,所以易知,所以在上是增函数.易知当时,,故在上无最小值,所以在上不能恒成立.综上所述,,即实数的取值范围是.【考点】利用导数研究函数的单调性、利用函数单调性求最值、含绝对值不等式的解法14.(本小题满分共12分)已知函数,曲线在点处切线方程为。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数在上的最小值为_____________________.【答案】-6【解析】;令得:列表如下:-1(-1,0)0(0,1)1(1,2)2所以由上表可知:函数的最小值为-6.【考点】函数的最值及导数的应用.2.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为.【答案】6.【解析】因为的图像过,所以,即;因为f(x)在x=1,x=2时取得极值,所以的两根为1,2,则,即;则,所以.【考点】三次函数的零点、函数的极值.3.设函数f(x)=+ln x,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】因为,所以当时,,当x>2时,,故知x=2为f(x)的极小值点.故选D.【考点】函数的极值.4.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.5.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.6.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是( ) A.(1-ln 2)B.(1+ln 2)C.D.(1+ln 2)【答案】B【解析】设P(,),则点P到直线4x+4y+1=0的距离= =,设==(),所以= =,当时,<0,当时,,所以在(0,)是减函数,在(,)上是增函数,所以当=时,==,所以= .【考点】点到直线距离公式;利用导数求最值7.已知函数既有极大值又有极小值,则实数的取值范围是。

导数与函数的极值、最值

导数与函数的极值、最值

导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增. 因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0, 可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g (x )=ln x -mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.[解] 因为g (x )=ln x -mx +mx,所以g ′(x )=1x -m -mx 2=-mx 2-x +m x 2(x >0),令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m>0,h ⎝⎛⎭⎫12m <0,解得0<m <12.所以m 的取值范围为⎝⎛⎭⎫0,12. 考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln x x -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得 0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln (2m )2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln (2m )2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1. [题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值. (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x ,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝⎭⎫0,12,(1,+∞),单调递减区间为⎝⎛⎭12,1. (2)由(1)知f ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1.①当a <0,即12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时,若12a <1,f (x )在⎝⎛⎭⎫0,12a ,[1,e]上单调递增,在⎣⎡⎭⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝⎛⎭⎫12a =ln 12a +a ⎝⎛⎭⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎡⎦⎤12a ,e 上单调递增,在⎣⎡⎭⎫1,12a 上单调递减, 所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a <e 矛盾.若x 2=12a ≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x=1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a =1e -2或a =-2.考点三 利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.[解] (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2]. (2)∵f (x )在x =x 1和x =x 2处取得极值, 且f ′(x )=1x +x -a =x 2-ax +1x (x >0),∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在[e ,+∞)上是减函数, ∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +ee ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +ee .[题组训练]已知函数f (x )=ax 2+bx +ce x (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A 级1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( )A .0 B.1e C.4e4 D.2e2 解析:选A f ′(x )=1-xex ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增, 当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,因为f (0)=0,f (4)=4e 4>0,所以当x =0时,f (x )有最小值,且最小值为0.2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( ) A .-1 B .0 C .1D .e解析:选C f ′(x )=a e x -cos x ,若函数f (x )=a e x -sin x 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意,故选C.3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17D .18解析:选D 因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12,由f ′(x )=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.4.(2019·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 5.(2019·泉州质检)已知直线y =a 分别与函数y =e x+1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22B.5-ln 22C.3+ln 22D.5+ln 22解析:选D 由y =e x+1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎫y -22⎝⎛⎭⎫y +22y (y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝⎛⎭⎫0,22上单调递减,在区间⎝⎛⎭⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎫22=⎝⎛⎭⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增,∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝⎛⎭⎫22,+∞. 答案:⎝⎛⎭⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x 在⎝⎛⎦⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝⎛⎭⎫π3=32a +12b =0. ∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝⎛⎭⎫π3=12a -32b =1, ∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝⎛⎭⎫x -π3,∴函数g (x )=sin x x ⎝⎛⎭⎫0<x ≤π2,g ′(x )=x cos x -sin x x 2.设u (x )=x cos x -sin x ⎝⎛⎭⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎡⎦⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝⎛⎦⎤0,π2上单调递减.∴函数g (x )在 ⎝⎛⎦⎤0,π2上的最小值为g ⎝⎛⎭⎫π2=2π. 9.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2=ax -1x 2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a ,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在,理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件. ③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b ,则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.②联立①②,解得⎩⎪⎨⎪⎧ a =-4,b =11或⎩⎪⎨⎪⎧a =3,b =-3. 经检验⎩⎪⎨⎪⎧a =3,b =-3不符合题意,舍去.故选C. 2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x,令f ′(x )=0,得x =12⎝⎛⎭⎫x =-12舍去, 则由已知得⎩⎪⎨⎪⎧ a -1≥0,a -1<12,a +1>12,解得1≤a <32. 答案:⎣⎡⎭⎫1,32 3.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎪⎨⎪⎧ a <1,10-a 2>1,f (1)≥f (a ),其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0,即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即⎩⎪⎨⎪⎧a <1,10-a 2>1,(a -1)2(a +2)≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r ,由题意得AB =2(103)2-x 2=2πr ,所以r =300-x 2π, 所以V =πr 2x =π⎝ ⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去),则V ′,V 随x 的变化情况如下表:所以当x =10所以V max =2 000π. 答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,其中a 为常数. (1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1xln(1+x )的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3, ①当-1<2a -3<0,即1<a <32时, 当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增, 当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增. ③当2a -3>0,即a >32时, 当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减. (2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x-21+x, 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2. 由(1)可知当a =2时,f (x )在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。

求极值与最值的方法

求极值与最值的方法

求极值与最值的方法求极值和最值是数学中常见的问题。

当我们面临一个函数或一组数据时,我们希望能够找到它们的最大或最小值,这对于解决各种实际问题非常重要。

在本文中,我们将讨论一些常见的方法来求解极值和最值问题。

一、函数的极值求解方法:1.导数法:对于可导的函数,导数可以告诉我们函数在特定点的变化趋势。

函数在极值点的导数为零,所以我们可以通过求解导数为零的方程来找到极值点。

对于一元函数,我们只需求得导数,并求解方程f'(x)=0即可。

对于多元函数,我们需要求偏导数,并解方程组∂f/∂x=0和∂f/∂y=0等。

2.二阶导数法:通过求得函数的二阶导数,我们可以判断函数在其中一点的曲率和凸凹性质。

如果函数在其中一点的二阶导数大于零,则函数在该点上是凸函数,即函数取得极小值。

反之,如果二阶导数小于零,则函数在该点上是凹函数,即函数取得极大值。

二、数据的最值求解方法:1.遍历法:对于一组有限的数据,我们可以通过遍历整个数据集来找到最大或最小值。

这种方法适用于数据量较小的情况,但若数据量很大时,计算量会非常庞大。

2.排序法:我们可以对数据进行排序,然后找出最大或最小的元素。

对于较大的数据集,排序的时间复杂度可能很高,但一旦排好序,最值就可以很快被找出。

3.分治法:对于一个大规模的数据集,可以将其分成若干部分,然后递归地求解各个部分的最值,最后再从这些最值中选取最大或最小的元素。

这种方法适用于大规模数据集,可以大大降低计算复杂度。

4.动态规划法:对于具有重叠子问题特征的问题,我们可以使用动态规划的方法来求解最值。

通过定义状态、状态转移方程和初始条件等,我们可以使用动态规划算法逐步递推得到最值。

虽然这些方法在解决极值和最值问题时都有自己的优势和适用范围,但在具体问题中选择何种方法求解,需要根据问题的性质和数据的特点来确定。

对于函数的极值问题,导数法和二阶导数法是最常用的求解方法;对于数据的最值问题,遍历法和排序法适用于小数据量,而分治法和动态规划法适用于大数据量。

导数与函数的极值与最值

导数与函数的极值与最值

导数与函数的极值与最值导数与函数的极值与最值是微积分中的重要概念,它们在实际问题中有着广泛的应用。

本文将介绍导数、函数的极值与最值的基本概念、求解方法及其应用。

一、导数的定义及性质导数是函数的一个基本性质,它描述了函数在某一点上的变化率。

在数学中,导数可以用极限的概念来定义。

当函数f(x)在点x处可导时,它的导数f'(x)的定义如下:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx〗导数具有一些重要的性质,包括可导函数的和、差、积、商的导数运算法则。

这些性质为求解函数的极值和最值提供了数学工具。

二、函数的极值与最值函数的极值指的是函数在某一区间内取得的最大值或最小值。

特别地,当函数在某一点上取得最大值或最小值时,称为函数的局部极值。

函数的极大值和极小值统称为极值。

函数的最值是指函数在定义域上取得的最大值或最小值。

与极值不同的是,最值可能发生在函数的端点或无穷远处。

函数的最值是极值的一个特例。

三、求解函数的极值与最值为了求解函数的极值和最值,我们需要利用导数的概念和性质。

下面介绍一些常用的求解方法。

1. 导数为零的点如果在某一点x处,函数的导数f'(x)为零或不存在,那么该点可能是函数的极值点。

然而,这种方法只是提供了一个可能性,我们还需要进行进一步的验证。

2. 导数的符号变化对于连续函数f(x),如果在某一点x处,f'(x)由正数变为负数,或由负数变为正数,那么该点可能是函数的极值点。

3. 极值的判别法通过求解函数的导数f'(x)的零点,可以得到函数的驻点,即可能的极值点。

然后,通过极值的判别法判断哪些点是真正的极值点。

四、导数与函数的极值与最值的应用导数与函数的极值与最值在实际问题中有着广泛的应用。

以下列举几个例子:1. 经济学中的最大收益问题在经济学中,我们常常需要求解某一产品的最大利润。

利用导数与函数的极值与最值的概念,我们可以优化生产过程,使得利润达到最大化。

三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数研究函数的极值和最值
1.函数f (x )在(a ,b )上的导数的图像如右图所示,则函数f (x )
在(a ,b )上的极大值的个数为( )
(A ) 1 (B ) 2 (C ) 3 (D ) 4
2.函数3)2(33)(23++++=x a ax x x f 既有极大值又有极小值,
则a 的取值范围是 ( ) (A ) )2,1(- (B ))1,2(- (C ) ),2()1-,(+∞⋃-∞ (D ) ),1()2-,(+∞⋃-∞
3.函数y =ln x x 的最大值为
( ) A .e -1 B .e C .e 2 D.103
4.(2012·陕西高考)设函数f (x )=2x +ln x ,则( )
A .x =12为f (x )的极大值点
B .x =12
为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点
5.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),
且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )
6.函数f (x )=x e x 的最小值为________.
7.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.
8.直线y=a 与函数x x y 33-=的图像有三个不同的交点,则a 的取值范围为 。

9.已知函数f(x)=e x -2x +a 有零点,则a 的取值范围是________.
10.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为m 、n ,则m -n =________.
11.已知函数x x x x f 32
1ln 2-)(2+-
=,求)(x f 的单调区间和极值。

12.已知函数f(x)=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f(x)在[-2,2]上的最大值.
13.已知函数f(x)=(x-k)e x.
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最小值
14.已知函数f(x)=x3-ax2+bx+c(a,b,c∈R).
(1)若函数f(x)在x=-1和x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[-2,6]时,f(x)<2|c|恒成立,求c的取值范围.
15.已知函数f(x)=x ln x.
(1)求f(x)的最小值;
(2)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.。

相关文档
最新文档