永定区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永定区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )
A .f (x )=3﹣x
B .f (x )=x ﹣3
C .f (x )=1﹣x
D .f (x )=x+1
2. 若复数z 满足i 1i z =--,则在复平面内,z 所对应的点在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 3.
设实数
,则a 、b 、c 的大小关系为( )
A .a <c <b
B .c <b <a
C .b <a <c
D .a <b <c
4. 一个几何体的三视图如图所示,则该几何体的体积是( )
A .64
B .72
C .80
D .
112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 5. 半径R 的半圆卷成一个圆锥,则它的体积为( ) A

πR 3
B

πR 3 C

πR 3 D

πR 3
6. 实数
a=0.2

b=log
0.2,
c=
的大小关系正确的是( )
A .a <c <b
B .a <b <c
C .b <a <c
D .b <c <a 7. 某程序框图如图所示,该程序运行后输出的S 的值是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .﹣3
B .﹣
C .
D .2
8. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3
B .增函数且最大值为3
C .减函数且最小值为﹣3
D .减函数且最大值为﹣3
9. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为0
D .样本点(3,4.8)的残差为0.65 10.下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
11.已知i 是虚数单位,则复数等于( )
A .﹣ +i
B .﹣ +i
C .﹣i
D .﹣i
12.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.
二、填空题
13.
= .
14.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞. 其中真命题的序号为________.(将所有真命题的序号都填上)
15.设
为单位向量,①若为平面内的某个向量,则=||•
;②若
与平行,则=||•
;③若
与平行且||=1,则=.上述命题中,假命题个数是 .
16.已知圆O :x 2+y 2=1和双曲线C :
﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O
外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则

= .
17.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
18.设集合 {}{}
22
|27150,|0A x x x B x x ax b =+-<=++≤,满足
A
B =∅,{}|52A B x x =-<≤,求实数a =__________.
三、解答题
19.【南师附中2017届高三模拟二】已知函数()()3
23
131,02
f x x a x ax a =+
--+>. (1)试讨论()()0f x x ≥的单调性;
(2)证明:对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.
20.已知不等式的解集为

(1)求,的值 (2)解不等式.
21.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;
(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.
22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.
(1)求S n的最小值及相应n的值;
(2)求T n.
23.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
24.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.
(1)求数列{a n}的通项公式;
(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.
永定区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,
∴x∈(1,2),(x﹣2)∈(﹣1,0),
f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,
故选A.
2.【答案】B
【解析】
3.【答案】A
【解析】解:∵,b=20.1>20=1,0<<0.90=1.
∴a<c<b.
故选:A.
4.【答案】C.
【解析】
5.【答案】A
【解析】解:2πr=πR,所以r=,则h=,所以V=
故选A
6.【答案】C
【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,
即0<a<1,b<0,c>1,
∴b<a<c.
故选:C.
【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.7.【答案】B
【解析】解:由程序框图得:第一次运行S==﹣3,i=2;
第二次运行S==﹣,i=3;
第三次运行S==,i=4;
第四次运行S==2,i=5;
第五次运行S==﹣3,i=6,
…S的值是成周期变化的,且周期为4,
当i=2015时,程序运行了2014次,2014=4×503+2,
∴输出S=﹣.
故选:B.
【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.
8.【答案】D
【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,
则那么f(x)在区间上为减函数,且有最大值为﹣3,
故选:D
【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.
9.【答案】
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y
本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
10.【答案】B
【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;
B选项中,垂直于同一平面的两个平面平行,正确;
C选项中,直线与直线相交、平行、异面都有可能,故不正确;
D中选项也可能相交.
故选:B.
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
11.【答案】A
【解析】解:复数===,
故选:A.
【点评】本题考查了复数的运算法则,属于基础题.
12.【答案】D
【解析】易知周期112(
)1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-= D. 二、填空题
13.【答案】 2 .
【解析】
解: =2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
14.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=

1211,(,)A B ϕ==>因为1
(,)
t A B ϕ<
恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 15.【答案】 3 .
【解析】解:对于①
,向量是既有大小又有方向的量,
=||
•的模相同,但方向不一定相同,∴①是假
命题; 对于②
,若
与平行时,

方向有两种情况,一是同向,二是反向,反向时=﹣
||

,∴②是假命
题; 对于③
,若
与平行且
||=1时,

方向有两种情况,一是同向,二是反向,反向时=

,∴③是
假命题;
综上,上述命题中,假命题的个数是3.
故答案为:3.
【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.16.【答案】1.
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A(﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
17.【答案】3
18.【答案】
7
,3
2
a b
=-=
【解析】
考点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.
三、解答题
19.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤;
(3)()g a 【解析】【试题分析】(1)先对函数()()3
23
131,02
f x x a x ax a =+
--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值
()01,f =()3213122f a a a =--+=
()()2
11212
a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]
0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[
)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

证明:(1)由于()()2
3313f x x a x a =+--'()()31x x a =+-,且0a >,
故()f x 在[]0,a 上单调递减,在[
),a +∞上单调递增.
(3)由(2)知()f x 在[
)0,+∞上的最小值为()f a . 当01a <≤时,()1f a ≥-,则()g a 是方程()1f p =满足p a >的实根,
即()2
23160p a p a +--=满足p a >的实根,
所以()()314
a g a -+=

又()g a 在(]
0,1上单调递增,故()()max 1g a g == 当1a >时,()1f a <-,由于()()()9
01,11112
f f a ==--<-, 故][0,0,1p ⎡⎤⊂⎣⎦.此时,()1
g a ≤.
综上所述,()g a 20.【答案】
【解析】
解:(1)因为不等式的解集为或
所以,是方程的两个解
所以,解得
(2)由(1)知原不等式为,即,
当时,不等式解集为
当时,不等式解集为;
当时,不等式解集为;
21.【答案】
【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.
又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,
∠EBM直线BE与平面ABB1A1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=,
于是在Rt△BEM中,
即直线BE与平面ABB1A1所成的角的正弦值为.
(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,
事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,
因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.
22.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S5+S n
=2n2﹣19n+89.
∴T n=.
【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
23.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.
24.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:
2a2=a1+a3﹣1,∴,
∴2q=q2,∵q≠0,∴q=2,
∴;
(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nb n=a n ①
b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②
①﹣②得:.

∴.
【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.。

相关文档
最新文档