广东省百合外国语学校人教版七年级上册数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省百合外国语学校人教版七年级上册数学期末试卷及答案-百度文库
一、选择题
1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23
b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣
3a =2﹣3b
D .若
23
a b
=,则2a =3b 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )
A .
B .
C .
D .
3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77
D .139
4.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
5.下列方程是一元一次方程的是( ) A .
2
1
3+x =5x B .x 2+1=3x C .3
2y
=y+2 D .2x ﹣3y =1
6.计算:2.5°=( ) A .15′ B .25′ C .150′ D .250′ 7.已知a =b ,则下列等式不成立的是( )
A .a+1=b+1
B .1﹣a =1﹣b
C .3a =3b
D .2﹣3a =3b ﹣2 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)
B .(3,3)
C .(2,3)
D .(3,2)
9.一个几何体的表面展开图如图所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .三棱柱 10.单项式﹣6ab 的系数与次数分别为( )
A .6,1
B .﹣6,1
C .6,2
D .﹣6,2
11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记
作( ) A .0m B .0.8m
C .0.8m -
D .0.5m -
12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是
( ) A .①②④
B .①②③
C .②③④
D .①③④
二、填空题
13.若|x |=3,|y |=2,则|x +y |=_____.
14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________. 15.=38A ∠︒,则A ∠的补角的度数为______. 16.|-3|=_________;
17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
18.小马在解关于x 的一元一次方程3232
a x
x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 19.请先阅读,再计算:
因为:
111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910
=-⨯, 所以:
111
1
122334
910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010
=-+-+-+
+-=-= 则
111
1
100101101102102103
20192020
+++
+
=⨯⨯⨯⨯_________.
20.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 21.-2的相反数是__.
22.当12点20分时,钟表上时针和分针所成的角度是___________. 23.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
24.规定:用{m }表示大于 m 的最小整数,例如{5
2
}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[
7
2
]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.
三、解答题
25.先化简,再求值:(
)(
)
2
2
326m n mn mn m n +--,其中3m =,2n =-. 26.解下列方程(组)
(1)23521x y x y +=⎧⎨-=-⎩
(2)
23
1x x
=- 27.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?
28.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB =1:2,则点C 是线段AB 的一个三等分点.
(1)如图2,数轴上点A 、B 表示的数分别为-4、12,点D 是线段AB 的三等分点,求点D 在数轴上所表示的数;
(2)在(1)的条件下,点P 从点A 出发以每秒1个单位长度的速度在数轴上向右运动;点Q 从点B 出发,在数轴上先向左运动,与点P 重合后立刻改变方向与点P 同向而行,且速度始终为每秒3个单位长度,点P 、Q 同时出发,设运动时间为t 秒. ①用含t 的式子表示线段AQ 的长度;
②当点P 是线段AQ 的三等分点时,求点P 在数轴上所表示的数.
图1
29.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2)
30.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开
出,每小时行驶85km.
(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?
(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min,两车相向而行,慢车行驶多少小时两车相遇?
四、压轴题
31.观察下列等式:
11
1 122
=-


111
2323
=-


111
3434
=-

,则以上三个等式两边分别相加得:
111111113
1
122334223344
++=-+-+-=
⨯⨯⨯

()1观察发现
()
1
n n1
=
+______;()
1111
122334n n1
+++⋯+=
⨯⨯⨯+______.
()2拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成
1
4
圆周(如图2),在新产生的分点标上相邻的已标的两数之和的
1
2
,记4个数的和为2a;第三次将四个
1
4
圆周分成
1
8
圆周(如图3),在新产生的分点标上相邻的已标的两数之和的
1
3
,记8个数的和为3a;第四次将八个1
8
圆周分成
1
16
圆周,在新产生的分点标上相邻的已标的两个数的和的
1
4
,记16个数的和为4a;⋯⋯如此进行了n次.
n
a=
①______(用含m、n的代数式表示);
②当
n
a6188
=时,求
123n
1111
a a a a
+++⋯⋯+的值.
32.如图,数轴上有A,B两点,分别表示的数为a,b,且()225350
a b
++-=.点P从A点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B点后立即以相同的速度返回往A点运动,并持续在A,B两点间往返运动.在点P出发的同时,点Q从B点出发以每秒2个单位长度向左匀速运动,当点Q达到A点时,点P,Q停止运动.(1)填空:a=,b=;
(2)求运动了多长时间后,点P,Q第一次相遇,以及相遇点所表示的数;
(3)求当点P,Q停止运动时,点P所在的位置表示的数;
(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)
33.(阅读理解)
若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)
如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数所表示的点是(M,N)的优点;
(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
利用等式的性质对每个式子进行变形即可找出答案.
【详解】
解:A 、根据等式性质2,2a =3b 两边同时除以2得a =3
2
b ,原变形错误,故此选项不符合题意;
B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;
C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3
a =2﹣3b
,原变形正
确,故此选项符合题意;
D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】
本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.
2.C
解析:C 【解析】 【分析】
根据余角与补角的性质进行一一判断可得答案. . 【详解】
解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β; C,由图可得∠α不一定与∠β相等; D,根据等角的补角相等可得∠α=∠β. 故选C. 【点睛】
本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.
3.B
解析:B 【解析】 【分析】
首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】
解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b )
∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .
4.B
解析:B 【解析】 【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
5.A
解析:A 【解析】 【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、
2
1
3+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、
3
2y
=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】
解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.
6.C
解析:C 【解析】 【分析】
根据“1度=60分,即1°=60′”解答. 【详解】
解:2.5°=2.5×60′=150′.
【点睛】
考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.
7.D
解析:D
【解析】
【分析】
根据等式的基本性质对各选项进行逐一分析即可.
【详解】
A、∵a=b,∴a+1=b+1,故本选项正确;
B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;
C、∵a=b,∴3a=3b,故本选项正确;
D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.
故选:D.
【点睛】
本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.
8.C
解析:C
【解析】
【分析】
根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.
【详解】
∵(1,2)表示教室里第1列第2排的位置,
∴教室里第2列第3排的位置表示为(2,3),
故选C.
【点睛】
本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 9.A
解析:A
【解析】
试题分析:根据四棱锥的侧面展开图得出答案.
试题解析:如图所示:这个几何体是四棱锥.
故选A.
考点:几何体的展开图.
10.D
解析:D
【解析】
直接利用单项式的次数与系数确定方法分析得出答案.
【详解】
解:单项式﹣6ab的系数与次数分别为﹣6,2.
故选:D.
【点睛】
此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.
11.C
解析:C
【解析】
【分析】
首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.
【详解】
+,
解∵水位升高0.6m时水位变化记作0.6m
-,
∴水位下降0.8m时水位变化记作0.8m
故选:C.
【点睛】
本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.B
解析:B
【解析】
【分析】
根据圆锥、圆柱、球、五棱柱的形状特点判断即可.
【详解】
圆锥,如果截面与底面平行,那么截面就是圆;
圆柱,如果截面与上下面平行,那么截面是圆;
球,截面一定是圆;
五棱柱,无论怎么去截,截面都不可能有弧度.
故选B.
二、填空题
13.1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.
【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3
解析:1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.
【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3,y=2时,
|x+y|=|3+2|=5
(2)x=3,y=﹣2时,
|x+y|=|3+(﹣2)|=1
(3)x=﹣3,y=2时,
|x+y|=|﹣3+2|=1
(4)x=﹣3,y=﹣2时,
|x+y|=|(﹣3)+(﹣2)|=5
故答案为:1或5.
【点睛】
此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
15.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
A
∠=,
38
∴A
∠的补角的度数为:18038142
-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
16.3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.
故答案为3.
解析:3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
17.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】 ∵方程3232
a x x +=的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.
19.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算.
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α
解析:45°
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,
根据题意得,180°-α=3(90°-α),
解得α=45°.
故答案为:45°.
【点睛】
本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.
21.2
【解析】
【分析】
根据相反数的定义即可求解.
【详解】
-2的相反数是2,
故填:2.
【点睛】
此题主要考查相反数,解题的关键是熟知相反数的定义.
解析:2
【解析】
【分析】
根据相反数的定义即可求解.
【详解】
-2的相反数是2,
故填:2.
【点睛】
此题主要考查相反数,解题的关键是熟知相反数的定义.
【解析】
【分析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为
解析:110°
【解析】
【分析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,
所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,
分针转过的角度是:6°×20=120°,
所以12时20分钟时分针与时针的夹角120°-10°=110°.
故答案为:110°
【点睛】
本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.
23.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
24.4
【解析】
【分析】
由题意可得,求解即可.
【详解】
解:
解得
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.
解析:4
【解析】
【分析】
由题意可得{}[]1,x x x x =+=,求解即可.
【详解】
解:{}[]
323(1)25323x x x x x +=++=+=
解得4x =
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、解答题
25.24m n ;-72
【解析】
【分析】
由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.
【详解】
解:()()22326m n mn mn m n +--
=22366m n mn mn m n +-+
=24m n ;
将3m =,2n =-代入得到243(2)72.⨯⨯-=-
【点睛】
本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.
26.(1)11
x y =⎧⎨
=⎩;(2)3x =. 【解析】
【分析】
(1)方程组利用代入消元法求出解即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.
【详解】 解: (1) 23521x y x y +=⎧⎨-=-⎩
①②, 由②得,21x y =-③,
将③代入①得,2(21)35y y -+=,
解得1y =,
将1y =代入③得,1x =,
11
x y =⎧∴⎨=⎩; (2)去分母得233x x =-,
解得:3x =,
经检验: 3x =是原方程的解,
∴方程的解为3x =.
【点睛】
此题考查了解二元一次方程组和解分式方程,熟练掌握方程或方程组的解法是解本题的关键.
27.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.
【解析】
【分析】
(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
【详解】
(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x
+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;
(2)6400x
=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).
答:售完这批T 恤衫商店共获利5960元.
【点睛】
本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.
28.(1)
43或203;(2)①4,16-3t 或3t-8;②4-3或4-9或43 【解析】
【分析】
(1)根据三等分点的定义,分两种情况:AD=
13AB 时;AD=23
AB 时,分别在数轴上找到点D 的位置即可;
(2)①P 、Q 两点经过4秒相遇,分相遇前和相遇后两种情况讨论,分别表示出AQ 即可;
②根据①中的结论,分相遇前和相遇后两种情况,结合三等分点的定义,一共有四种情况,分别计算即可,最后总结所求结果.
【详解】
解:(1)根据题意,分情况讨论:
当AD :BD=1:2时,AD=
13AB=163,点D 表示的数为-4+163=43; 当AD :BD=2:1时,AD=23AB=323,点D 表示的数为-4+323=203
, 所以,点D 在数轴上所表示的数为
43或203, 故答案为:43或203
; (2)①P 、Q 两点经过4秒相遇,相遇时,AP=4,
P 、Q 相遇前, 当t 小于或等于4时,AQ=16-3t ;
P 、Q 相遇后,当t 大于4时,AQ=4+3(t-4)=3t-8;
②当P 、Q 相遇前:若AP=
13AQ ,则t=13(16-3t ),t=83,此时点P 表示的数为-43; 若AP=23AQ ,则t=23(16-3t ),t=329
,此时点P 表示的数为-49; 当P 、Q 相遇后:若AP=
23AQ ,则t=23(3t-8),t=163,此时点P 表示的数为43; 若AP=13AQ ,则t=13
(3t-8),无解, 综上所述,点P 为线段AQ 的三等分点时,点P 表示的数分别为4-
3或4-9或43, 故答案为:4-
3或4-9或43
. 【点睛】 本题考查了三等分点的定义,相遇问题,数轴上的动点问题,掌握数轴上的动点问题以及三等分点的定义是解题的关键.
29.3a 2﹣2b 2.
【解析】
【分析】
原式去括号合并即可得到结果.
【详解】
原式=()()223a -6ab --6ab+2b
22=3a 6ab 6ab 2b -+-
223a -2b =
【点睛】
本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.
30.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶16360小时两车相遇.
【解析】
【分析】
(1)设两车行驶t 1小时相遇,根据相遇时两车行驶路程之和为450km 建立方程求解; (2)设t 2小时快车追上慢车,快车比慢车多行驶450km 建立方程求解;
(3)设慢车行驶t 3小时两车相遇,根据两车行驶路程之和为450km 建立方程求解.
【详解】
解:(1)设两车行驶t 1小时相遇,依题意得
65t 1+85t 1=450
解得:t 1=3
因此,那么两车行驶3小时相遇.
(2)设t 2小时快车追上慢车,依题意得 85t 2-65t 2=450
解得:t 2=22.5
因此,行驶22.5小时快车追上慢车
(3)设慢车行驶t 3小时两车相遇,依题意得
30分钟=0.5小时
85×0.5+85t 3+65t 3=450
解得:t 3=16360
因此,慢车行驶
16360小时两车相遇. 【点睛】
本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.
四、压轴题
31.(1)
11n n 1-+,n n 1+(2)①()()n 1n 2m 3
++②75364 【解析】
【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;
()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3
==,找规律可得结论;
②由()()n 1n 2m 22713173
++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.
【详解】
()1观察发现:
()111n n 1n n 1
=-++; ()
1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1
=-+-+-+⋯+-+, 11n 1=-
+, n 11n 1+-=
+, n n 1
=+; 故答案为
11n n 1-+,n n 1+. ()2拓展应用
16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3
==, ⋯⋯
()()n n 1n 2a m 3
++∴=, 故答案为()()n 1n 2m.3
++ ()()n n 1n 2a m 61883②++==,且m 为质数,
对6188分解质因数可知61882271317=⨯⨯⨯⨯,
()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,
()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯, m 7∴=,n 50=,
()()n 7a n 1n 23
∴=++,
()()
n 131a 7n 1n 2=⋅++, 123n
1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++
()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦
31131172n 27252⎛⎫⎛⎫=
-=- ⎪ ⎪+⎝⎭⎝⎭ 75364
=
. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:
()111n n 1n n 1
=-++. 32.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.
【详解】
解:(1)25- ,35
(2)设运动时间为x 秒
13x 2x 2535+=+
解得 x 4=
352427-⨯=
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,
∵25305-+=,
∴点P 所在的位置表示的数为5 .
(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,
∴点P 和点Q 一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
33.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.
【解析】
【分析】
(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.
【详解】
解:(1)设所求数为x,
当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;
当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;
故答案为:2或10;
(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,
分三种情况:
①P为(A,B)的优点.
由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),
解得x=20,
∴t=(40﹣20)÷4=5(秒);
②P为(B,A)的优点.
由题意,得PB=2PA,即40﹣x=2(x+20),
解得x=0,
∴t=(40﹣0)÷4=10(秒);
③B为(A,P)的优点.
由题意,得AB=2PA,即60=2(x+20)
解得x=10,
此时,点P为AB的中点,即A也为(B,P)的优点,
∴t=30÷4=7.5(秒);
综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】
本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

相关文档
最新文档