宁陵县二中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁陵县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知椭圆
(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|
的最大值为8,则b 的值是( )
A

B

C

D

2. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
3. 直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心
4. 若复数满足7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
5. 如图,
已知平面
=,
.是直线上的两点,是平面
内的两点,且

,,.是平面
上的一动点,且有
,则四棱锥
体积的最大值是( )
A .
B .
C .
D .
6. 若直线2y x =上存在点(,)x y 满足约束条件
30,
230,,x y x y x m +-≤⎧⎪
--≤⎨⎪≥⎩
则实数m 的最大值为 A 、1- B 、 C 、
3
2
D 、2 7. 在等差数列{}n a 中,首项10,a =公差0d ≠,若
1237k a a a a a =++++ ,则k =
A、22
B、23
C、24
D、25
8.已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为()
A.B.C.﹣6 D.6
9.下列计算正确的是()
A、
21
33
x x x
÷=B、
45
54
()
x x
=C、
4
5
5
4
x x x
=D、
44
550
x x
-
=
10.等比数列{a n}中,a3,a9是方程3x2﹣11x+9=0的两个根,则a6=()
A.3 B.C.±D.以上皆非
11.下列关系式中,正确的是()
A.∅∈{0} B.0⊆{0} C.0∈{0} D.∅={0}
12.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()
A.9 B.11 C.13 D.15
二、填空题
13.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是(写出所有真命题的序号)
14.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数.
15.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.
16.执行如图所示的程序框图,输出的所有值之和是.
【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.
17.已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程.18.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=.
三、解答题
19.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P,M,N椭圆C上的三个动点.
(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;
(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.
20.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
21.(本小题满分12分)
2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
(Ⅰ)确定x ,y ,p ,q 的值;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
(参考公式:()()()()()
2
n ad bc a b c d a c b d -K =++++,其中n a b c d =+++)
22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y 的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
23.已知f (x )=x 2﹣3ax+2a 2.
(1)若实数a=1时,求不等式f (x )≤0的解集; (2)求不等式f (x )<0的解集.
24.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.
(1)求椭圆的方程;
(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.
宁陵县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】D
【解析】解:∵|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=6,|AF 2|+|BF 2|的最大值为8,
∴|AB|的最小值为4,
当AB ⊥x 轴时,|AB|取得最小值为4,

=4,解得b 2=6,b=

故选:D .
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
2. 【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA , ∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0, ∴A=C 即为等腰三角形. 故选:D .
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
3. 【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2. 圆心到直线的距离为:
,所以直线与圆相交。

又圆心不在直线上,所以直线不过圆心。

故答案为:D 4. 【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==- ,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=- ,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 5. 【答案】A
【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。

因为,所以PB=2PA 。

作于M ,则。

令AM=t ,则
所以
即为四棱锥的高,
又底面为直角梯形,
所以
故答案为:A
6. 【答案】B
【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,
函数x y 2=的图像仅有一个点P 在可行域内, 由230
y x
x y =⎧⎨
+-=⎩,得)2,1(P ,∴1≤m .
7. 【答案】A
【解析】1237k a a a a a =++++ 17672
a d ⨯=+121
(221)d a d ==+-,
∴22k =. 8. 【答案】 B
【解析】解:画出x ,y 满足的可行域如下图:z=3x+y 的最大值为8, 由,解得y=0,x=,

,0)代入2x+y+k=0,∴k=﹣

故选B .
4
25
4141
5432
【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.
9. 【答案】B 【解析】 试题分析:根据()
a
a β
ααβ⋅=可知,B 正确。

考点:指数运算。

10.【答案】C
【解析】解:∵a 3,a 9是方程3x 2
﹣11x+9=0的两个根, ∴a 3a 9=3,
又数列{a n }是等比数列,
则a
62
=a 3a 9=3,即a 6=±

故选C
11.【答案】C
【解析】解:对于A ∅⊆{0},用“∈”不对,
对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确; 对于D ,空集没有任何元素,{0}有一个元素,故不正确.
12.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5, 当a=5时,不满足退出循环的条件,故a=9, 当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
二、填空题
13.【答案】①②④
【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
14.【答案】2016.
【解析】解:∵f(x)=f(2﹣x),
∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).
∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,
∵方程f (x )=0在[0,1]内只有一个根x=,
∴由对称性得,f ()=f ()=0,
∴函数f (x )在一个周期[0,2]上有2个零点, 即函数f (x )在每两个整数之间都有一个零点, ∴f (x )=0在区间[0,2016]内根的个数为2016, 故答案为:2016.
15.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C 是最大角
根据余弦定理,得cosC=
=
>0
∵C ∈(0,π),∴角C 是锐角,
由此可得A 、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
16.【答案】54
【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.
17.【答案】
+
=1 .
【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,
∵圆C :(x+4)2+y 2
=100的圆心为C (﹣4,0),半径R=10,
∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|, ∵圆B 经过点A (4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10, ∵|AC|=8<10,
∴点B 的轨迹是以A 、C 为焦点的椭圆,
设方程为(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.
故答案为:+=1.
18.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意得解得a=2,b=1,
所以椭圆方程为.
(Ⅱ)(i)由已知,直线MN的斜率存在,
设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).
由得(1+4k2)x2﹣4kx﹣3=0,
∴x1+x2=,x1x2=,
又.
所以S△PMN=|PD|•|x1﹣x2|=
=.
令t=,则t≥,k2
=
所以S△PMN=,
令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,
则t=,即k=0时,h(t)的最小值,为h()=,
所以△PMN面积的最大值为.
(ii)假设存在△PMN是以O为中心的等边三角形.
(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.
又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).
从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,
又O为△PMN的中心,则,可知.
设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,
又x12+4y12=4,x22+4y22=4,两式相减得k MN=,
从而k MN =.
所以k OP •k MN =
•(
)=
≠﹣1,
所以OP 与MN 不垂直,与等边△PMN 矛盾. 综上所述,不存在△PMN 是以O 为中心的等边三角形.
【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想
20.【答案】
【解析】解:∵

∴f ′(x )=3x 2
﹣x ﹣2=(3x+2)(x ﹣1),
∴当x ∈[﹣1,﹣),(1,2]时,f ′(x )>0;
当x ∈(﹣,1)时,f ′(x )<0;
∴f (x )在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;
且f (﹣)=﹣
﹣×+2×+5=5+
,f (2)=8﹣×4﹣2×2+5=7;
故f max (x )=f (2)=7;
故对于任意x ∈[﹣1,2]都有f (x )<m 成立可化为7<m ;
故实数m 的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.
21.【答案】
【解析】(Ⅰ)因为网购金额在2000元以上的频率为40., 所以网购金额在2000元以上的人数为10040.⨯=40 所以4030=+y ,所以10=y ,……………………1分
15=x ,……………………2分
所以10150.,.==q p ……………………4分
⑵由题设列联表如下
……………………7分
所以)
)()()(()(d b c a d c b a bc ad n K ++++-=2
2
=
5656040257554020351002.)(≈⨯⨯⨯⨯-⨯…………9分 因为0245565..>……………………10分
所以据此列联表判断,有597.%的把握认为网购金额超过2000元与网龄在三年以上有关.
……………………12分 22.【答案】 23.【答案】
【解析】解:(1)当a=1时,依题意得x 2
﹣3x+2≤0
因式分解为:(x ﹣2)(x ﹣1)≤0, 解得:x ≥1或x ≤2. ∴1≤x ≤2.
不等式的解集为{x|1≤x ≤2}.
(2)依题意得x 2﹣3ax+2a 2
<0
∴(x ﹣a )(x ﹣2a )<0… 对应方程(x ﹣a )(x ﹣2a )=0 得x 1=a ,x 2=2a 当a=0时,x ∈∅.
当a >0时,a <2a ,∴a <x <2a ; 当a <0时,a >2a ,∴2a <x <a ;
综上所述,当a=0时,原不等式的解集为∅; 当a >0时,原不等式的解集为{x|a <x <2a}; 当a <0时,原不等式的解集为{x|2a <x <a};
24.【答案】
【解析】解:(1)由题意得
e=
=
,a 2=2b ,a 2﹣b 2=c 2,
解得
a=
,b=c=1
故椭圆的方程为x 2
+
=1;
(2)设A (x 1,y 1),B (x 2,y 2),
线段AB的中点为M(x0,y0).
联立直线y=x+m与椭圆的方程得,
即3x2+2mx+m2﹣2=0,
△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,
x1+x2=﹣,
所以x0==﹣,y0=x0+m=,
即M(﹣,).又因为M点在圆x2+y2=5上,
可得(﹣)2+()2=5,
解得m=±3与m2<3矛盾.
故实数m不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.。

相关文档
最新文档