响水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
响水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,能和∠α构成内错角的角的个数是()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】同位角、内错角、同旁内角
【解析】【解答】解:如图所示:与∠α成内错角的角有2个.
故答案为:B.
【分析】两条直线被第三条直线所截形成的角中,内错角是两个角位于第三条直线的两侧,在两条直线之间,两个角的位置交错,呈“Z字型”,即可得出答案。
2、(2分)如图所示,初一(2)班的参加数学兴趣小组的有27人,那么参加美术小组的有()
A. 18人
B. 50人
C. 15人
D. 8人
【答案】D
【考点】扇形统计图
【解析】【解答】27÷54%=50(人),
50×(1-54%-30%)=50×16%=8(人)
故答案为:D
【分析】用数学组的人数除以数学组占总人数的百分率即可求出总人数,然后用总人数乘美术小组占的百分率即可求出美术小组的人数.
3、(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵无理数有:,
故答案为:A.
【分析】无理数:无限不循环小数,由此即可得出答案.
4、(2分)下列各组数中,是方程2x-y=8的解的是()
A. B. C. D.
【答案】C
【考点】二元一次方程的解
【解析】【解答】先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.
故选:C.
【分析】先把原方程化为y=2x-8,然后利用代入法,逐一判断即可。
5、(2分)下列方程组中,属于二元一次方程组的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;
B. 第一个方程不是整式方程,故不是二元一次方程组;
C. 符合二元一次方程组的定义,是二元一次方程组;
D.含有三个未知数,故不是二元一次方程组。
故答案为:C
【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。
6、(2分)在“同一平面内”的条件下,下列说法中错误的有()
①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系
【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;
②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;
③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;
④同一平面内,不相交的两条直线叫做平行线,故④正确;
⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;
错误的有①⑤
故答案为:B
【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。
即可得出答案。
7、(2分)已知方程组的解满足x+y<0,则m的取值范围是()
A. m>﹣1
B. m>1
C. m<﹣1
D. m<1
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:两式相加得:3x+3y=2+2m
∵x+y<0
∴3(x+y)<0
即2+2m<0
m<﹣1.故答案为:C.
【分析】观察x和y的系数,如果相加,它们的系数相同,得x+y=(2+2m)÷3,再让(2+2m)÷3<0,解不等式得m<﹣1
8、(2分)如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()
A.4对
B.6对
C.8对
D.9对
【答案】D
【考点】一元一次不等式组的特殊解
【解析】【解答】解答不等式组可得,由整数解仅有7,8,9,可得,解得
,则整数a可为:15、16、17;整数b可为:21、22、23.则整数a,b的有序数对(a,b)共有3×3=9对。
【分析】先求出不等式组的解集,根据整数解仅有7,8,9,再得出关于a、b的不等式组,求出a、b的值,即渴求的答案.
9、(2分)如果7年2班记作,那么表示()
A. 7年4班
B. 4年7班
C. 4年8班
D. 8年4班
【答案】D
【考点】用坐标表示地理位置
【解析】【解答】解:年2班记作,
表示8年4班,
故答案为:D.
【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。
10、(2分)如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()
A. a<0
B. a<﹣1
C. a>﹣1
D. a是任意有理数
【答案】B
【考点】不等式及其性质
【解析】【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<-1.
故答案为:B.
【分析】由(a+1)x<a+1的解集是x>1,可知,将未知数的系数化为1时,不等号的方向改变,因此a+1<0,求解即可。
11、(2分)已知两数之和是25,两数之差是3,则这两个数分别为()
A. 12,10
B. 12,9
C. 15,10
D. 14,11
【答案】D
【考点】解二元一次方程组,二元一次方程组的应用-数字问题
【解析】【解答】解:设两个数分别为x、y,根据题意得:
,
解得:,
故这两个数分别为14、11.
故答案为:D.
【分析】抓住题中关键的已知条件,将其转化为等量关系是:两数之和=25;两数之差=3,设未知数,建立方程组,利用加减消元法求出方程组的解即可。
12、(2分)如图,直线a∥b,直线l分别与a、b相交于A、B两点,AC⊥a于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()
A. 38°
B. 42°
C. 48°
D. 58°
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵直线a∥b,
∴∠1=∠BCA,
∵∠1=42°,
∴∠BCA=42°,
∵AC⊥AB,
∴∠2+∠BCA=90°,
∴∠2=48°,
故答案为:C
【分析】利用平角的特征即可求出∠2的值.
二、填空题
13、(1分)的算术平方根是________.
【答案】
【考点】算术平方根
【解析】【解答】∵的平方为,
∴的算术平方根为.
故答案为.
【分析】根据算术平方根的意义可知,的平方等于,所以的算术平方根为。
14、(1分)如图,一张宽度相等的纸条,折叠后,若∠ABC=124°,则∠1的度数为________
【答案】62°
【考点】平行线的判定,翻折变换(折叠问题)
【解析】【解答】解:如图
AB∥CD
∴∠2+∠ABC=180°
∴∠2=180°-124°=76°
∵2∠1=180°-76°
∴∠1=62°
故答案为:62°
【分析】根据平行线的性质,可证得∠2+∠ABC=180°,求出∠2的度数,再根据折叠的性质,可得出2∠1=180°-76°,即可得出结果。
15、(1分)计算:=________.
【答案】0
【考点】实数的运算
【解析】【解答】.故答案为0【分析】根据实数的运算性质即可求解。
16、(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。
17、(1分)若a、b为实数,且+|b+1|=0,则a﹣b=________.
【答案】5
【考点】平方根
【解析】【解答】∵+|b+1|=0,
∴a﹣4=0,b+1=0,
∴a=4,b=﹣1,
∴a﹣b=5.
故答案为:5.
【分析】由已知条件根据绝对值和算术平方根的非负性可求得a、b的值,再将a、b的值代入所求代数式即可求解.
18、(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。
三、解答题
19、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
20、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
21、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
22、(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
23、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
24、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
25、(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
26、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。
【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。
所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。