二叉树相关的面试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树相关的面试题
一、二叉树面试题常见类型
1. 二叉树的概念
二叉树就是每个节点最多有两个子树的树结构,这两个子树被分别称为左子树和右子树。
比如说,我们可以想象成一棵家族树,一个爸爸最多有两个孩子,左孩子和右孩子,这就是二叉树的基本概念啦。
2. 二叉树的遍历
有前序遍历、中序遍历和后序遍历哦。
前序遍历就是先访问根节点,再访问左子树,最后访问右子树。
就像我们去旅游先到一个景点的大门(根节点),然后去左边的小景点(左子树),最后去右边的小景点(右子树)。
中序遍历是先左子树,再根节点,最后右子树,这就好比先看左边的小景色,再看大门,最后看右边的小景色。
后序遍历是先左子树,再右子树,最后根节点,就像把两边小景色都看完了,最后再看大门整体的感觉。
3. 二叉树的高度计算
二叉树的高度就是从根节点到叶节点最长路径上的节点数。
计算的时候要一层一层地去数,从根开始,一直到最深的叶子那里。
4. 二叉树的平衡判断
一棵二叉树是平衡二叉树的话,它的左右两个子树的高度差的
绝对值不超过1,并且左右子树都是平衡二叉树。
这就像两边的孩子不能长得太不均衡啦,一边特别高,一边特别矮可不行。
5. 二叉树的构建
可以根据给定的遍历序列来构建二叉树。
比如说给了前序遍历和中序遍历的序列,我们就可以通过分析先确定根节点,再根据中序遍历确定左右子树,然后逐步构建出二叉树。
这就像是根据一些线索去拼凑出一个完整的图形一样有趣。
二、二叉树面试题实例
1. 题目:给定一个二叉树的前序遍历序列为[1, 2, 4, 5, 3, 6, 7],中序遍历序列为[4, 2, 5, 1, 6, 3, 7],构建出这个二叉树。
解答:首先从前序遍历知道根节点是1,然后在中序遍历中找到1,1左边的[4, 2, 5]就是左子树的中序遍历,右边的[6, 3, 7]就是右子树的中序遍历。
再根据前序遍历中左子树节点的顺序[2, 4, 5],可以确定2是左子树的根节点,然后继续这样分析下去就可以构建出二叉树啦。
2. 题目:计算二叉树的高度,二叉树节点定义如下:
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
解答:可以使用递归的方法来计算。
如果树为空,高度就是0。
如果不为空,高度就是左子树高度和右子树高度中的最大值再加1,就像比较两个孩子谁更高,然后再加上自己这个大人的高度一样。
3. 题目:判断给定的二叉树是否是平衡二叉树。
解答:还是用递归的方法,先计算左右子树的高度,然后判断高度差是否符合要求,并且递归地判断左右子树是否是平衡二叉树。
就像检查每个家庭成员是不是都符合家庭平衡的规则一样。