马集镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马集镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知关于x,y的方程组,当x+y=3时,求a的值()
A. -4
B. 4
C. 2
D.
【答案】B
【考点】解一元一次方程,解二元一次方程组
【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;
故答案为:B。

【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a 的方程,求解即可得出a的值。

2、(2分)下列各数中,2.3,,3.141141114…,无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:∵
∴无理数有:、、3.141141114…一共3个
故答案为:B
【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。

3、(2分)下列命题不成立的是()
A. 等角的补角相等
B. 两直线平行,内错角相等
C. 同位角相等
D. 对顶角相等
【答案】C
【考点】余角、补角及其性质,对顶角、邻补角,平行线的性质
【解析】【解答】A、同角或等角的补角相等,故A不符合题意;
B、两直线平行,内错角相等,故B不符合题意;
C、同位角不一定相等,故C符合题意;
D、对顶角相等,故D不符合题意;
故答案为:C
【分析】根据两角互补的性质可对A作出判断;根据平行线的性质可对B、C作出判断;根据对顶角的性质可对D作出判断;即可得出答案。

4、(2分)下列运算正确的是()
A. =±3
B. (﹣2)3=8
C. ﹣22=﹣4
D. ﹣|﹣3|=3
【答案】C
【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方
【解析】【解答】解:A、原式=2 ,不符合题意;
B、原式=﹣8,不符合题意;
C、原式=﹣4,符合题意;
D、原式=﹣3,不符合题意,
故答案为:C.
【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。

A项:指的是求8的算术平方根(在这里,我们要区分平方根与算数平方根的区别,求平方根的符号是);B项:指的是3个-2相乘,即(-2)(-2)(-2)=-8;C项要特别注意负号在的位置(区分与),像是先算,再在结果前面填个负号,所以结果是-4;D项:先算绝对值,再算绝对值之外的,所以答案是-3
5、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()
A.
B.
C.
D.
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得:x<2m,
解②得:x>2-m,
根据题意得:2m>2-m,
解得:.
故答案为:C.
【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.
6、(2分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是()
A. 该班总人数为50人
B. 骑车人数占总人数的20%
C. 步行人数为30人
D. 乘车人数是骑车人数的2.5倍
【答案】C
【考点】频数(率)分布直方图,扇形统计图
【解析】【解答】解:由条形图中可知乘车的人有25人,骑车的人有10人,
在扇形图中分析可知,乘车的占总数的50%,所以总数有25÷50%=50人,所以骑车人数占总人数的20%;步行人数为30%×50=15人;乘车人数是骑车人数的2.5倍.
故答案为:C
【分析】根据直方图和扇形统计图对应的乘车人数与百分比可得某班的人数,即可判断A,根据扇形统计图可得骑车人数的百分比,即可判断B,根据总人数减去乘车人数再减去骑车人数即可得出步行人数,从而判断C,最后根据直方图的乘车人数与骑车人数即可判断D.
7、(2分)当x=3时,下列不等式成立的是()
A.x+3>5
B.x+3>6
C.x+3>7
D.x+3<5
【答案】A
【考点】不等式的解及解集
【解析】【解答】解:A、当x=3时,x+3=3+3=6>5,所以x+3>5成立;
B、当x=3时,x+3=3+3=6,所以x+3>6不成立;
C、当x=3时,x+3=3+3=6<7,所以;x+3>7不成立;
D、当x=3时,x+3=3+3=6>5,所以x+3<5不成立.
故答案为:A
【分析】把x=3分别代入各选项中逐个进行判断即可。

8、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()
A. 46人
B. 38人
C. 9人
D. 7人
【答案】D
【考点】扇形统计图
【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,
所以100名顾客中对商场的服务质量不满意的有100×7%=7人.
故答案为:D
【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.
9、(2分)不等式组的解集在数轴上表示为()
A.
B.
C.
D.
【答案】C
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:不等式组可得,AC项,x≤2,不符合题意;D项,x﹣1,x≤2,不符合题意。

故答案为:C
【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
10、(2分)已知正方体的体积为64,则这个正方体的棱长为()
A. 4
B. 8
C.
D.
【答案】A
【考点】立方根及开立方
【解析】【解答】解:∵正方体的体积是64
∴正方体的棱长为=4
【分析】根据正方体的体积等于棱长的三次方,开立方根求解即可。

11、(2分)下列各数中3.14,,1.060060006…(每两个6之间依次增加一个0),0,,3.14159是无理数的有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中是无理数的是:,(每两个6之间依次增加一个0)
共2个.
故答案为:B.
【分析】由无理数的定义:“无限不循环小数叫无理数”可知已知数中的无理数的个数。

12、(2分)下列计算正确的是()
A.=0.5
B.
C.=1
D.-=-
【答案】C
【考点】立方根及开立方
【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;
B选项表示的立方根,因为,所以,B选项错误;
C选项表示的立方根,因为,,所以,C选项正确;
D选项表示的立方根的相反数,因为,所以,D选项错误。

故答案为:C
【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。

二、填空题
13、(1分)已知:关于x,y的方程组的解为负数,则m的取值范围________.
【答案】m<-
【考点】解二元一次方程组,一元一次不等式组的应用
【解析】【解答】解:由得m<-故答案为:.
【分析】先解滚阿玉x,y的二元一次方程组,再利用解为负数可列出关于m的一元一次不等式组,解不等式组即可求得m的取值范围.
14、(2分)100的平方根是________52的平方根是________.
【答案】±10;±5
【考点】平方根
【解析】【解答】∵(±10)2=100,∴100的平方根是±10.故答案为±10.
∵52=25,∵(±5)2=25,
∴25的平方根是±5,即52的平方根是±5.
【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。

根据平方根的意义可得100的平方根是10;的平方根是 5.
15、(1分)小军的期末总评成绩由平时、期中、期末成绩按权重比1∶1∶8组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x满足的条件是________ 【答案】
【考点】一元一次不等式的应用
【解析】【解答】解:由题意得,解得【分析】本题关键在于平均成绩的求法:各成绩乘以权重数相加后除以权重数的和.
16、(1分)利用计算器计算:=________(精确到0.01).
【答案】0.86
【考点】实数的运算
【解析】【解答】原式≈2.449-1.587=0.862≈0.86.故答案为:0.86.【分析】根据实数的运算性质即可求解。

17、(1分)某县有80万人口,其中各民族所占比例如上图所示,则该县少数民族人口共有________万
人.
【答案】12
【考点】扇形统计图
【解析】【解答】80×(8%+4%+3%)=80×15%
=12(万人)
故答案为:12
【分析】把总人数看作单位“1”,用总人数乘少数民族所占的分率和即可求出少数民族的人口数.
18、(1分)计算:3-1-()0=________.
【答案】
【考点】实数的运算
【解析】【解答】解:原式=
=-
故答案为:-
【分析】根据负指数及0指数的意义,分别化简,再按有理数的减法法则进行计算即可。

三、解答题
19、(5分)
【答案】解:,
(1)×2003-(2)×2002得:
(20032-20022)y=6007×2003-6008×2002,
4005y=6007×2003-(6007+1)×2002,
4005y=6007×2003-6007×2002-2002,
4005y=6007×(2003-2002)-2002,
4005y=4005,
∴y=1,
将y=1代入(1)得:
x=2,
∴原方程组的解为:.
【考点】解二元一次方程组
【解析】【分析】(1)×2003-(2)×2002将二元方程组转化成一元一次方程,解之可求得y的值,将y值代入(1)可求得x值,从而得出原方程组的解.
20、(10分)计算
(1)(﹣3)2+|-1|﹣
(2)|-2|+-(-1)2017;
【答案】(1)解:原式=9 +1-3=7
(2)解:原式=2-2+1=1
【考点】实数的运算
【解析】【分析】(1)先算平方和开放,因为,,所以结果为7.
(2)因为,=-1,所以第二题的结果为:1.
21、(5分)一个正数x的平方根是3a-4和1-6a,求a及x的值.
【答案】解:由题意得3a-4+1-6a=0,
解得a=-1.
∴3a-4=-7.
∴x=(-7)2=49.
答:a的值是-1,x的值是49.
【考点】平方根
【解析】【分析】因为一个正数的平方根有两个,它们是一对互为相反数,所以可得3a-4+1-6a=0,即可求得a 的值,从而求得x的值.
22、(5分)解不等式组,并写出该不等式组的最大整数解.
【答案】解:∵解不等式2x+4≥0得:x≥﹣2,
解不等式得:x<1,
∴不等式组的解集是﹣2≤x<1,
∴该不等式组的最大整数解为0
【考点】一元一次不等式组的应用
【解析】【分析】在解第二个不等式时,若不等式,两边同乘以2时,不要忘记每一项都乘以2.同时该题要求写出最大整数解.
23、(5分)如图,把一张长方形纸片ABCD沿EF折叠,使点C落在点C'处,点D落在点D'处,ED'交BC于
点G,已知∠EFG=50°,那么∠DEG和∠BGD'各是多少度?
【答案】解:∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,
由折叠的性质可知∠D'EF=∠DEF=50°,
∴∠DEG=50°+50°=100°,
∴∠EGF=180°-∠DEG=180°-100°=80°,
∵∠BGD'=∠EGF
∴∠BGD'=80°
【考点】平行线的性质,矩形的性质,翻折变换(折叠问题)
【解析】【分析】根据矩形的性质及平行线的性质,可证得∠DEF=∠EFG=50°,∠DEG+∠EGF=180°,再根据折叠的性质可证∠D'EF=∠DEF,然后求出∠DEG、∠EGF的度数,然后根据对顶角相等,可得出结果。

24、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。

25、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

26、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.。

相关文档
最新文档