延寿县一中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延寿县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知双曲线
(a >0,b >0)的右焦点F ,直线x=
与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A .
B .
C .
D .
2. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 3. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
4. 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )
(A ) 8
( B ) 4 (C )
8
3
(D)4
3
5.在
10
2015
1
1x
x
⎛⎫
++
⎪
⎝⎭
的展开式中,含2x项的系数为()
(A)10(B )30(C)45(D)120
6.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}的元素个数为()A.4 B.5 C.6 D.9
7.已知一三棱锥的三视图如图所示,那么它的体积为()
A.1
3
B.
2
3
C.1D.2
8.已知
a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()
A.b>c>a B.b>a>c C.a>b>c D.c>b>a
9.设集合,,则( )
A
B
C
D
10.已知m、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β
C.若m⊥α,n⊥α,则m∥n D.若m∥α,m∥β,则α∥β
11.已知函数
(5)2
()e22
()2
x
f x x
f x x
f x x
+>
⎧
⎪
=-≤≤
⎨
⎪-<-
⎩
,则(2016)
f-=()
A.2e B.e C.1 D.1 e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.
12.已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是()
①f(x)<0恒成立;
②(x1﹣x2)[f(x1)﹣f(x2)]<0;
③(x1﹣x2)[f(x1)﹣f(x2)]>0;
④;
⑤
.
A .①③
B .①③④
C .②④
D .②⑤
二、填空题
13.【泰州中学2018届高三10月月考】设二次函数()2
f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',
对任意x R ∈,不等式()()f x f x ≥'恒成立,则222
b a c
+的最大值为__________. 14.若x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.
15.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 16.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
17.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .
18.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.
三、解答题
19.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式; (2)求数列
{
}的前n 项和.
20.已知复数z=.
(1)求z的共轭复数;
(2)若az+b=1﹣i,求实数a,b的值.
21.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.
(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;
(2)求f(x)在区间[π,]上的最大值和最小值.
22.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;111]
(2)求该几何体的表面积S .
23.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *). (1)设b n =
,证明数列{b n }是等差数列;
(2)求数列{a n }的前n 项和S n .
24.(本小题满分12分)
已知函数()
23cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
延寿县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】D
【解析】解:∵函数f (x )=(x ﹣3)e x
, ∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x
,
令f ′(x )>0, 即(x ﹣2)e x
>0,
∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).
故选:D .
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
2. 【答案】A 【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的
大小).
3. 【答案】D
4. 【答案】A
【解析】
根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于1
22322383
⨯⨯-⨯⨯⨯=
5. 【答案】C
【解析】因为1010
101
9102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++
⎪ ⎪⎝⎭⎝⎭,所以2
x 项只能在
10(1)x +展开式中,即为2210
C x ,系数为2
1045.C =故选C . 6. 【答案】B
【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .
7. 【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为1
12
(12)2323
⨯⨯⨯⨯=,选B . 8. 【答案】A
【解析】解:∵a=0.50.5,c=0.50.2
, ∴0<a <c <1,b=20.5
>1,
∴b >c >a , 故选:A .
9. 【答案】C
【解析】送分题,直接考察补集的概念,,故选C 。
10.【答案】C
【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
11.【答案】B
【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B .
12.【答案】 D
【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数, 并且是,递减的速度是先快后慢.所以f (x )的图象如图所示. f (x )<0恒成立,没有依据,故①不正确;
②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边, 故④不正确,⑤正确,综上,正确的结论为②⑤. 故选D .
二、填空题
13.
【答案】2
【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()2
20ax b a x c b +-+-≥在R
上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:22
2222241441c b ac a a
a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫
+ ⎪⎝⎭
,
令1,(0)c t t a =->
,24422222t y t t t t
==≤=++++,故22
2
b a
c +
的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 14.【答案】 【解析】
约束条件表示的区域如图, 当直线l :z =2x +by (b >0)经过直线2x -y -1=0与x -2y +1=0的交点A (1,1)时,z min =2+b ,∴2+b
=3,∴b =1. 答案:1
15.【答案】:2x ﹣y ﹣1=0
解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,
∴弦MN 所在直线的斜率为2,
则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 16.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2
(1)40
a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨
-≤⎩,解得1a =.1
考点:不等式的恒成立问题.
17.【答案】
.
【解析】解:∵a 是甲抛掷一枚骰子得到的点数, ∴试验发生包含的事件数6,
∵方程x 2
+ax+a=0 有两个不等实根, ∴a 2
﹣4a >0,
解得a >4, ∵a 是正整数, ∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
18.【答案】 ①③④
【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,
当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P ﹣ABC ,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC中,tan∠PCO=
∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,
即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.
∴点P的轨迹是以A、B为焦点的椭圆,
故动圆圆心P的轨迹为一个椭圆,故④正确,
故答案为:①③④
三、解答题
19.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.
∴,解得,
∴a n﹣1+(n﹣1)=n﹣2.
(2)=.
∴数列{}的前n项和S n=﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n=.
20.【答案】
【解析】解:(1).
∴=1﹣i.
(2)a(1+i)+b=1﹣i,即a+b+ai=1﹣i,
∴,
解得a=﹣1,b=2.
【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.21.【答案】
【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),
∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin
(2x﹣),
∴函数的周期为T==π,
由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,
∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);
(2)由(1)知f (x )=sin (2x ﹣),
当x ∈[π,]时,2x ﹣
∈[
,
],
∴﹣
≤sin (2x ﹣)≤1,
故f (x )在区间[π,]上的最大值和最小值分别为1和﹣
.
【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.
22.【答案】(1)3;(2)623+. 【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形, 2(111312)623S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 23.【答案】 【解析】解:(1)∵=
,
∴数列{b n }是以为首项,3为公差的等差数列.
(2)由(1)可知,
∴
①
②
①﹣②得:
,
∴
.
【点评】本题主要考查数列通项公式和前n 项和的求解,利用定义法和错位相减法是解决本题的关键.
24.【答案】(1)332⎡⎤
⎢⎥⎣⎦,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6π
π⎡⎤-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.
考点:三角函数的图象与性质.。