高考数学压轴专题新备战高考《函数与导数》真题汇编含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学复习题《函数与导数》专题解析
一、选择题
1.函数()2sin 2x
f x x x x
=
+-的大致图象为( ) A . B .
C .
D .
【答案】D 【解析】 【分析】
利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
【详解】
()1sin112sin110f =+-=-<,排除,B ,C ,
当0x =时,sin 0x x ==, 则0x →时,sin 1x
x
→,()101f x →+=,排除A , 故选:D . 【点睛】
本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键。
2.给出下列说法: ①“tan 1x =”是“4
x π
=
”的充分不必要条件;
②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001
,2x x x ∃∈+
≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1
C .2
D .3
【答案】C 【解析】 【分析】
利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4
x π
=
时,一定有tan 1x =,但是当tan 1x =时,,4
x k k ππ=+
∈Z ,
所以“tan 1x =”是“4
x π
=
”的必要不充分条件,所以①不正确;
对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以
5b =,
所以函数2
()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;
对于③,命题“0001
,2x x x ∃∈+≥R ”的否定形式是“1,2x x x
∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】
本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..
3.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --
【答案】A 【解析】 【分析】
由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】
由()()22f x f x -=+得:()f x 关于2x =对称
又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数
()()()()()()()()()1281241240
f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2
123422f f f f e e +++=+
()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦
222e e =+
故选:A 【点睛】
本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.
4.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1
C .2
D .4
【答案】C 【解析】 【分析】
根据对称性即可求出答案. 【详解】
解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】
本题主要考查函数的对称性的应用,属于中档题.
5.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1 B .
13
C .
23
D .
12
【答案】B 【解析】 【分析】
利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21x
y e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,
所以曲线21x
y e
-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,
令0y =,解得1x =,令y x =,解得23
x y ==
, 所以切线与直线y 0=和y x =所围成图形的面积为121
1233
⨯⨯=,故选B .
【点睛】
本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.
6.函数()1ln f x x x ⎛⎫
=-
⎪⎝⎭
的图象大致是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】
通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当
1x >时,函数的单调性可排除C ,即可得结果. 【详解】
当2x =时,1
10x x
-
=>,函数有意义,可排除A ; 当2x =-时,13
02
x x -
=-<,函数无意义,可排除D ; 又∵当1x >时,函数1
y x x
=-
单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫
=- ⎪⎝
⎭
单调递增,可排除C ; 故选:B. 【点睛】
本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.
7.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞
【答案】C 【解析】 【分析】
首先根据复数的几何意义得到z 的轨迹方程2x
y t =-,再根据指数函数的图象,得到关于
t 的不等式,求解.
【详解】
由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,
2a
x a
y b t
=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,
即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】
本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.
8.已知函数()()11
10x x e f x x e
++-=<与()()1ln x x
g x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )
A .1,1e ⎛⎫-∞+ ⎪⎝⎭
B .1,e ⎛⎫
-
+∞ ⎪⎝⎭
C .1,1e ⎛
⎫-∞- ⎪⎝⎭
D .11,e
⎛⎫-+∞ ⎪⎝
⎭
【答案】D 【解析】 【分析】
先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e e
x x a ++-=在()0,∞+上有解,设()()11
ln 1e e
x x x ϕ=
++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.
【详解】
由()f x 关于y 轴对称的函数为()()()1
1
1
1e e 10e
x x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1
e 1e ln 1e x x x x a --=+-()0x >,
则方程()1
e 1e ln 1e x x x x a --=+-在()0,∞+上有解,
即方程
()11ln 1e e
x x a ++-=在()0,∞+上有解, 设()()11
ln 1e e
x x x ϕ=
++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,
()()
11e 1
e 1e 1x x x x x x x ϕ--=-+='++Q ,
令()=e 1x
m x x --,则()=e 10x
m x '->在()0,∞+上恒成立,所以()=e 1x
m x x --在
()0,∞+上为增函数,∴()()00m x m >=,
即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,
当0x >时,则()()101x e
ϕϕ>=-, 所以11e
a >-, 故选:D 【点睛】
本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.
9.已知函数
在区间
上有最小值,则函数
在区间
上一定( )
A .有最小值
B .有最大值
C .是减函数
D .是增函数
【答案】D 【解析】 【分析】 由二次函数
在区间
上有最小值得知其对称轴
,再由基本初等函数的单调性或单调性的性质可得出函数在区间
上的单调性.
【详解】 由于二次函数
在区间
上有最小值,可知其对称轴
,
.
当时,由于函数
和函数在上都为增函数,
此时,函数在上为增函数;
当时,
在
上为增函数;
当时,由双勾函数的单调性知,函数
在
上单调递
增,
,所以,函数
在
上为增函数.
综上所述:函数在区间
上为增函数,故选D.
【点睛】
本题考查二次函数的最值,同时也考查了
型函数单调性的分析,解题时要注意对
的符号进行分类讨论,考查分类讨论数学思想,属于中等题.
10.已知函数()2
f x x x =+,且()1
231ln
log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝
⎭,,,则a b c ,,的大小关系为( )
A .a c b <<
B .b c a <<
C .c a b <<
D .b a c <<
【答案】A 【解析】 【分析】
由函数()2
f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数
()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.
【详解】
由题意,函数()2
f x x x =+,满足()()2
2
()f x x x x x f x -=-+-=+=,
所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,
又当0x ≥时,()2
f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递
增函数,则函数()f x 在(,0)-∞上为单调递减函数, 又由31ln
22e <=,113222log log 1<=-,11
22
-=,
根据对称性,可得11
323(ln )(2)(log )2
f f f -<<,即a c b <<,故选A .
【点睛】
本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.
11.已知函数()2
943,0
2log 9,0x x x f x x x ⎧+≤=⎨+->⎩
,则函数()()y f f x =的零点所在区间为( )
A .73,
2⎛⎫ ⎪⎝⎭
B .()1,0-
C .7,42⎛⎫ ⎪⎝⎭
D .()4,5
【答案】A 【解析】 【分析】
首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令
()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用
零点存在性定理,求得函数()()y f f x =的零点所在区间.
【详解】
当0x ≤时,()34f x <≤.
当0x ≥时,()2
932log 92log 9x
x
x f x x =+-=+-为增函数,且()30f =,则3
x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0f
f x =,得()32
log 93x
f x x =+-=,因为()303f =<,
3377log 98 1.414log 39 3.312322f ⎛⎫
=->⨯+-=> ⎪⎝⎭
,
所以函数()()y f f x =的零点所在区间为7
3,2⎛⎫
⎪⎝⎭
. 故选:A 【点睛】
本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.
12.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )
A .()()()0.3
1.1
3
0. 2
0.54f f log f <<
B .()()()0.3
1.1
3
0. 240.5f f f log <<
C .()()()1.1
0.3
3
40.20.5f f f log << D .()()()0.3
1.1
3
0.50.24f log f f << 【答案】A 【解析】 【分析】
由已知可得()f x 的图象关于直线1x =对称.因为0.3
1.130.2
1log 0.5141-<-<-,又
()f x 在[1,)+∞上单调递增,即可得解.
【详解】
解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.3
1.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,
则0.3
1.130.2
1log 0.5141-<-<-,
又()f x 在[1,)+∞上单调递增, 所以(
)()()0.3
1.1
3
0.20.54f f log f <<.
故选:A. 【点睛】
本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.
13.已知函数()0,1
ln ,1x f x x x <⎧=⎨
≥⎩
,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实
数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞
C .[)0,1
D .(]1,0-
【答案】A 【解析】 【分析】
先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数
()0,1
ln ,1x f x x x <⎧=⎨≥⎩
和()g x x k =-的图象,利用数形结合进行求解即可.
【详解】
当1x ≥时,()'
'1
ln ,()(1)1f x x f x f x
=⇒=
⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .
在同一直角坐标系内画出函数()0,1
ln ,1x f x x x <⎧=⎨≥⎩
和()g x x k =-的图象如下图的所示:
利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】
本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.
14.已知函数()f x 的导函数为()f x '且满足()()
21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭
( ) A .
12e
- B .2e - C .1-
D .e
【答案】B 【解析】 【分析】
对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1
x e
=求得结果. 【详解】
由题意得:()()121f x f x
''=+
令1x =得:()()1211f f ''=+,解得:()11f '=-
()12f x x '∴=-+
12f e e ⎛⎫
'∴=- ⎪⎝⎭
本题正确选项:B
【点睛】
本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.
15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( )
A .)+∞
B .(,-∞
C .(,3)-∞
D .27(,)5-∞ 【答案】D
【解析】
【分析】
把220x ax -+>在区间[]1,5上有解,转化为存在一个[]
1,5x ∈使得22x 2ax x a x
+>⇒+
>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得
22x 2ax x a x +>⇒+
>,设()2f x x x =+,即是()f x 的最大值a >,()f x 的最大值275
=,当5x =时取得,故选D 【点睛】
16.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,
()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <
-的解集是( ) A .(2,3)
B .(,1)-∞
C .()(1,2)2,3⋃
D .()(,1)3,-∞⋃+∞ 【答案】C
【解析】
【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|
f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.
【详解】
当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,
令()|2|()F x x f x =-.
当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,
即当2x >时,()F x 单调递增.
函数()f x 满足(2)(2)f x f x +=-,
所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|
f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,
所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .
故选:C
【点睛】
本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.
17.已知函数()2f x x mx =+图象在点()()
1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭
的前n 项和为n S ,则2018S 的值为( ) A .20152016
B .20162017
C .20172018
D .20182019
【答案】D
【解析】
【分析】 求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.
【详解】
由()2
f x x mx =+,得()2f x x m '=+,()12f m '∴=+, 因为函数()2f x x mx =+图象在点()()
1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则
()()21111111
f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019
S =-
+-++-=-=L . 故选:D.
【点睛】
本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.
18.40cos2d cos sin x
x x x π
=+⎰( )
A
.1) B
1 C
1 D
.2【答案】C
【解析】
【分析】
利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.
【详解】 因为2
2cos2cos sin cos sin cos sin cos sin x x x
x x x x x x -==-++,
∴4400cos 2d (cos sin )d (sin cos )14cos sin 0
x x x x x x x x x ππ
π
=-=+=+⎰⎰,故选C . 【点睛】
本题考查三角恒等变换知与微积分基本定理的交汇.
19.设1
23log 2,ln 2,5a b c -===则
A .a b c <<
B .b c a <<
C .c a b <<
D .c b a <<
【答案】C
【解析】
【分析】 由ln 2
ln 2ln 3a b =<=
及311
log ,22a c >==<=可比较大小.
【详解】
∵2031a ln ln =>,>,∴ln 2
ln 2ln 3a b =<=,即a b <.
又331
1
log 2log ,22a c =>==<=.∴a c >.综上可知:c a b <<
故选C.
【点睛】
本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.
20.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( )
A .5
,3⎛⎫+∞ ⎪⎝⎭ B .1,15⎛⎫
⎪⎝⎭ C .51,3⎛⎫
⎪⎝⎭ D .51,3⎛⎤
⎥⎝⎦
【答案】D
【解析】
【分析】
根据0a >可知5y ax =-在定义域内单调递减,若使得函数
()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530
a a >⎧⎨-≥⎩,解不等式即可. 【详解】
0a >Q
5y ax ∴=-在定义域内单调递减
若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数
则需1530
a a >⎧⎨-≥⎩,解得513a <≤ 故选:D
【点睛】
本题考查对数函数的单调性,属于中档题.。