新泾镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新泾镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?()
A. 6
B. 7
C. 8
D. 9
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设晓莉和朋友共有x人,
若选择包厢计费方案需付:(900×6+99x)元,
若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),
∴900×6+99x<780x,
解得:x>=7 .
∴至少有8人.故答案为:C
【分析】先设出去KTV的人数,再用x表示出两种方案的收费情况,利用“包厢计费方案会比人数计费方案便宜”列出包厢费用小于人数计费,解一元一次不等式即可求得x的取值范围,进而可得最少人数.
2、(2分)下列各数: 0.3,0.101100110001…(两个1之间依次多一个0), 中,无理数的个数为()
A. 5个
B. 4个
C. 3个
D. 2个
【答案】C
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,-,0.101100110001… (两个1之间依次多一个0),
故答案为:C.
【分析】无理数:无限不循环小数,由此即可得出答案.
3、(2分)下列说法正确的是()
A. 3与的和是有理数
B. 的相反数是
C. 与最接近的整数是4
D. 81的算术平方根是±9
【答案】B
【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小
【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;
B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;
C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;
D.∵81的算术平方根是9,故错误,D不符合题意;
故答案为:B.
【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;
B.相反数:数值相同,符号相反的数,由此可判断正确;
C.根据的大小,可知其最接近的整数是3,故错误;
D.根据算术平方根和平方根的定义即可判断对错.
4、(2分)为了了解所加工的一批零件的长度,抽取了其中200个零件的长度,在这个问题中,200个零件的长度是()
A. 总体
B. 个体
C. 总体的一个样本
D. 样本容量
【答案】C
【考点】总体、个体、样本、样本容量
【解析】【解答】解:A、总体是所加工的一批零件的长度的全体,错误,故选项不符合题意;
B、个体是所加工的每一个零件的长度,错误,故选项不符合题意;
C、总体的一个样本是所抽取的200个零件的长度,正确,故选项符合题意;
D、样本容量是200,错误,故选项不符合题意.
故答案为:C
【分析】根据总体、个体和样本、样本容量的定义进行判断即可解答.
5、(2分)如图,点在射线上,,则等于()
A. B. 180º
C. D. 180º
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD∥EF
∴∠B=∠BCD,∠E+∠DCE=180°
∴∠DCE=180°-∠E
∵∠BCD+∠DCE+∠GCE=180°
∴∠B+180°-∠E+∠GCE=180°
∴∠GCE=∠E-∠B
故答案为:C
【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。
6、(2分)三元一次方程组的解为()
A. B. C. D.
【答案】C
【考点】三元一次方程组解法及应用
【解析】【解答】解:
②×4−①得2x−y=5④
②×3+③得5x−2y=11⑤
④⑤组成二元一次方程组得,
解得,
代入②得z=−2.
故原方程组的解为.
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
7、(2分)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()
A.每100克内含钙150毫克
B.每100克内含钙高于150毫克
C.每100克内含钙不低于150毫克
D.每100克内含钙不超过150毫克
【答案】C
【考点】不等式及其性质
【解析】【解答】解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故答案为:C
【分析】”≥”就是“不小于”,在本题中就是“不低于”的意思。
8、(2分)下列各组数中①;②;③;④是方程的解的有()
A.1个
B.2个
C.3个
D.4个
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:把①代入得左边=10=右边;
把②代入得左边=9≠10;
把③代入得左边=6≠10;
把④代入得左边=10=右边;
所以方程的解有①④2个.
故答案为:B
【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
9、(2分)16的平方根与27的立方根的相反数的差是()
A. 1
B. 7
C. 7或-1
D. 7或1
【答案】C
【考点】平方根,立方根及开立方
【解析】【解答】解:∵16的平方根为±4,
27的立方根为3,
∴3的相反数为-3,
∴4-(-3)=7,或-4-(-3)=-1.
故答案为:C.
【分析】根据平方根和立方根的定义分别求出16的平方根和27的立方根的相反数,再列式、计算求出答案.
10、(2分)二元一次方程组的解是()
A. B. C. D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故答案为:B.
【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值代入方程①,就可求出x的值,即可得出方程组的解。
11、(2分)满足方程组的解x与y之和为2,则a的值为()
A. ﹣4
B. 4
C. 0
D. 任意数
【答案】B
【考点】三元一次方程组解法及应用
【解析】【解答】解:根据题意可列出方程组,
(1 )﹣(2)得x+2y=2,
代入(3)得y=0,
则x=2,
把y=0,x=2代入(1)得:a+2=6,
∴a=4.
故答案为:B.
【分析】根据题意建立三元一次方程组,观察系数的特点,两个方程中含有a,且a的系数是1,因此利用加减消元消去a后的方程与x+y=2,建立二元一次方程组,求出x、y的值,就可求出a的值。
12、(2分)在实数, ,,中,属于无理数是()
A. 0
B.
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】在实数, ,,中,属于无理数是,
故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.
二、填空题
13、(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。
14、(1分)为了奖励数学社团的同学,张老师恰好用100元在网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了________《数学史话》.
【答案】7本
【考点】二元一次方程的应用
【解析】【解答】解:设张老师购买了x本《数学史话》,购买了y本《趣味数学》,
根据题意,得:10x+6y=100,
当x=7时,y=5;当x=4时,y=10;
∴张老师最多可购买7本《数学史话》,
故答案为:7本。
【分析】等量关系为:《数学史话》的数量×单价+《趣味数学》的数量×单价=100,设未知数列方程,再求出这个不定方程的正整数解,就可得出张老师最多可购买《数学史话》的数量。
15、(1分)如图,把一个含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠2=23°,那么∠1的度数是________
【答案】22°
【考点】平行线的性质
【解析】【解答】解:如图,
∵把一个含有45°的直角三角形的两个顶点放在直尺的对边上,∠2=23°,
∴∠3=45°﹣∠2=45°﹣23°=22°,
∵直尺的两边互相平行,
∴∠1=∠3=22°.
故答案为:22°.
【分析】因为等腰直角三角形的底角度数为,所以可知,因为两直线平行,内错角相等,
所以∠1=.
16、(1分)不等式组的所有整数解的和为________
【答案】-2
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:由①得:3x≥-6,解之:x≥-2
由②得:-2x>-4,解之:x<2
不等式组的解集为:-2≤x<2
∴不等式组的整数解为:-2,-1,0,1
∴-2-1+0+1=-2
故答案为:-2
【分析】先求出不等式组的解集,再求出其整数解,然后求出整数解的和即可。
17、(1分)为了了解全县30000名九年级学生的视力情况,随机抽查500名学生的视力进行统计分析,在这个问题中样本容量是________.
【答案】500
【考点】总体、个体、样本、样本容量
【解析】【解答】解:样本容量是500.故答案为:500
【分析】根据样本容量是指抽查的样本的数量即可确定结果.
18、(1分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为________
【答案】65°
【考点】平行线的性质
【解析】【解答】∵∠1=155°,∴∠EDC=180°-155°=25°.
∵DE∥BC,∴∠C=∠EDC=25°.
∵在△ABC中,∠A=90°,∠C=25°,
∴∠B=180°-90°-25°=65°.
故答案为65°
【分析】由平行线的性质,可知∠EDC=∠C,因为∠EDC与∠1是互为邻补角,所以可知∠C的值,又因为∠C与∠B互余,所以可知∠B的值.
三、解答题
19、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
20、(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
21、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
22、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条
件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
23、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
24、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。
25、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
26、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.。