人教版数学七年级上册全册单元试卷综合测试(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级上册全册单元试卷综合测试(Word版含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=________;
(2)请探索∠E与∠F之间满足的数量关系?说明理由.
(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;
【答案】(1)90°
(2)解:如图,分别过点E,F作EM∥AB,FN∥AB
∴EM∥AB∥FN
∴∠B=∠BEM=30°,∠MEF=∠EFN
又∵AB∥CD,AB∥FN
∴CD∥FN
∴∠D+∠DFN=180°
又∵∠D =120°
∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°
∴∠EFD=∠MEF +60°
∴∠EFD=∠BEF+30°
(3)解:如图,过点F作FH∥EP
由(2)知,∠EFD=∠BEF+30°
设∠BEF=2x°,则∠EFD=(2x+30)°
∵EP平分∠BEF,GF平分∠EFD
∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°
∵FH∥EP
∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°
【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠BEF+30°=90°.
【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;
(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.
2.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积为________,边长为________.
(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是________ .
(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 ________.
【答案】(1)5;;
(2)
(3)
【解析】【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的
面积是:
5×1×1=5,边长= ,
(2)根据勾股定理可求出图中直角三角形的斜边长= ,然后根据线段和差关系求出A点表示的数是
,(3)根据图可知:阴影部分的面积是6个小正方形的面积,即为6,所以拼成的新正方形的面积是6,则新正方形的边长= .
【分析】(1)剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长;
(2)直角三角形的最大的边就是斜边,根据勾股定理可以算出其斜边的长度是,根据同圆的半径相等得出表示-1的点到A点的距离是,利用线段的和差得OA=-1,从而得出A点所表示的数;
(3)利用三角形的面积计算方法可以算出图中阴影部分的面积是6个小正方形的面积,剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长。
3.
如图1,在四边形ABCD中,点E为AB延长线上一点,连接并延长交AD延长线于点,, .
(1)求证:;
(2)如图2,连接交于点,连接,若为的角平分线,为的角平分线,过点作交于点,求证:;(3)在(2)的条件下,若,,求的度数. 【答案】(1)证明:
,
,
,
,
,
;
(2)证明:过点作
为的角平分线,为的角平分线
,
设
由(1)问可知,,,
,,,
,
,
,
,
,
,
;
(3)解:由(2)得,,,
,
,
,
,
,
,
,
,
,
,
,
过点作
,
【解析】【分析】(1)先根据平行线的判定证明AF∥BC,可得∠FDC=∠DCB,由已知可得∠CBE=∠DCB,由平行线的判定可得结论;(2)先根据垂直得∠HBC=90°=∠CBE+∠ABH,设,则∠ABH ,由平行线和角平分线的定义可推出,;
,即可得结论;(3)根据第(2)的结论
,可得,由三角形的内角和得
,根据已知可得,过点作,由平行线的性质及已知条件可得∠BFE=30°.
4.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).
(1)若∠BEC的补角是它的余角的3倍,则∠BEC=________°;
(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;
(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG=________°(用m的代表式表示).
【答案】(1)45°
(2)解:∵∠CEG=∠AEG﹣25°,
∴∠AEG=180°﹣∠BEC﹣∠CEG
=180°﹣45°﹣(∠AEG﹣25°)=160°﹣∠AEG,
∴∠AEG=80°;
(3)2m﹣180.
【解析】【解答】解:(1)设∠BEC=x°,
根据题意,可列方程:180﹣x=3(90﹣x),
解得x=45°,
故∠BEC=45°,
故答案为:45°;
( 3 )∵EF平分∠AED,
∴∠AEF=∠DEF,
设∠AEF=∠DEF=α,∠AEG=∠FEG﹣∠AEF=m﹣α,
∠CEG=180°﹣∠GEF﹣DEF=180﹣m﹣α,
∴∠AEG﹣∠CEG=m﹣α﹣(180﹣m﹣α)=2m﹣180.
故答案为:2m﹣180.
【分析】(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解出∠BEC;(2)由∠CEG=∠AEG﹣25°,得∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°),解出∠AEG;(3)计算出∠AEG和∠CEG,然后相减,即可得到结果.
5.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC=50°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。
(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠BON=________度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,若第t秒时,OA,OC,ON三条射线恰好构成相等的角,则t的值为________(直接写出结果)
【答案】(1)25
(2)解:∠AOM与∠NOC之间满足等量关系为:∠AOM-∠NOC=40°,
理由如下:∵∠MON=90°,∠AOC=50°,
∴∠AOM+∠NOA=90°
∠AON+∠NOC=50°
∴∠AOM-∠NOC=40°
(3)13秒,34秒,49秒或64秒。
【解析】【解答】解:(1)∵∠AOC=50°,
∴∠BOC=180°-∠AOC=130°,
∵OM平分∠BOC,
∴∠BOM=∠BOC÷2=130°÷2=65°,
∴∠BON=90°-∠BOM=90°-65°=25°;
故答案为:25.
(3)如图,有四种情况:
1)当∠AON1=∠CON1,
∵∠AOC=50°,
∴∠AON1=∠CON1=(360°-∠AOC)÷2=155°,
∴∠NON1=155°-90°=65°,
∴t=65°÷5=13(秒);
2)当∠AOC=∠CON2,
∴∠NON2=360°-∠AON-2∠AOC=360°-90°-2×50°=170°,
∴t=170°÷5=34(秒);
3)当∠AON3=∠CON3,
∵∠NON3=∠NOB+∠AOB-∠AON3=90°+180°-50°÷2=245°,
∴t=245°÷5=49(秒);
4)当∠COA=∠AON4,
∠NON4=∠NOB+∠AOB+∠AON4=90°+180°+50°=320°,
∴t=320°÷5=64(秒).
故答案为:13秒,34秒,49秒或64秒.
【分析】(1)已知∠AOC的度数,根据补角的性质可求∠BOC的度数,结合OM平分∠BOC,则∠BOM的角度可求,于是根据余角的性质即可确定∠BON的大小;
(2)∠AOM和∠NOA互余,∠AON与∠NOC之和等于50°,两式联立消去∠AON,可得∠AOM和∠NOC的数量关系;
(3)因为OA,OC,ON三条射线恰好构成相等的角,分四种情况讨论,依次为当∠AON1=
∠CON1,当∠AON3=∠CON3,当∠COA=∠AON4,当∠AOC=∠CON2,根据已知角的大小,结合角的关系分别求出∠NON1,∠NON2 ,∠NON3,∠NON4的大小,则t可求.
6.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”
概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)
(1)∠ABO的度数为________,△AOB________(填“是”或“不是”)“和谐三角形”;
(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.
(3)应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B 的度数.
【答案】(1)30;是
(2)证明:∵∠MON=60°,∠ACB=80°,
∵∠ACB=∠OAC+∠MON,
∴∠OAC=80°-60°=20°,
∵∠AOB=60°=3×20°=3∠OAC,
∴△AOC是“和谐三角形”;
(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,
∴∠EFC=∠ADC,
∴AD∥EF,
∴∠DEF=∠ADE,
∵∠DEF=∠B,
∴∠B=∠ADE,
∴DE∥BC,
∴∠CDE=∠BCD,
∵AE平分∠ADC,
∴∠ADE=∠CDE,
∴∠B=∠BCD,
∵△BCD是“和谐三角形”,
∴∠BDC=3∠B,或∠B=3∠BDC,
∵∠BDC+∠BCD+∠B=180°,
∴∠B=36°或∠B= .
【解析】【解答】解:(1)∵AB⊥OM,
∴∠OAB=90°,
∴∠ABO=90°-∠MON=30°,
∵∠OAB=3∠ABO,
∴△AOB为“和谐三角形”,
故答案为:30;是;
【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“和谐三角形”的概念判断;(2)根据“和谐三角形”的概念证明即可;应用拓展:根据比较的性质得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“和谐三角形”的定义求解即可.
7.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(4)从(1)、(2)、(3)的结果中,你能看出什么规律?
【答案】(1)解:∠AOB=90°,∠BOC=30°,
∴∠AOC=90°+30=120°.
由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON=60°﹣15°=45°
(2)解:∠AOB=α,∠BOC=30°,
∴∠AOC=α+30°.
由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= α+15°﹣15°= α
(3)解:∠AOB=90°,∠BOC=β,
∴∠AOC=β+90°.
由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= β+45°﹣β=45°
(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关
【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由
角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解
即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.
8.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.
(1)求A点对应的数;
(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;
(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.
【答案】(1)解:如图1,∵点B对应数是90,
∴OB=90.
又∵ OA+50=OB,即 OA+50=90,
∴OA=120.
∴点A所对应的数是﹣120
(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,
PM=|2t﹣(90﹣8t)|=|10t﹣90|,
又∵MN=PM,
∴|﹣120+5t|=|10t﹣90|,
∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)
解得t=﹣6或t=14,
∵t≥0,
∴t=14,点M、N之间的距离等于点P、M之间的距离
(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,
RO=45+4t,
PN=(90+8t)﹣(﹣120﹣7t)=210+15t,
则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0
【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.
9.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒
(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;
(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;
(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)
①当t=________秒时,OM平分∠AOC?
(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.
【答案】(1)2.25;45
(2)解:∠NOC﹣∠AOM=45°,
∵∠AON=90°+10t,
∴∠NOC=90°+10t﹣45°
=45°+10t,
∵∠AOM=10t,
∴∠NOC﹣∠AOM=45°
(3)3
(4)解:②∠NOC﹣∠AOM=45°.
∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,
∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,
∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,
∴∠NOC﹣∠AOM=45°.
【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,
∴∠AOM= =22.5°,
∴t=2.25秒,
∵∠MON=90°,∠MOC=22.5°,
∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
故答案为:2.25,45;
·(3)①∵∠AOB=5t,∠AOM=10t,
∴∠AOC=45°+5t,
∵OM平分∠AOC,
∴∠AOM= AOC,
∴10t= (45°+5t),
∴t=3秒,
故答案为:3.
【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由
于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.
10.综合题
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.
(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.
【答案】(1)解:∵AC=6cm,且M是AC的中点,
∴MC= AC= 6=3cm,
同理:CN=2cm,
∴MN=MC+CN=3cm+2cm=5cm,
∴线段MN的长度是5m
(2)解:分两种情况:
当点C在线段AB上,由(1)得MN=5cm,
当C在线段AB的延长线上时,
∵AC=6cm,且M是AC的中点
∴MC= AC= ×6=3cm,
同理:CN=2cm,
∴MN=MC﹣CN=3cm﹣2cm=1cm,
∴当C在直线AB上时,线段MN的长度是5cm或1cm.
【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.
11.
(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.
(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)
(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)
【答案】(1)
(2)解:延长、,交于点 .
,
由(1)知:
∴ .
(3)
【解析】【解答】解:(1)
∵平分,平分,
∴,
∵是的外角
∴
∵是的外角
∴
( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:
,
【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.
12.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.
(1)求∠ECF的度数;
(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;
(3)当∠AEC=∠ACF时,求∠APC的度数.
【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°
∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF
∴∠ECF= ∠ACD=70°
(2)解:不变.数量关系为:∠APC=2∠AFC.
∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP
∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC
(3)解:∵AB∥CD,∴∠AEC=∠ECD
当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF
∴∠PCD=∠ACD=70°
∴∠APC=∠PCD=70°
【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.
13.如图(1),AB∥CD,在AB、CD内有一条折线EPF.
(1)求证:∠AEP+∠CFP=∠EPF.
(2)如图(2),已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF 之间的关系.
(3)如图(3),已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系,说明理由.
(4)已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系.(直接写结论) 【答案】(1)证明:如图1,过点P作PG∥AB,
∵AB∥CD,
∴PG∥CD,
∴∠AEP=∠1,∠CFP=∠2,
又∵∠1+∠2=∠EPF,
∴∠AEP+∠CFP=∠EPF
(2)解:如图2
由(1),可得
∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,
∵∠BEP的平分线与∠DFP的平分线相交于点Q,
∴∠EQF=∠BEQ+∠DFQ
∴
(3)解:如图3,
,
由(1),可得
∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,
∵
∴∠Q=∠BEQ+∠DFQ
∴
(4)解:由(1),可得
∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,
∵
∴∠Q=∠BEQ+∠DFQ
∴
【解析】【分析】(1)如图1,过点P作PG∥AB,根据两直线平行,内错角相等,可得∠AEP=∠1,∠CFP=∠2,从而可得∠AEP+∠CFP=∠EPF.
(2)由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,利用角平分线的定
义,可得∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP),利用平角定义,可得∠BEP+∠DFP=360°-(∠AEP+∠CFP)=360°-∠EPF,从而可得∠EPF+2∠EQF=360°.(3)同(2)方法,即可得出∠P+3∠Q=360°.
(4)同(2)方法,即可得出结论.
14.已知:∠1=∠2,EG 平分∠AEC.
(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.
(2)如图2,∠MAE=135°,∠FEG=30°,当 AB∥CD 时,求∠NCE 的度数;
(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.
【答案】(1)解:
∵
∴
∴
∴
∵EG 平分∠AEC
∴
∴
∴
∴;
(2)解:∵
∴
∵∠MAE=135°
∴
∵∠FEG=30°
∴
∵EG 平分∠AEC
∴
∵
∴;
(3)解:
∵
∴
∴
∴
∴
∵EG 平分∠AEC
∴
∴
∴
∴
∵
∴
∴
∴
∴ .
【解析】【分析】(1)根据可得,根据角的和差关系和角平分线的性质可得,从而得证;(2)根据可得,根据平行线的性质以及角平分线的性质可得;(3)根据可得,根据平行线的性质可得
,再根据角平分线的性质可得
,再根据平行线的性质即可得
.
15.直线AB与直线CD相交于点O,OE平分 .
(1)如图①,若,求的度数;
(2)如图②,射线OF在内部.
①若,判断OF是否为的平分线,并说明理由;
②若OF平分,,求的度数.
【答案】(1)解:∵∠BOC=130°
∴∠BOD=180°-∠BOC=180°-130°=50°
∵OE平分∠BOD
∴
∴∠AOD=∠BOC=130°
∴∠AOE=∠AOD+∠DOE=130°+25°=155°
(2)解:①∵OE平分∠BOD
∴∠BOE=∠DOE
∵OF⊥OE
∴∠EOF=90°
∴∠DOF=90°-∠DOE
∵∠AOF=180°-∠EOF-∠BOE
=180°-90°-∠BOE
=90°-∠BOE
∴∠AOF=∠DOF
∴DF平分∠AOD
②∵
∴设∠DOF=3x,则∠AOF=5x
∵OF平分∠AOE
∴∠EOF=∠AOF=5x,∠AOE=10x
∴∠DOE=∠EOF-∠DOF=5x-3x=2x
∵OE平分∠BOD
∴∠BOE=∠DOE=2x,∠BOD=4x
∵∠BOE+∠AOE=180°
∴2x+10x=180°
∴x=15°
∴∠BOD=4×15°=60°
【解析】【分析】(1)由∠BOC=130°可得∠BOD=50°根据OE平分∠BOD得
,根据对顶角相等可得∠AOD=∠BOC=130°即可求出∠AOE的度
数;(2)①由OE平分∠BOD可得∠BOE=∠DOE由OF⊥OE可得∠EOF=90°,故∠DOF=90°-∠DOE由图形可计算出:∠AOF=90°-∠BOE,故∠AOF=∠DOF可证DF平分∠AOD②依题意设∠DOF=3x,则∠AOF=5x由OF平分∠AOE,可得∠EOF=∠AOF=5x,∠AOE=10x,可得:∠DOE=∠EOF-∠DOF=5x-3x=2x由OE平分∠BOD可得
∠BOE=∠DOE=2x,∠BOD=4x由图形可知∠BOE+∠AOE=180°,列出方程求出x即可。