北京数学全等三角形单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京数学全等三角形单元培优测试卷
一、八年级数学轴对称三角形填空题(难)
1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.
【答案】AD的中点
【解析】
【分析】
【详解】
分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出
AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.
详解:如图,过AD作C点的对称点C′,
根据轴对称的性质可得:PC=PC′,CD=C′D
∵四边形ABCD是矩形
∴AB=CD
∴△ABP≌△DC′P
∴AP=PD
即P为AD的中点.
故答案为P为AB的中点.
点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
2.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;

1
2ABC
AEPF
S S

=
四边形
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).
【答案】①②④
【解析】
试题分析:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP=CP,
∴∠PAE=∠PCF,
在△APE与△CPF中,
{?
PAE PCF
AP CP
EPA FPC
∠=∠
=
∠=∠

∴△APE≌△CPF(ASA),
同理可证△APF≌△BPE,
∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=1
2
S△ABC,①②④正确;
而AP=
1
2
BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,
∴故③不成立.
故始终正确的是①②④.
故选D.
考点:1.全等三角形的判定与性质;2.等腰直角三角形.
3.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
【答案】6; 3×22018.
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.
【详解】
解:如图,
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a4=8a1,
a 5=16a 1,
以此类推:a 2019=22018a 1=3×22018
故答案是:6;3×22018.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.
4.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.
【答案】14.
【解析】
【分析】
先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.
【详解】
∵BF 平分∠ABC ,
∴∠DBF =∠CBF ,
∵DE ∥BC ,
∴∠CBF =∠DFB ,
∴∠DBF =∠DFB ,
∴BD =DF ,
同理FE =EC ,
∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.
故答案为:14.
【点睛】
此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.
5.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.
【答案】27
【解析】
【分析】
由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.
【详解】
解:如图,连接AC 交BD 于点O
∵AB AD =,BC DC =,60A ∠=︒,
∴AC 垂直平分BD ,ABD △是等边三角形
∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==
∵CE AB ∥
∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒
∴30DAO ACE ∠=∠=︒
∴6AE CE ==
∴2DE AD AE =-=
∵60CED ADB ∠=∠=︒
∴EDF 是等边三角形
∴2DE EF DF ===
∴4CF CE EF =-=,2OF OD DF =-=
∴2223OC CF OF =-=
∴2227BC BO OC =
+=
【点睛】 本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.
6.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;
②QP //AR ;③△BRP ≌△QSP ;④BR
QS ,其中一定正确的是(填写编号)
_____________.
【答案】①,②
【解析】
【分析】
连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BR
QS .
【详解】
解:连接AP
①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,
∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP ,
在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,
∵AP=AP ,PR=PS ,
∴AR=AS ,
∴①正确;
②∵AQ=QP ,
∴∠QAP=∠QPA ,
∵∠QAP=∠BAP ,
∴∠QPA=∠BAP ,
∴QP ∥AR ,
∴②正确;
③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,
不满足三角形全等的条件,故③④错误;
故答案为:①②.
【点睛】
本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.
7.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,
123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三
角形.若123A A A △的三个顶点坐标为()()()1232,0,1
,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________
【答案】()8,0-
【解析】
【分析】
根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A 19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA 19,写出坐标即可.
【详解】
解:设到第n 个三角形顶点的个数为y
则y=2n+1,当2n+1=19时,n=9,
∴A 19是第9个三角形的最后一个顶点,
∵等腰直角三角形的斜边长分别为2,4,6....
∴第9个等腰直角三角形的斜边长为2×9=18,
由图可知,第奇数个三角形在x 轴下方,关于直线x=1对称,
∴OA 19=9-1=8,
∴19A 的坐标为()8,0-
故答案是()8,0-
【点睛】
本题考查点的坐标变化规律,根据顶点个数与三角形的关系,判断出点A 19所在的三角形是解题关键
8.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.
【答案】12
【解析】
【分析】
延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.
【详解】
延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:
∵M 为EF 中点,
∴ME =MF ,
在△BME 和△GMF 中,
BM MG BME GMF
ME MF =⎧⎪∠=∠⎨⎪=⎩
, ∴△BME ≌△GMF (SAS ),
∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,
∴FG ∥BE ,
∴∠C =∠GFC ,
∵∠A +∠C =180°,∠DFG +∠GFC =180°,
∴∠A =∠DFG ,
∵AB =BE ,
∴AB =FG ,
在△DAB 和△DFG 中,
AB FG A DFG
AD DF =⎧⎪∠=∠⎨⎪=⎩
, ∴△DAB ≌△DFG (SAS ),
∴DB =DG ,S △DAB =S △DFG ,
∵MG =BM ,
∴DM ⊥BM ,
∴五边形ABEFD 的面积=△DBG 的面积=
12×BG ×DM =12
×8×3=12, 故答案为:12.
【点睛】
本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.
9.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC 为格点三角形,在图中最多能画出_____个格点三角形与△ABC 成轴对称.
【答案】6
【解析】
【分析】
根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.
【详解】
如图,最多能画出6个格点三角形与△ABC成轴对称.
故答案为:6.
【点睛】
本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.
10.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,
△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.
【答案】64a
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.
【详解】
∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.
∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.
又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.
∵∠MON =∠1=30°,∴OA 1=A 1B 1=a ,∴A 2B 1=a .
∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°.
∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,
∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,
A 5
B 5=16B 1A 2=16a ,以此类推:A 7B 7=64B 1A 2=64a .
故答案为:64a .
【点睛】
本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.
二、八年级数学轴对称三角形选择题(难)
11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).
A .PA P
B =
B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
【答案】D
【解析】
【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.
【详解】
解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥
∴PA PB =,选项A 正确;
在△AOP 和△BOP 中,
PO PO PA PB =⎧⎨=⎩
, ∴AOP BOP ≅
∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;
由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .
【点睛】
本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.
12.点A 的坐标是(2,2),若点P 在x 轴或y 轴上且△APO 是等腰三角形,这样的点P 共有( )个
A .6
B .7
C .8
D .9
【答案】C
【解析】
【分析】
根据等腰三角形的性质,要使△AOP 是等腰三角形,可以分两种情况考虑:当OA 是底边时,作OA 的垂直平分线,和坐标轴出现2个交点;当OA 是腰时,则分别以点O 、点A 为圆心,OA 为半径画弧,和坐标轴出现6个交点,这样的点P 共8个.
【详解】
如图,分两种情况进行讨论:
当OA 是底边时,作OA 的垂直平分线,和坐标轴的交点有2个;
当OA 是腰时,以点O 为圆心,OA 为半径画弧,和坐标轴有4个交点;以点A 为圆心,OA 为半径画弧,和坐标轴出现2个交点;
∴满足条件的点P 共有8个,
故选:C .
【点睛】
本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA 为腰或底两种情况分类讨论,运用数形结合的思想进行解决.
13.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】D 【解析】
【分析】
根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确. 【详解】
根据题意,BPC 36060290150∠=-⨯-= , BP PC =,
()
PBC 180150215∠∴=-÷=,①正确;
根据题意可得四边形ABCD 是轴对称图形,④正确;
∵∠DAB+∠ABC=45°+60°+60°+15°=180°,
∴AD//BC ,②正确;
∵∠ABC+∠BCP=60°+15°+15°=90°,
∴PC ⊥AB ,③正确,
所以四个命题都正确,
故选D . 【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键. 14.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )
A .90α+
B .1902α+
C .180α-
D .1802α-
【答案】D
【解析】
【分析】
过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.
【详解】
解:
过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.
此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°
) 所以 x°
=180°-2α 【点睛】
求出M,N 在什么位子△PMN 周长最小是解此题的关键.
15.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )
A .①②③
B .①②④
C .②③④
D .①②③④
【答案】B
【解析】
【分析】
首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出
∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;
通过证明△EDC和△EMD是等腰直角三角形,得到ED MD,再通过证明
△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.
【详解】
∵AC=BC,∠ACB=90°,AD=DB,
∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,
∴∠AEC=∠CEG.
∵AE=GE,EC=EC,
∴△AEC≌△GEC(SAS),
∴CA=CG,∠A=∠CGE=45°.
∵∠EDG=90°,
∴∠DEG=∠DGE=45°,
∴DE=DG,∠AEF=∠DEG=∠A=45°,
故②正确;
∵DE=DG,∠CDE=∠BDG=90°,DC=DB,
∴△EDC≌△GDB(SAS),
∴∠CED=∠BGD,ED=GD.
∵HD平分∠CHG,
∴∠GHD=∠EHD.
∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,
∴∠HDG=∠HDE.
∵∠EDG=∠ADC=90°,
∴∠GDH=∠EDH=45°,故①正确;
∵∠EDC=90°,ED=GD,
∴△EDC是等腰直角三角形,
∴∠DEG=45°.
∵∠GDH=45°,
∴∠EDH=45°,
∴△EMD是等腰直角三角形,
∴ED MD.
∵∠AEF=∠DEG=∠A=45°,
∴∠AFE=∠CFG=90°.
∵∠EDC=90°,
∴∠EFC=∠EDC=90°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠FEC=∠GEH,∠DEC=∠AEH,
∴∠FEC=∠DEC.
∵EC=EC,
∴△EFC≌△EDC,
∴EF=ED,
∴EF=2MD.
故③错误;
∵CG=CD+DG=AD+ED=AE+ED+ED,
∴CG=2DE+AE,
故④正确.
故选B.
【点睛】
本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
16.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()
A.108°B.114°C.126°D.129°
【答案】C
【解析】
【分析】
按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.
【详解】
解:展开如图,五角星的每个角的度数是,
180
=36°.
5
∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,
∴∠OCD=180°-36°-18°=126°,故选C.
【点睛】
本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.
17.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

若△PQR 周长最小,则最小周长是( )
A.6 B.12 C.16 D.20
【答案】B
【解析】
作点P关于OA的对称点点E,点P关于OB的对称点点F,连接EF分别交OA于点Q,交OB于点R,连=接OE、OF,
∵P、E关于OA对称,∴OE=OP=12,∠EOA=∠AOP,QE=QP,
同理可证OP=OF=12,∠BOP=∠BOF,RP=RF,
∴OE=OF=12,∠EOF=∠EOP+∠FOP=2∠AOB=60°,
∴△OEF是等边三角形,
∴EF=12,
∴C△PQR=PQ+PR+QR=EQ+QR+RF=EF=12.
故选B.
点睛:本题关键在于利用轴对称的性质确定△PQR 周长最小时点Q、R的位置,再结合等边三角形的判定求出△PQR 的周长.
18.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分
∠BAC;④△ADE周长等于AB+AC.其中正确的是( )
A.①②③B.②③④C.①③④D.①②④
【答案】C
【解析】
【分析】
根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.
【详解】
①∵IB平分∠ABC,∴∠DBI=∠CBI.
∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.
故本选项正确;
②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;
③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分
∠BAC.故本选项正确;
④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.
故本选项正确;
其中正确的是①③④.
故选C.
【点睛】
本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.
19.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()
A.12 B.16 C.24 D.32
【答案】A
【解析】
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.
【详解】
连接AD,
∵△ABC 是等腰三角形,点D 是BC 边的中点,
∴AD ⊥BC ,
∵EF 是线段AC 的垂直平分线,
∴点C 关于直线EF 的对称点为点A ,
∴AD 的长为CM+MD 的最小值,
∵△CDM 周长的最小值为8,
∴AD=8-
12BC=8-2=6 ∴S △ABC =12BC•AD=12
×4×6=12, 故选A .
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可
得BD=DE
,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确. 如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =,
∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。

相关文档
最新文档