深圳平湖外国语学校中学部数学全等三角形单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳平湖外国语学校中学部数学全等三角形单元培优测试卷
一、八年级数学轴对称三角形填空题(难)
1.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限
内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,1
2
),且
△ABP和△ABC的面积相等,则a=_____.
【答案】-8
3

【解析】
【分析】
先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的
面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=13
2
,故可得出a的值.
【详解】
∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,
∴22
3+213
AB==,
∵△ABC是等腰直角三角形,∠BAC=90°,

1113
•1313
222 ABC
S AB AC⨯⨯
===,
作PE⊥x轴于E,连接OP,
此时BE=2﹣a,
∵△ABP的面积与△ABC的面积相等,

111
•••
222 ABP POA AOB BOP
S S S S OA OE OB OA OB PE ++
=﹣=﹣,
111113
3322
22222
a
⨯⨯+⨯⨯⨯⨯
=(﹣)﹣=,
解得a=﹣8
3

故答案为﹣8
3

【点睛】
本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S △ABP =S △POA +S △AOB -S △BOP 列出关于a 的方程.
2.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.
【答案】4
【解析】
【分析】
以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.
【详解】
解:如图,使△AOP 是等腰三角形的点P 有4个.
故答案为4.
【点睛】
本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.
3.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.
【答案】30
【解析】
【分析】
根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性
质得出
1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,
PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】
解:如图示:连接OC,OD,
∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,
∵OP=5cm,

1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,
OP=OD=5cm,
∵△PEF的周长是5cm,
∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,
∴△OCD是等边三角形,
∴∠COD=60°,

111
222
30 AOB AOP BOP COP DOP COD,
故答案为:30.
【点睛】
本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.
4.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于
1
2
MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;
②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是
__________________.(填所有正确说法的序号)
【答案】4
【解析】
【分析】
①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;
②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出
∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;
③根据∠1=∠B可知AD=BD,故可得出结论;
④先根据直角三角形的性质得出∠2=30°,CD=
1
2
AD,再由三角形的面积公式即可得出结论.
【详解】
①连接NP,MP.在△ANP与△AMP中,∵
AN AM
NP MP
AP AP
=


=

⎪=

,∴△ANP≌△AMP,则
∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;
②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.
∵AD是∠BAC的平分线,∴∠1=∠2=
1
2
∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;
③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;
④∵在Rt△ACD
中,∠2=30°,∴CD=
1
2
AD,∴BC=BD+CD=AD+
1
2
AD=
3
2
AD,S△DAC=
1
2
AC•CD=
1
4
AC•AD,∴S
△ABC =
12AC •BC =12AC •32AD =34
AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.
【点睛】
本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.
5.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。

【答案】8
【解析】
【分析】
分别以A 、B 点为圆心,AB 为半径作圆,找到格点即可(A 、B 、C 共线除外);此外加上在AB 的垂直平分线上有两个格点,即可得到答案.
【详解】
解:以A 点为圆心,AB 为半径作圆,找到格点即可,(A 、B 、C 共线除外);以B 点为圆心,AB 为半径作圆,在⊙B 上的格点为C 点;在AB 的垂直平分线上有两个格点.故使△ABC 是等腰三角形的格点C 有8个.
【点睛】
本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.
6.等腰三角形一边长等于4,一边长等于9,它的周长是__.
【答案】22
【解析】
【分析】
等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;
【详解】
解:因为4+4=8<9,0<4<9+9=18,
∴腰的不应为4,而应为9,
∴等腰三角形的周长=4+9+9=22.
故答案为22.
【点睛】
本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
7.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相交于点 D ,过点 D 分别作 DE⊥AB ,DF⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.
【答案】3
【解析】
【分析】
连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.
【详解】
如图,连接CD,BD,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
CD BD
DF DE






∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=11,AC=5,
∴BE=
1
2
(11-5)=3.
故答案为:3.
【点睛】
此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
8.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
【答案】
10
3
或10
【解析】
【分析】
根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.
【详解】
当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,
∵PO=AO-AP=10-2t,OQ=t
当PO=QO时,
102t t
-=
解得
10
3 t=
当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时
∵PO=AP-AO=2t-10,OQ=t
当PO=QO时,
210
t t
-=
解得10
t=
故答案为:10
3
或10
【点睛】
本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.
9.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .
【答案】33
【解析】
试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,
∴点B、D关于AC对称,
连接ED,则ED就是所求的EF+BF的最小值的线段,
∵E为AB的中点,∠DAB=60°,
∴DE⊥AB,
∴ED=22
-=22
AD AE
-=33,
63
∴EF+BF的最小值为33.
10.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是_____.
【答案】9.6.
【解析】
【分析】
由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长.在△ABC中,利用面积法可求出BQ的长度,此题得解.
【详解】 ∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .
过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.
∵S △ABC 12=
BC •AD 12=AC •BQ ,∴BQ 12810
BC AD AC ⋅⨯===9.6. 故答案为:9.6.
【点睛】
本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.
二、八年级数学轴对称三角形选择题(难)
11.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )
A .直角三角形
B .钝角三角形
C .等边三角形
D .等腰三角形 【答案】C
【解析】
【分析】
根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。

【详解】
如图所示,根据题意,作出相应的图形,可知:
∵P 和1p 点关于OB 对称,p 和2p 关于OA 对称
∴可得1
1POB POB ∠=∠=∠,22P OA POA ∠=∠=∠ 12OP OP OP ==(垂线段的性质)
∴12POP △为等腰三角形
∵1230AOB ∠=∠+∠=︒
1221222(12)60POP ∠=∠+∠=∠+∠=︒
∴等腰12POP △为等边三角形.故本题选C.
【点睛】
本题主要考查垂线段的性质和定理,以及等边三角形的证明方法(有一个角为60︒的等腰三角形为等边三角形).
12.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【分析】
根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.
【详解】
根据题意,BPC 36060290150∠=-⨯-= , BP PC =,
()
PBC 180150215∠∴=-÷=,①正确;
根据题意可得四边形ABCD 是轴对称图形,④正确;
∵∠DAB+∠ABC=45°+60°+60°+15°=180°, ∴AD//BC ,②正确;
∵∠ABC+∠BCP=60°+15°+15°=90°, ∴PC ⊥AB ,③正确,
所以四个命题都正确,
故选D .
【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.
13.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )
A .90α+
B .1902α+
C .180α-
D .1802α-
【答案】D
【解析】
【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.
【详解】
解:
过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.
此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°

所以 x°
=180°-2α 【点睛】
求出M,N 在什么位子△PMN 周长最小是解此题的关键.
14.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:
①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.
则其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
【答案】A
【解析】
【分析】
利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.
【详解】
∵,DE AB DF AC ⊥⊥,
∴∠DEA=∠DFA=90︒,
∵120BAC ︒∠=,
∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;
∵120BAC ︒∠=,
∴∠B+∠C=60︒,
∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,
∴BH=AH ,AG=CG ,
∴∠BAH=∠B ,∠GAC=∠C ,
∴∠BAH+∠GAC=60︒,
∵无条件证明∠GAD=∠HAD,
∴AD 不一定平分GAH ∠,故②错误;
∵∠ADF+∠DAF=90︒,∠B=∠BAH,
90BAH DAF ∠+∠≠,
∴B ADF ∠≠∠,故③错误;
∵90B BHE ∠+∠=,30B ∠≠ ,
∴ 60BHE ∠≠,
∴60DHG ∠≠,
∴DHG HDG ∠≠∠,
∴GD GH ≠,故④错误,
故选:A.
【点睛】
此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.
15.在一个33⨯的正方形网格中,A ,B 是如图所示的两个格点,如果C 也是格点,且ABC 是等腰三角形,则符合条件的C 点的个数是( )
A .6
B .7
C .8
D .9
【答案】C
【解析】
【分析】 根据题意、结合图形,画出图形即可确定答案.
【详解】
解:根据题意,画出图形如图:共8个.
故答案为C.
【点睛】
本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.
16.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )
A .16
B .18
C .20
D .24
【答案】A
【解析】
【分析】 根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.
【详解】
解:∵DE 是BC 的垂直平分线,
∴DB=DC ,BC=2CE=8
又∵AABC 的周长为24,
∴AB+BC+AC=24
∴AB+AC=24-BC=24-8=16
∴△ABD 的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A
【点睛】
本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
17.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )
A .①③
B .①②④
C .①③④
D .①②③⑤
【答案】D
【解析】
【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ;
②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;
③证明△AEF ≌△BED 即可;
④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;
⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .
【详解】
①∵AD 为△ABC 的高线,
∴CBE +∠ABE +∠BAD =90°,
∵Rt △ABE 是等腰直角三角形,
∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,
∴∠CBE +∠BAD =45°,
∴∠DAE =∠CBE ,故①正确;
在△DAE 和△CBE 中,
AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩
===,
∴△ADE ≌△BCE (SAS );
②∵△ADE ≌△BCE ,
∴∠EDA =∠ECB ,
∵∠ADE +∠EDC =90°,
∴∠EDC +∠ECB =90°,
∴∠DEC =90°,
∴CE ⊥DE ;
故②正确;
③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,
∴∠BDE =∠AFE ,
∵∠BED +∠BEF =∠AEF +∠BEF =90°,
∴∠BED =∠AEF ,
在△AEF 和△BED 中,
BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩
===,
∴△AEF ≌△BED (AAS ),
∴BD =AF
故③正确;
∵△AEF ≌△BED
∴DE=EF, 又DE ⊥CF ,
∴△DEF 为等腰直角三角形,故④错误;
④∵AD=BC,BD=AF,
∴CD=DF,
∵AD⊥BC,
∴△FDC是等腰直角三角形,
∵DE⊥CE,
∴EF=CE,
∴S△AEF=S△ACE,
∵△AEF≌△BED,
∴S△AEF=S△BED,
∴S△BDE=S△ACE.
故④正确;
故选:D.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证
△BFE≌△CDE是解题的关键.
18.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.
A.9 B.7 C.8 D.6
【答案】C
【解析】
【分析】
要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.
【详解】
①若CA=CB,则点C在AB的垂直平分线上.
∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.
②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,
C4,C5;
③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.
综上所述:符合条件的点C 的个数有8个.
故选C .
【点睛】
本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.
19.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BA C,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,CA=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CDP ,
又∵CE=CD,EO=DP ,
∴CEO CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
20.如图,∠AOB =30º,∠AOB 内有一定点 P ,且 OP =12,在 OA 上有一动点 Q ,OB 上有 一动点 R 。

若△PQR 周长最小,则最小周长是( )
A .6
B .12
C .16
D .20
【答案】B 【解析】
作点P 关于OA 的对称点点E ,点P 关于OB 的对称点点F ,连接EF 分别交OA 于点Q ,交
OB于点R,连=接OE、OF,
∵P、E关于OA对称,∴OE=OP=12,∠EOA=∠AOP,QE=QP,
同理可证OP=OF=12,∠BOP=∠BOF,RP=RF,
∴OE=OF=12,∠EOF=∠EOP+∠FOP=2∠AOB=60°,
∴△OEF是等边三角形,
∴EF=12,
∴C△PQR=PQ+PR+QR=EQ+QR+RF=EF=12.
故选B.
点睛:本题关键在于利用轴对称的性质确定△PQR 周长最小时点Q、R的位置,再结合等边三角形的判定求出△PQR 的周长.。

相关文档
最新文档