相似三角形重要模型-手拉手模型(学生版)-初中数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形重要模型-手拉手模型
相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。

而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。

手拉手相似证明题一般思路方法:
①由线段乘积相等转化成线段比例式相等;
②分子和分子组成一个三角形、分母和分母组成一个三角形;
③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;
④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。

模型1.“手拉手”模型(旋转模型)
【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

1)手拉手相似模型(任意三角形)
条件:如图,∠BAC =∠DAE =α,
AD AB =AE AC
=k ;结论:△ADE ∽△ABC ,△ABD ∽△ACE ;EC BD =k .2)手拉手相似模型(直角三角形)
条件:如图,∠AOB =∠COD =90°,
OC OA =OD OB =k (即△COD ∽△AOB );结论:△AOC ∽△BOD ;BD AC =k ,AC ⊥BD ,S ABCD =12AB ×CD .3)手拉手相似模型(等边三角形与等腰直角三角形)
条件:M 为等边三角形ABC 和DEF 的中点;结论:△BME ∽△CMF ;
BE CF
=3.条件:△ABC 和ADE 是等腰直角三角形;结论:△ABD ∽△ACE .1(2023秋·福建泉州·九年级校考期末)
问题背景:(1)如图①,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;
尝试应用:(2)如图②,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =60°,AC 与DE
相交于点F ,点D 在BC 边上,DF CF
=233,求AD BD 的值;拓展创新:(3)如图③,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23,求AD 的长.
2(2023秋·江苏无锡·九年级校考阶段练习)
【模型呈现:材料阅读】如图,点B ,C ,E 在同一直线上,点A ,D 在直线CE 的同侧,△ABC 和△CDE 均为等边三角形,AE ,BD 交于点F ,对于上述问题,存在结论(不用证明):
(1)△BCD ≌△ACE (2)△ACE 可以看作是由△BCD 绕点C 旋转而成;⋯
【模型改编:问题解决】
点A ,D 在直线CE 的同侧,AB =AC ,ED =EC ,∠BAC =∠DEC =50°,直线AE ,BD 交于F ,如图1:点B 在直线CE 上,①求证:△BCD ∽△ACE ; ②求∠AFB 的度数.
如图2:将△ABC 绕点C 顺时针旋转一定角度.③补全图形,则∠AFB 的度数为
;④若将“∠BAC =∠DEC =50°”改为“∠BAC =∠DEC =m °”,则∠AFB 的度数为
.(直接写结
论)
【模型拓广:问题延伸】
如图3:在矩形ABCD和矩形DEFG中,AB=2,AD=ED=23,DG=6,连接AG,BF,求BF
AG的值.
图1 图2 图3
3(2023春·湖北黄冈·九年级专题练习)【问题呈现】
△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.
(1)如图1,当m=1时,直接写出AD,BE的位置关系:;
(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.
4(2023秋·福建泉州·九年级校考阶段练习)如图,已知△ABC中,AB=AC,∠BAC=α.点D是△ABC 所在平面内不与点A、C重合的任意一点,连接CD,将线段CD绕点D顺时针旋转α得到线段DE,连接AD、BE.
(1)如图1,当α=60°时,求证:BE=AD.
(2)当α=120°时,请判断线段BE与AD之间的数量关系是,并仅就图2的情形说明理由.
(3)当α=90°时,且BE⊥AB时,若AB=8,BE=2,点E在BC上方,求CD的长.
5(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.
(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;
(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;
(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;
(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=

6(2023·山东济南·九年级统考期中)问题背景:一次小组合作探究课上,小明将一个正方形ABCD和等腰Rt△CEF按如图1所示的位置摆放(点B、C、E在同一条直线上),其中∠ECF=90°.小组同学进行了如下探究,请你帮助解答:初步探究(1)如图2,将等腰Rt△CEF绕点C按顺时针方向旋转,连接BF,DE.请直接写出BF与DE的关系;(2)如图3,将(1)中的正方形ABCD和等腰Rt△CEF分别改成菱形ABCD和等腰△CEF,其中CE=CF,∠BCD=∠FCE,其他条件不变,求证:BF=DE;
深入探究:(3)如图4,将(1)中的正方形ABCD和等腰Rt△CEF分别改成矩形ABCD和Rt△CEF,其中
∠ECF=90°且CE
CF =CD
BC
=3
4,其它条件不变.①探索线段BF与DE的关系,说明理由;
②连接DF,BE若CE=6,AB=12,直接写出DF2+BE2=.
7(2023春·广东·九年级专题练习)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.
(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC
=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.
课后专项训练
1(2023秋·北京顺义·九年级校考期中)如图,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.则BD
CE的值为()
A.1
2B.2
2
C.2
D.2
2(2023春·浙江金华·九年级校考期中)如图,在Rt△ABC中,∠ABC=90°,以AB,AC为边分别向外
作正方形ABFG和正方形ACDE,CG交AB于点M,BD交AC于点N.若GM
CM
=1
2,则
CG
BD
=
()
A.12
B.34
C.255
D.13013
3(2023春·浙江丽水·九年级专题练习)如图,
在△ABC 中,过点C 作CD ⊥AB ,垂足为点D ,过点D 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =22,CD =32,则EO ⋅FO 的值为( ).
A.63
B.4
C.56
D.6
4(2022·广西梧州·统考一模)如图,
在△ABC 中,∠C =45°,将△ABC 绕着点B 逆时针方向旋转,使点C 的对应点C ′落在CA 的延长线上,得到△A ′BC ′,连接AA ′,交BC ′于点O .下列结论:①∠AC ′A ′=90°;②AA ′=BC ′;③∠A ′BC ′=∠A ′AC ′;④△A ′OC ′∽△BOA .其中正确结论的个数是()
A.1
B.2
C.3
D.4
5(2023·广东深圳·校联考模拟预测)如图,
已知▱ABCD ,AB =3,AD =8,将▱ABCD 绕点A 顺时针旋转得到▱AEFG ,且点G 落在对角线AC 上,延长AB 交EF 于点H ,则FH 的长为.
6(2022·安徽·模拟预测)如图,将边长为3的菱形ABCD绕点A逆时针旋转到菱形AB C D 的位置,使点B 落在BC上,B C 与CD交于点E.若BB =1,则CE的长为.
7(2021·湖南益阳·统考中考真题)如图,Rt△ABC中,∠BAC=90°,tan∠ABC=3
2,将△ABC绕A点
顺时针方向旋转角α(0°<α<90°)得到△AB C ,连接BB ,CC ,则△CAC 与△BAB 的面积之比等于.
8(2023秋·山东济南·九年级校考阶段练习)如图,已知∠ACB=∠DCE=90°,∠ABC=∠CED=
∠CAE=30°.
(1)求证:△ACD∽△BCE;(2)若AC=3,AE=8,求AD.
9(2023·安徽滁州·九年级校考阶段练习)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P、M.求证:
(1)△BAE∽△CAD;(2)MP⋅MD=MA⋅ME.
10(2023秋·湖北孝感·九年级校联考阶段练习)问题背景:如图1,在△ABC中,∠ACB=90°,AC= BC,AD是BC边上的中线,E是AD上一点,将△CAE绕点C逆时针旋转90°得到△CBF,AD的延长线
交BF于点P.问题探究:(1)当点P在线段BF上时,证明EP+FP=2BP.
①先将问题特殊化,如图2,当CE⊥AD时,证明:EP+FP=2BP;
②再探究一般情形,如图1,当CE不垂直AD时,证明:EP+FP=2BP;
拓展探究:(2)如图3,若AD的延长线交BF的延长线于点P时,直接写出一个等式,表示EP,FP,BP之间的数量关系.
11(2022·河南·九年级专题练习)规定:有一角重合,且角的两边叠合在一起的两个相似四边形叫做“嵌套四边形”,如图,四边形ABCD和AMPN就是嵌套四边形.
(1)问题联想:如图①,嵌套四边形ABCD,AMPN都是正方形,现把正方形AMPN以A为中心顺时针旋转150°得到正方形AM'P'N',连接BM',DN'交于点O,则BM'与DN'的数量关系为,位置关系为;
(2)类比探究:如图②,将(1)中的正方形换成菱形,∠BAD=∠MAN=60,其他条件不变,则(1)中的结论还成立吗?若成立,请说明理由;若不成立,请给出正确的结论,并说明理由;
(3)拓展延伸:如图3,将(1)中的嵌套四边形ABCD和AMPN换成是长和宽之比为2:1的矩形,旋转角换成α(90°<α<180°),其他条件不变,请直接写出BM'与DN'的数量关系和位置关系.
12(2023·山东青岛·模拟预测)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当ED ∥BC 时,则α=;
(2)【初步探究】如图3,当点E ,F 重合时,请直接写出AF ,BF ,CF 之间的数量关系:
;(3)【深入探究】如图4,当点E ,F 不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在△ABC 与△CDE 中,∠ACB =∠DCE =90°,若BC =mAC ,CD =mCE (m 为常数).保持△ABC 不动,将△CDE 绕点C 按逆时针方向旋转α(0°<α<90°),连接AE ,BD ,延长BD 交AE 于点F ,连接CF ,如图6.试探究AF ,BF ,CF 之间的数量关系,并说明理由.
13(2023秋·湖北恩施·九年级校考阶段练习)问题提出 如图1,
在△ABC 中,AB =BC ,点D 是边BC 上一点,△ADE 是等腰三角形,AD =DE ,∠ADE =∠B =α0<α≤90° ,DE 交AC 于点F ,探究∠DCE 与α的数量关系.
问题探究 (1)先将问题特殊化,如图2,当α=90°时,直接写出∠DCE 的大小;
(2)再探究一般情形,如图1,求∠DCE 与α的数量关系.
问题拓展 将图1特殊化,如图3,当α=60°时,若CD BD =12,求CF AF
的值.
14(2023春·河南·九年级专题练习)由两个顶角相等且有公共顶角顶点的特殊多边形组成的图形,
如果把它们的底角顶点连接起来,则在相对位置变化的过程中,始终存在一对全等三角形,我们把这种模型称
为“手拉手模型”.
(1)【问题发现】如图1所示,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AE =AD ,∠BAC =∠DAE =90°,连接BD 、CE ,两线交于点P ,BD 和CE 的数量关系是;BD 和CE 的位置关系是;
(2)【类比探究】如图2所示,点P 是线段AB 上的动点,分别以AP 、BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC 、PC 于点M 、N .
①求∠DMC 的度数;②连接AC 交DE 于点H ,直接写出DH BC 的值;(3)【拓展延伸】如图3所示,已知点C 为线段AE 上一点,AE =6,△ABC 和△CDE 为AE 同侧的两个等边三角形,连接BE 交CD 于N ,连接AD 交BC 于M ,连接MN ,直接写出线段MN 的最大值.
15(2023秋·江苏泰州·九年级校考阶段练习)类比探究
【问题背景】已知D 、E 分别是△ABC 的AB 边和AC 边上的点,且DE ∥BC ,则△ABC ∽△ADE 把△ADE 绕着A 逆时针方向旋转,连接BD 和CE .
①如图2,找出图中的另外一组相似三角形
②若AB =4,AC =3,BD =2,则CE =
.【迁移应用】在Rt △ACB 中,∠BAC =90°,∠C =60°,D 、E 、M 分别是AB 、AC 、BC 中点,连接DE 和CM .①如图3,写出CE 和BD 的数量关系;②如图4,把Rt △ADE 绕着点A 逆时针方向旋转,当D 落在AM 上时,连接CD 和CE ,取CD 中点N ,连接MN ,若CE =23,求MN 的长.
【创新应用】如图5:AB =AC =AE =25,BC =4,△ADE 是直角三角形,∠DAE =90°,tan ∠ADE =2,
将△ADE绕着点A旋转,连接BE,F是BE上一点,且BF
BE
=2
5,连接CF,请直接写出CF的取值范围.
16(2023秋·山东济南·九年级校考阶段练习)(1)如图1,正方形ABCD和正方形DEFG(其中AB> DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系是,位置关系是.
(2)如图2,矩形ABCD和矩形DEFG,3AD=2DG,3AB=2DE,DC=DG,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由.
17(2023秋·重庆沙坪坝·九年级校考阶段练习)如图,△ABC中,∠BAC=90°,AB=AC=8,△AEF 中,∠EAF=90°,AE=AF,连接BE.
(1)如图1,当AE平分∠BAC时,EF与AB交于点D,若AE=32,求tan∠DBE的值;
(2)如图2,当AE⊥BE时,连接CF,与AE交于点H.猜想AH与BE之间的数量关系,并证明你的猜想;
(3)如图3,AN⊥BC于点N,取BE的中点M,连接AM、CM、MN.将△AEF绕点A旋转.若AE= 22,在旋转过程中,当线段CM最大时,请直接写出△AMN的面积.
18(2022秋·广东深圳·九年级校联考期中)【模型发现】如图1,△ABC∽△ADE,求证:△ABD∽
△ACE.
【深入探究】如图2,等边△ABC中,AB=3,D是AC上的动点,连接BD,将BD绕着点D逆时针旋转60°得到DE,连接CE,当点D从A运动到C时,求点E的运动路径长.
【应用拓展】如图3,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,E是AD上的一点,连接BE,将BE
绕着点E逆时针旋转90°得到EF,EF交BC于点G,连接CF,若EG=1
2
FG,则AB
CF的值为.。

相关文档
最新文档