【优化方案】2020高中数学 第1章1.5.3知能优化训练 新人教A版选修2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a b f (x )d x -⎠⎛a b
f (t )d t 的值( )
A .小于零
B .等于零
C .大于零
D .不能确定
解析:选B.在[a ,b ]上,f (x )的积分等于f (t )的积分,因此,其值为0. 2.已知⎠⎛0t x d x =2,则⎠⎛-t
0 x d x 等于( )
A .0
B .2
C .-1
D .-2 解析:选D.∵f (x )=x 在[-t ,t ]上是奇函数,
∴⎠⎛-t t x d x =0.而⎠⎛-t t x d x =⎠⎛-t 0 x d x +⎠⎛0t x d x , 又⎠⎛0
t x d x =2, ∴⎠⎛-t
0 x d x =-2.故选D. 3.不用计算,根据图形,用不等号连接下列式子.
⎠⎛01x d x ________⎠⎛0
1
x 2d x (如图所示).
答案:>
4.已知⎠⎜⎛0
π
2sin x d x
=⎠⎜⎛π
2
sin x d x =1,⎠⎜⎛0
π
2 x 2
d x =π
3
24
,求下列定积分:
(1)∫π
0sin x d x ;(2) ⎠⎜⎛0
π
2 (sin x +3x 2
)d x .
解:(1)∫π
0sin x d x =⎠⎜⎛0π
2sin x d x +⎠⎜⎛π
2
sin x d x =2;
(2) ⎠⎜⎛0π
2 (sin x +3x 2
)d x
=⎠⎜⎛0π
2sin x d x +3⎠⎜⎛0
π
2x 2
d x =1+π3
8
.
一、选择题
1.定积分⎠⎛a
b f (x )d x 的大小( )
A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关
B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关
C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关
D .与f (x ),区间[a ,b ]和ξi 的取法都有关
解析:选A.定积分的大小与被积函数以及积分区间有关,与ξi 的选择无关.
2.已知⎠⎛02f (x )d x =3,则⎠⎛02
[f (x )+6]d x =( )
A .9
B .12
C .15
D .18
解析:选C.根据定积分的性质,
⎠⎛02[f (x )+6]d x =⎠⎛02f (x )d x +⎠⎛0
2
6d x =3+6×2=15.
3.已知定积分⎠⎛06f (x )d x =8,且f (x )为偶函数,则⎠⎛-66
f (x )d x =( )
A .0
B .16
C .12
D .8
解析:选B.偶函数图象关于y 轴对称,故⎠⎛-66
f (x )d x =2⎠⎛06
f (x )d x =16.故选B.
4.下列等式成立的是( ) A.⎠⎛a b
x d x =b -a B.⎠⎛a b
x d x =1
2
C.⎠⎛
-11
|x |d x =2⎠⎛0
1
|x |d x
D.⎠⎛a b (x +1)d x =⎠⎛a b
x d x
解析:选C.由y =|x |为偶函数,图像关于y 轴对称,得⎠⎛-11
|x |d x =2⎠⎛01
|x |d x ,故选C. 5.设a =⎠⎛01x 1
3d x ,b =⎠⎛01
x 2d x ,c =⎠⎛01
x 3
d x ,则a ,b ,c 的大小关系是( )
A .c >a >b
B .a >b >c
C .a =b >c
D .a >c >b
解析:选B.根据定积分的几何意义,易知⎠⎛01
x 3d x <⎠⎛01
x 2d x <⎠⎛01x 1
3d x ,a >b >c ,故选B.
6.若⎠⎛-a a |56x |d x ≤2020,则正数a 的最大值为( )
A .6
B .56
C .36
D .2020
解析:选A.由⎠⎛-a a |56x |d x =56⎠⎛-a a |x |d x ≤2020得⎠⎛-a a |x |d x ≤36,∴⎠⎛-a a |x |d x =
2⎠⎛0
a x d x =a 2
≤36,即0<a ≤6.故正数a 的最大值为6. 二、填空题
7.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b
[f (x )+g (x )]d x =________.
解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛a
b g (x )d x =3+2=5.
答案:5
8.化简⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x +⎠⎛34
f (x )d x +…+⎠⎛99100
f (x )d x =________.
解析:连续运用⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛c b
f (x )d x (a <c <b ),原式=∫1000f (x )d x .
答案:∫100
0f (x )d x
9.由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 解析:由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-⎠⎛-π0
sin x d x .
答案:-⎠⎛-π0
sin x d x 三、解答题
10.已知⎠⎛01
e x d x =e -1,⎠⎛12
e x d x =e 2-e ,⎠⎛0
2
x 2d x =83,⎠⎛12
2x
d x =2ln2.求: (1)⎠⎛02
e x
d x ; (2)⎠⎛02
(e x +3x 2)d x ;
(3)⎠⎛12
(e x +1x )d x .
解:(1)⎠⎛02e x d x =⎠⎛01e x d x +⎠⎛12
e x d x
=e -1+e 2-e =e 2
-1.
(2)⎠⎛02
(e x +3x 2)d x =⎠⎛02
e x d x +⎠⎛02
(3x 2)d x =⎠⎛02
e x d x +3⎠⎛02
x 2d x =e 2-1+8=e 2+7.
(3)⎠⎛12
(e x +1x )d x
=⎠⎛1
2
e x d x +12⎠⎛12
2x
d x =
e 2
-e +ln2.
11.用定积分的意义求下列各式的值.
(1)⎠⎛-1
1 4-x 2
d x ; (2)⎠⎛-12 2x d x . 解:
(1)由y =4-x 2
可得x 2
+y 2
=4(y ≥0), 其图象如图. ⎠⎛-11
4-x 2d x 等于所对圆心角为π3
的弓形面积CED 与矩形ABCD 的面积之和 S 弓形=12×π3×22-12×2×2sin π3=2π
3
-3,
S 矩形=AB ·BC =23,
∴⎠⎛-11
4-x 2
d x =23+2π3-3=2π3
+ 3.
(2)⎠⎛-1
2
2x d x 表示由直线x =-1,x =2,y =0以及y =2x 所围成的图形在x 轴上方的面积减去在x 轴下方的面积,
∴⎠⎛-1
2 2x d x =2×42-1×2
2
=4-1=3.
12.已知函数f (x )=⎩⎪⎨⎪
⎧
x 5
x ∈[-1,1x x ∈[1,π
sin x x ∈[π,3π]
,求f (x )在区间[-1,3π]上的定积分.
解:由定积分的几何意义知
⎠⎛-11x 5d x =0.⎠⎛π
3π
sin x d x =0(如图所示)
⎠⎛-1
3π
f (x )d x =⎠⎛-11
x 5d x +⎠⎛1π
x d x +⎠⎛π3π
sin x d x
=⎠⎛1π
x d x =12(π2
-1).。