(完整word版)制动系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GD12A电动汽车行车制动系统设计
毕
业
设
计
说
明
书
姓名:俞翼鸿
专业:汽车维修与检测
班级:(2)
指导老师: 邹章鸣
南昌理工学院机械工程系
1.。
目录
摘要
Troduction
前言
第一章绪论 (6)
1。
1 制动系统设计的意义 (6)
1。
2 制动系统研究现状 (6)
1.3 本次制动系统应达到的目标 (6)
1.4 本次制动系统设计要求 (6)
第二章制动系统方案论证分析与选择 (7)
2.1 制动器形式方案分析 (7)
2。
1.1 鼓式制动器 (7)
2。
1。
2 盘式制动器 (9)
2。
2 制动驱动机构的结构形式选择 (10)
2.2.1 简单制动系 (10)
2。
2。
2 动力制动系 (10)
2。
2。
3 伺服制动系 (11)
2。
3 液压分路系统的形式的选择 (11)
2.3.1 II型回路 (11)
2.3.2 X型回/路 (12)
2。
3。
3 其他类型回路 (12)
2。
4 液压制动主缸的设计方案 (12)
第三章制动系统设计计算 (15)
3.1 制动系统主要参数数值 (15)
3.1.1 相关主要技术参数 (15)
3.1.2 同步附着系数的分析 (15)
3.2 制动器有关计算 (16)
3.2。
1 确定前后轴制动力矩分配系数β (16)
3。
2。
2制动器制动力矩的确定 (16)
3.2。
3 后轮制动器的结构参数与摩擦系数的选取 (17)
3.2.4 前轮盘式制动器主要参数确定 (18)
3。
3 制动器制动因数计算 (19)
3.3.1 前轮盘式制动效能因数 (19)
3.3。
2 后轮鼓式制动器效能因数 (19)
3。
4 制动器主要零部件的结构设计 (20)
第四章液压制动驱动机构的设计计算 (22)
4。
1 后轮制动轮缸直径与工作容积的设计计算 (22)
4.2 前轮盘式制动器液压驱动机构计算 (23)
4.3 制动主缸与工作容积设计计算 (24)
4.4 制动踏板力与踏板行程 (24)
4.4。
1 制动踏板力 (24)
4.4.2 制动踏板工作行程 (25)
第五章制动性能分析 (26)
5.1 制动性能评价指标 (26)
5.2 制动距离S (26)
5。
3制动器制动力分配曲线 (28)
5。
4驻车制动计算 (29)
5。
5摩擦衬片(衬块)的磨损特性计算 (30)
第六章真空助力制动系统性能分析与计算
6。
1 性能分析与计算方法
6。
2 计算过程及结果分析
总结
致谢
【参考文献】
摘要
制动系统是电动车的一个重要组成部分,它直接影响电动车的安全性电动车制动系统是用以强制行驶中的电动车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停驶的遇上电动车在原地(包括在斜坡上)驻留不动的机构。
随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系统的工作可靠性显得日益重要。
也只有制动效能良好、制动系统工作可靠的电动车,才能充分发挥其动力性能.汽车制动系至少应有两套独立
的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置; 牵引汽车应有自动制动装置。
关键词:关键词: 电动车;制动系统;安全性;制动装置
Troduction
Since twenty—first Century, World automobile has increasedyear by year,Rapid growth Oil consumption and increasingly severe environmental pressure,This will force car
production Industry must take the road of development of energy savingAnd environmental protection, This paper puts forward a new environmentally friendly steam The development trends,Technical improvement to existing vehicles, Improving the level of environmental protection, To encourage hybrid vehicles and advanced learning oil car use, Increase the electric vehicle、Fuel cell vehicle and so on Green car research efforts.
前言
一套制动装置均由制动器和制动驱动机构两部分组成。
制动器有鼓式与盘式之分。
行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制冻杆操纵,且具有专门的中央制动器或利用车轮制动器来进行制动.中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。
行车制动和驻车制动这两套制动装置必须具有独立的制动驱动机构,而且每车必备。
行车制动装置的驱动机构,分液压和气压两种
型式。
用液压传递操纵力时还应有制动主缸和制动轮缸以及管路;用气压操纵时还应有空气压缩机、气路管道、贮气筒,控制阀和制动气室等。
过去,大多数汽车的驻车制动和应急制动都使用中央制动器,其优点是制冻位于主减速器之前的变速器第二轴或传动轴的制动力矩较小,容易满足操纵手力小的要求。
但在用作应急制动时,往往使传动轴超载。
现代汽车由于车速提高,对应急制动的可靠性要求更严,因此,在中、高级轿车和部分总质量在1.5t 以下的载货汽车上,多在后轮制动器上附加手操作的机械式驱动机构,使之兼起驻车制动和应急制动的作用,从而取消了中央制动器.
重型载货汽车由于采用气压制动, 故多对后轮制动器另设独立的由气压控制而以强力弹簧作为制动力源的应急兼驻车制动驱动机构,也不再设置中央制动器。
但也有一些汽车除了采用上述措施外,还保留了由气压驱动的中央制动器,以便提高制动系的可靠性。
第一章绪论
1。
1制动系统设计的意义
汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具.汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。
而制动器又是制动系中直接作用制约汽车运动的一个关健装置,是汽车上最重要的安全件。
汽车的制动性能直接影响汽车
的行驶安全性。
随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。
本次毕业设计题目为Santana2000轿车制动系统设计。
通过查阅相关的资料,运用专业基础理论和专业知识,确定Santana2000轿车制动系统的设计方案,进行部件的设计计算和结构设计。
使其达到以下要求:具有足够的制动效能以保证汽车的安全性;本系统采用X型双回路的制动管路以保证制动的可靠性;采用真空助力器使其操纵轻便;同时在材料的选择上尽量采用对人体无害的材料。
1.2制动系统研究现状
车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务.当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:
1)制动效能:即制动距离与制动减速度;
2)制动效能的恒定性:即抗热衰退性;
3)制动时汽车的方向稳定性;
目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地
测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。
1.3本次制动系统应达到的目标
1)具有良好的制动效能
2)具有良好的制动效能的稳定性
3)制动时汽车操纵稳定性好
4)制动效能的热稳定性好
1。
4本次制动系统设计要求
制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。
利用计算机辅助设计绘制装配图,布置图和零件图.最终进行制动力分配编程,对设计出的制动系统的各项指标进行评价分析.
第二章制动系统方案论证分析与选择
2。
1制动器形式方案分析
汽车制动器几乎均为机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车。
一般摩擦式制动器按其旋转元件的形状分为鼓式和盘式两大类。
2.1.1鼓式制动器
鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用干各类汽车上.鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。
内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动蹄,后者则安装在制动底板上,而制动底板则紧固在前桥的前梁或后桥桥壳半袖套管的凸缘上,其旋转的摩擦元件为制动鼓。
车轮制动器的制动鼓均固定在轮鼓上。
制动时,利用制动鼓的圆柱内表面与制动蹄摩擦路片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。
外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动鼓的外因柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器.在汽车制动系中,带式制动器曾仅用作一些汽车的中央制动器,但现代汽车已很少采用。
所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构.鼓式制动器按蹄的类型分为:领从蹄式制动器
如图所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。
汽车倒车时制动鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。
这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。
领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。
“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小.
领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器.
双领蹄式制动器
若在汽车前进时两制动蹄均为领蹄的制动器,则称为双领蹄式制动器。
显然,当汽车倒车时这种制动器的两制动蹄又都变为从蹄故它又可称为单向双领蹄式制动器。
如图2—5(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此,两蹄对制动鼓作用的合力恰好相互平衡,故属于平衡式制动器.
双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。
这种结构常用于中级轿车的前轮制动器,这是因为这类汽车前进制动时,前轴的动轴荷及附着力大于后轴,而倒车时则相反.
双向双领蹄式制动器
当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器。
它也属于平衡式制动器.由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。
单向增力式制动器
单向增力式制动器如图所示两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。
由于制动时两蹄的法向反力不能相互平衡,因此它居于一种非平衡式制动器.单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在
倒车制动时,其制动效能却是最低的。
因此,它仅用于少数轻、中型货车和轿车上作为前轮制动器.
双向增力式制动器
将单向增力式制动器的单活塞式制动轮缸换用双活塞式制动轮缸,其上端的支承销也作为两蹄共用的,则成为双向增力式制动器。
对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器.
双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。
双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出。
但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降.因此,在轿车领域上己经逐步退出让位给盘式制动器。
但由于成本比较低,仍然在一些经济型车中使用,主要用于制动负荷比较小的后轮和驻车制动。
本次设计最终采用的是领从蹄式制动器。
2。
1.2盘式制动器
盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。
(1)钳盘式
钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。
①定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。
具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求.
②浮动盘式制动器:这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动钳的制动块可兼用于驻车制动。
(2)全盘式
在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。
由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。
通过对盘式、鼓式制动器的分析比较可以得出盘式制动器与鼓式制动器比较有如下均一些突出优点:
(1)制动稳定性好.它的效能因素与摩擦系数关系的K-p曲线变化平衡,所以对摩擦系数的要求可以放宽,因而对制动时摩擦面间为温度、水的影响敏感度就低.所以在汽车高速行驶时均能保证制动的稳定性和可靠性.
(2)盘式制动器制动时,汽车减速度与制动管路压力是线性关系,而鼓式制动器却是非线性关系.
(3)输出力矩平衡。
而鼓式则平衡性差。
(4)制动盘的通风冷却较好,带通风孔的制动盘的散热效果尤佳,故热稳定性好,制动时所需踏板力也较小。
(5)车速对踏板力的影响较小。
综合以上优缺点最终确定本次设计采用前盘后鼓式.前盘选用浮动盘式制动器,后鼓采用领从蹄式制动器.
2.2制动驱动机构的结构形式选择
根据制动力原的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。
而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别.
2.2。
1简单制动系
简单制动系即人力制动系,是靠司机作用于制动塌板上或手柄上的力作为制动力原。
而传力方式有、又有机械式和液压式两种。
机械式的靠杆系或钢丝绳传力,其结构简单,造价低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。
液压式的简单制动系通常简称为液压制动系,用于行车制动装置。
其优点是作用滞后时间短(o.1s-o.3s),工作压力大(可达10 MPa—12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑,质量小、造价低。
但其有限的力传动比限制了它在汽车上的使用范围。
另外,液压管路在过度受热时会形成气泡而影响传输,即产生所谓“汽阻”,使制动效能降低甚至失效;而当气温过低时(-25℃和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使
整个系统都不能继续工作.液压式简单制动系曾广泛用于轿车、轻型及以下的货车和部分中型货车上。
但由于其操纵较沉重,不能适应现代汽车提高操纵轻便性的要求,故当前仅多用于微型汽车上,在轿车和轻型汽车亡已极少采用。
2。
2。
2动力制动系
动力制动系是以发动机动力形成的气压或液压势能作为汽车制动的全部力源进行制动,而司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。
在简单制动系中的踏板力与其行程间的反比例关系在动力制动系中便不复存在,因此,此处的踏板力较小且可有适当的踏板行程。
动力制动系有气压制动系、气顶液式制动系和全液压动力制动系3种。
1)、气压制动系
气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。
但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(o.3s—o.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为o.5MPa—o.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。
2)、气顶液式制动系
气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。
它兼有液压制动和气压制动的主要优点。
由于其气压系统的管路短,故作用滞后时间也较短。
显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t-11t的中型汽车上也有所采用。
3)、全液压动力制动系
全液压动力制动系除具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。
但其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。
2.2。
3伺服制动系
伺服制动系是在人力液压制动系的基础上加设一套出其他能源提供的助力装置.使人力与动力可兼用,即兼用人力和发动机动力作为制功能源的制动系。
在正常情况下,其输出工作压力主要出动力伺服系统产生,而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。
因此,在中级以上的轿车及轻、中型客、货汽车上得到了广泛的应用。
按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分.其伺服能源分别为真空能(负气压能)、气压能和液压能。
2。
3液压分路系统的形式的选择
为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双回路系统,也就是说应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路发生故障失效时,其他完好的回路仍能可
靠地工作。
2.3.1 II型回路
前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称II型。
其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。
这种分路布置方案在各类汽车上均有采用,但在货车上用得最广泛。
这一分路方案总后轮制动管路失效,则一旦前轮制动抱死就会失去转弯制动能力。
对于前轮驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将明显降低并小于正常情况下的一半,另外,由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死而导致汽车甩尾。
2。
3.2 X型回路
后轮制功管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属于一个回路,称交叉型,简称X型。
其特点是结构也很简单,一回路失效时仍能保持50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证
了制动时与整车负荷的适应性。
此时前、后各有一侧车轮有制动作用,使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。
因此,采用这种分路力案的汽车,其主销偏移距应取负值(至20 mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性。
2.3。
3 其他类型回路
左、右前轮制动器的半数轮缸与全部后轮制动器轮缸构成一个独立的回路,而两前轮制动器的另半数轮缸构成另一回路,可看成是一轴半对半个轴的分路型式,简称KI型.
两个独立的问路分别为两侧前轮制动器的半数轮缸和一个后轮制动器所组成,即半个轴与一轮对另半个轴与另一轮的瑚式,简称LL型.
两个独立的回路均由每个前、后制动器的半数缸所组成,即前、后半个轴对前、后半个轴的分路型式,简称HH型。
这种型式的双回路系统的制功效能最好。
HI、LL、HH型的织构均较复杂。
LL型与HH型在任一回路失效时,前、后制动力的比值均与正常情况下相同,且剩余的总制动力可达到正常值的50%左占。
HL型单用回路,即一轴半时剩余制动力较大,但此时与LL型一样,在紧急制动时后轮极易先抱死.
综合以上各个管路的优缺点最终选择X型管路。
2.4液压制动主缸的设计方案
为了提高汽车的行驶安全性,根据交通法规的要求,一些轿车的行车制动装置均采用了双回路制动系统。
双回路制动系统的制动主缸为串列双腔制动主缸,单腔制动主缸已被淘汰。