五华区外国语学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五华区外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3
A .π
B .2π
C .3π
D .4π
2. 若,则下列不等式一定成立的是( ) A . B .
C .
D . 3. 已知等比数列{a n }的前n 项和为S n ,若=4,则
=( )
A .3
B .4
C .
D .13
4. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12)
5. 如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
6. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312
7. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
8. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 9. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1
B .3
C .5
D .9
10.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )
P (K 2>k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708
1.323
2.072 2.706
3.841
5.024
6.635
7.879 10.828
A .25%
B .75%
C .2.5%
D .97.5%
11.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )
A .2
B .3
C .7
D .9
12.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
二、填空题
13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
14.已知f (x )=,则f (﹣)+f ()等于 .
15.给出下列命题:
①存在实数α,使
②函数是偶函数

是函数
的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sin α<sin β
其中正确命题的序号是 .
16.观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
照此规律,第n 个等式为 .
17.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的
,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)
18.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.
三、解答题
19.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且
,PA PB AC BC ==.
(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .
20.已知:函数f (x )=log 2,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).
(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;
(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.
21.(本小题满分12分)
设p :实数满足不等式39a ≤,:函数()()32331
932
a f x x x x -=+
+无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;
(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛
⎫-+++> ⎪ ⎪⎝⎭⎝
⎭,若是t ⌝的必要不充分
条件,求正整数m 的值.
22.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;
(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.
23.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.
(Ⅰ)当x∈[0,]时,求函数f(x)的值域;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),
求f(B)的值.
24.已知函数f(x)=
(Ⅰ)求函数f(x)单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.
五华区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:由三视图可知:此几何体为圆锥的一半,
∴此几何体的体积==2π.
故选:B.
2.【答案】D
【解析】
因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D
答案:D
3.【答案】D
【解析】解:∵S n为等比数列{a n}的前n项和,=4,
∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,
∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),
解得=13.
故选:D.
【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.
4.【答案】A
【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)

解得:x=3,y=1
即4a﹣2b=3(a﹣b)+(a+b)
∵1≤a﹣b≤2,2≤a+b≤4,
∴3≤3(a﹣b)≤6
∴5≤(a﹣b)+3(a+b)≤10
故选A
【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.
5.【答案】D.
第Ⅱ卷(共110分)
6.【答案】A
【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为=0.648.
故选:A.
7.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
8.【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 9. 【答案】C
【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},
∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .
10.【答案】D
【解析】解:∵k >5、024,
而在观测值表中对应于5.024的是0.025, ∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,
故选D . 【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们
必得分的题目.
11.【答案】C
【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,
∴sin
+acos
=﹣
=﹣2,∴a=
,∴f (x )=sin ωx+
cos ωx=2sin (ωx+
).
再根据f ()=2sin (+
)=﹣2,可得
+
=2k π+
,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7, 则ω的可能值为7, 故选:C .
【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.
12.【答案】B
【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x)=kπ,得x=2kπ,
即+2kπ,k∈Z,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
二、填空题
13.【答案】12
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
14.【答案】4.
【解析】解:由分段函数可知f()=2×=.
f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,
∴f()+f(﹣)=+.
故答案为:4.
15.【答案】②③.
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.16.【答案】n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.
【解析】解:观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

等号右边是12,32,52,72…第n个应该是(2n﹣1)2
左边的式子的项数与右边的底数一致,
每一行都是从这一个行数的数字开始相加的,
照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,
故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2
【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
17.【答案】, 无.
【解析】【知识点】等比数列
【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,
所以)=300,=350.
由,
所以是一个等比数列,
所以
所以若该患者坚持长期服用此药无明显副作用。

故答案为:, 无.
18.【答案】120
【解析】
考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
A B C=,根据正弦定理,可设3,5,7
sin:sin:sin3:5:7
===,即可利用余弦定理求解最大角的余弦,
a b
熟记正弦、余弦定理的公式是解答的关键.
三、解答题
19.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:平面与平面平行的判定;空间中直线与直线的位置关系.
20.【答案】
【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,
=log2(1﹣)+2x;
∵y=1﹣在(1,+∞)上是增函数,
故y=log2(1﹣)在(1,+∞)上是增函数;
又∵y=2x在(1,+∞)上是增函数;
∴h(x)在x∈(1,+∞)上单调递增;
同理可证,h(x)在(﹣∞,﹣1)上单调递增;
而h(1.1)=﹣log221+2.2<0,
h(2)=﹣log23+4>0;
故h(x)在(1,+∞)上有且仅有一个零点,
同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,
故函数h(x)有两个零点;
(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为
1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;
故a=;
结合函数a=的图象可得,
<a<0;
即﹣1<a<0.
【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.21.【答案】(1){}
m=.
或;(2)1
125
<<≤
a a a
【解析】
(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2
115a a a a ≤⎧⇒<⎨<>⎩
或.………………………………5分
若为真命题,p 为假命题,则2
2515a a a >⎧⇒<≤⎨
≤≤⎩
.……………………………………6分 于是,实数的取值范围为{}
125a a a <<≤或.……………………………………7分
考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 22.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g(t)=t+﹣,t∈[2,4],
∴g(t)=t+﹣=(t+)﹣,
∵g(t)=t+﹣在[2,4]上为增函数,
∴当t=2时,g(t)min=g(2)=0,
∴m<0.
23.【答案】
【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2
x﹣cos2x+3=2sin2x﹣
+3=2sin2x+2cos2x=4sin(2x+).
∵x∈[0,],
∴2x+∈[,],
∴f(x)∈[﹣2,4].
(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),
∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),
化简得sinC=2sinA,
由正弦定理得:c=2a,
又b=,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,
故解得:A=,B=,C=,
∴f(B)=f()=4sin=2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
24.【答案】
【解析】解:(Ⅰ)∵f(x)=sin cos+cos2
=sin(+),
∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,
∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.
(Ⅱ)∵f(A)=sin(+),
∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,
∴则sinBcosC+sinCcosB=2sinAcosB,
∴sin (B+C )=2sinAcosB ,又sin (B+C )=sinA ≠0,
∴cosB=,又0<B <π,
∴B=

∴可得0<A <,
∴<+



sin (+
)<1,
故函数f (A )的取值范围是(1,).
【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.。

相关文档
最新文档