空气净化基础知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 空气与压缩空气
在地球引力作用下,大量气体聚集在地球周围,形成数千公里的大气层。

气体密度随离地面高度的增加而变得愈来愈稀薄。

探空火箭在3000公里高空仍发现有稀薄大气,有人认为,大气层的上界可能延伸到离地面6400公里左右。

地表大气平均压力为1个大气压,相当于每平方厘米地球表面包围1034g空气。

地球总表面积为510100934平方公里,所以大气总质量约为5.2×1015吨,差不多占地球总质量的百万分之一,大气随高度的增加而逐渐稀薄,50%的质量集中在30km以下的范围内。

高度100km以上的空气质量仅是整个大气圈质量的百万分之一。

地面的大气是多种气体的混合物,其中:氮78%、氧21%、氩0.93%、二氧化碳0.03%、氖
0.0018%,此外还有其他惰性气体、臭氧、水气和尘埃等。

由于环境污染,目前空气还含有二氧化硫、氮氧化物、一氧化碳等有毒气体。

干空气的分子量为28.96,在0℃、760mmHg柱时的密度为1.293g/m3。

空气经过机械压缩以后就成了压缩空气,用作生产压缩空气的设备通常称为空气压缩机。

人类很早就懂得使用压缩空气,现在压缩空气已是人类生产、生活中一种不可缺少的动力。

随着现代工业的不断发展,对压缩空气质量的要求也越来越高,而且呈多样化。

现代产业对压缩空气的要求可分为以下几个方面:
1)压力、流量的要求:任何需要压缩空气的场合对压缩空气的压力和流量都是有要求的。

目前最普遍的压力值在0.7MPa(g)左右。

在一些特殊场合如玻璃行业,对压缩空气的压力要求可能为0.2-0.4 MPa(g)左右;在某些军工企业,对压缩空气压力要求可能在几十MPa。

市场上有各种各样的空气压缩机可以来满足这些要求。

2)干燥度(即含水量或露点温度)的要求:不同的工艺对压缩空气露点温度要求也不同,如用作仪表方面的压缩空气压力露点一般要求在-40℃以下,而在半导体芯片厂对压缩空气的压力露点可能要求在-70℃,但在多数场合,对压缩空气的露点温度要求在0℃以上就已足够。

压缩空气的露点要求通常由干燥机来实现。

3)清洁度的要求(相对比较复杂,包括:固体物、油雾、微生物、有害气体等):由压缩空气过滤器来解决
1.2 压力、流量与温度
压力、流量与温度是压缩空气的三个基本指标。

由于地球引力的作用,地球表面的大气层对地球表面或表面物体所造成的压力称为“大气压”。

由于地球表面的海拔高度不同,所处不同高度的空气密度不同,所以,处在不同高度上的物体受到的大气压力的大小也不同。

所谓标准大气压力是指在摄氏零度(0℃)条件下,在纬度45度的海平面上,所受到的大气压力(干燥空气),经测量标准大气压力等于760mmHg(汞)/cm2,即每平方厘米承受760mmHg的压力,我们可以换算为kgf(千克力):
76cm×13.6gf/cm3=1033.6gf/cm2=1.0336kgf/cm2。

一个标准大气压力相当于每平方厘米承受1.0336kg,约1公斤压力。

压力的法定单位是帕斯卡(Pa):1Pa=1N/m2(牛顿/平方米)。

工程上常用的是兆帕(MPa):1MPa=106Pa。

也有人习惯用kgf/cm2(千克力/平方厘米)作压力单位,而且f经常省略:1kgf/cm2=0.098Mpa。

1个标准大气压力=1.00336×0.098MPa=0.10108MPa≈0.1Mpa。

国外也有用巴(bar)和psi作为压缩空气压力单位的,这些单位与MPa的关系如下:
1bar=0.1MPa
1psi=0.006895Mpa
气体在容器内的压力,在实际应用中有两种不同的表示方法,一种是直接表示气体施于器壁上的压力大小的实际数值,叫做绝对压力,用符号“P(a)”表示;另一种是用压力表测量压力值时的显示值,叫做表压力,用符号“P(g)”表示。

当绝对压力高于当地大气压时,压力表所指示的数值为正值,这时:
P(a) = B + P(g) (B——当地大气压力)
压缩空气的流量用Nm3/min或用Nm3/h来表示,通常表示空气在“空气压缩机吸气状态”下的容积流量。

国家标准GB3853对一般容积式空气压缩机的吸气状态规定为:空气温度t=20℃,绝对压力
P=0.1MPa,相对湿度φ=0%(标准状态)。

空压机厂家对其产品宣传资料中空压机的排气量是基于什么吸气状态下一般都没有表明。

为了与空压机配套,压缩空气干燥机和过滤器等后处理设备的处理能力都是以空气标准状态下的流量来标注的,单位中的N就是表示标准状态,不过N常常被省略。

在国外,一些国家习惯用cfm(每分钟立方英尺)表示压缩空气的流量,cfm与m3/min的换算关系是:1m3/min=35.315cfm
按照某空压机制造商提供的经验数据,一台排气压力为0.7MPa的空压机,每马力(空压机之电动机的功率,1马力=0.75千瓦)可生产0.1416m3的压缩空气,也就是生产1m3、0.7MPa的压缩空气需要5.3kw 的电能。

在压缩空气系统中存在压力降,每0.007MPa的压力降,需要损耗0.7%的功率。

温度反映了物质分子热运动状况,温度单位有“绝对温度”、“摄氏温度”和“华氏温度”三种。

绝对温度:以气体分子停止运动时的最低极限温度为起点的温度,以T表示,单位为“开(开尔文)”,单位符号为K。

摄氏温度:以冰的融点为起点的温度,单位为“摄氏度”,单位符号为℃。

华氏温度:一些欧美的习惯用法,单位符号为F。

这三种温度单位之间的换算关系:
T(K)=t(℃)+273.16
t(F)= 1.8t(℃) +32
1.3 固体杂质
现在我们周围的空气中含有大量的悬浮物,我国的《环境质量空气标准》把悬浮物作为衡量空气质量的一项重要指标。

该标准把当量直径≤100μm的所有悬浮物称为“总悬浮物”,把当量直径≤10μm的悬浮物称为“可吸入颗粒物”。

空气中的悬浮物种类多样,但可按照粒子的大小来细分。

在流动的空气中悬浮物不容易沉降,在静止的空气中能缓慢沉降。

悬浮物的来源很多,如:
烟煤燃烧时排出的烟尘、汽车排出的尾气、建筑工地、工厂等等都可产生悬浮物。

人的肉眼能看见的最小的物体为30-40μm,人的头发直径为100μm左右,而空气中的绝大部分悬浮物人是看不到的。

对空气中的悬浮物我们在《过滤器》中还有描述。

1.4 水 1.4.1 与水有关的概念自然界几乎没有绝对干燥的空气。

在雾天,空气中的气体水凝结成了水雾,并形成了气溶胶。

由于空气中水的存在,因此压缩空气中必然也有水。

衡量空气含水量的单位有:水蒸气分压力、绝对湿度、相对湿度、含湿量、露点温度等,下面我们作一一说明:湿空气是水蒸气与干空气的混合物,在一定体积的湿空气里水蒸气所占的份量(以重量计)通常比干空气要少得多,但按“气体定律”它占有与干空气相同的体积,也具有相同的温度。

湿空气所具有的压力是各组成气体(即干空气与湿空气)分压力的和。

湿空气中水蒸气所具有的压力,称为水蒸气分压,记作Pw(注),其值可反映湿空气中水蒸气含量,饱和空气中水蒸气分压力叫饱和水蒸气分压,记作Pws。

其他表示水在压缩空气中含量的参数都是由水蒸气分压计算而得的。

注:符号Pw中的w指水(water),Pws中的S指饱和状态(saturation),下同。

表示空气干湿程度的物理量叫“湿度”。

常用的湿度表示方法有“绝对湿度”、“相对湿度”和“含湿量”三种。

绝对湿度是指空气中的水蒸气质量与体积的比率,通常用X表示,单位为kg/m3或g/m3。

我们可用气体状态方程计算: kg/m3 F1.4.1 式中:mw——水蒸气质量kg V——湿空气体积m3 Pw——水蒸气压力Pa Rw——水蒸气气体常数(426.05J/kg K) T——绝对温度K 绝对湿度只表明单位体积湿空气中含有多少水蒸气,不能表示湿空气的饱和程度。

从式1.4.1中可以看出,绝对湿度就是湿空气中水蒸气的密度。

饱和空气的绝对湿度(水蒸气密度)是有极限的。

在气动压力
(2MPa)范围内,可认为饱和空气中水蒸气的密度只取决于温度的高低而和空气压力大小无关,温度越高,饱和水蒸气的密度越大(这是因为压缩空气中水蒸气分压的大小取决于温度,而绝对湿度是通过水蒸气分压计算而得)。

相对湿度是空气的绝对湿度与相同压力、温度下的饱和绝对湿度之比值。

通常用φ表示,单位为%。

F1.4.2 相对湿度φ值在0-100%之间。

在一定压力和温度下:φ值越小,空气越干燥,吸水能力越强。

φ值越大,空气越潮湿;吸水能力越弱。

我们容易得到相对湿度为100%的空气,不可能得到相对湿度为0%的空气。

“含湿量”可分为“质量含湿量”和“容积含湿量”两种。

1kg干空气含有水蒸气的重量叫做“质量含湿量”,常用dm来表示,单位为g/kg(干空气)或kg/kg(干空气),我们可通过水蒸气分压计算而得: kg/kg(干空气) F1.4.3 1m3干空气中所含有的水蒸气重量叫做“容积含湿量”,可用dv表示,单位为g/m3或kg/m3(干空气)。

kg/m3(干空气) F1.4.4 从式F1.4.3可以看出,质量含湿量dm几乎同水蒸气分压力Pw成正比,而同空气总压力P成反比。

dm确切反映了空气中含有的水蒸气量的多少。

由于在某一地区,大气压力基本上是定值,所以空气含湿量仅同水蒸气分压力Pw有关。

质量含湿量常用在压缩空气干燥机的设计计算中,而容积含湿量常用在销售工作中。

两者的关系如式1.4.4所示。

按ISO8573.1-2001的规定,压缩空气的标准状态为:表1-1 标准工况空气温度 20℃空气压力 1bar绝对压力水蒸气分压 0 *1bar=0.1MPa因此按F4.3计算所得的质量含湿量,再按F4.4乘上标准状态下的空气密度:1.205kg/m3即得压缩空气的容积含湿量,单位为:kg/m3(标准工况)。

第3章中列出了0.101325MPa(a)压力下不同温度空气中饱和含水量。

一定压力下,未饱和空气在保持水蒸气分压不变(即保持绝对含水量不变)情况下降低温度,使之达到饱和状态时的温度叫“露点温度”。

温度降至露点温度时,湿空气中便有凝结水滴析出(称为“结露”),此时空气的相对湿度为100%。

空气压力为1个大气压时称为“大气露点”(也称“常压露点”,按照ISO8573.1 2.10.1规定大气露点不应用在压缩空气的干燥方面),压缩空气的露点温度称为此压力下的“压力露点”。

湿空气的露点温度与湿空气中水分含量的多少有关。

因此压力露点温度是所有压缩空气干燥机的一个关键性能指标。

我们周围空气中的水分含量与环境温度和相对湿度有关,环境温度决定了饱和水蒸气分压的大小,相对湿度表明了空气的饱和程度。

每个地区一年四季空气中的含水量不同地区也不一样。

具体参见表1-2。

表1-2 我国主要城市空气湿度参数地名大气压力(kPa)室外温度(℃) 夏季含量(g/kg干) 冬季含水量(g/kg干) 冬季夏季冬季夏季拉萨 65.00 65.23 -8.00 22.80 5.90 0.5250 乌鲁木齐 91.99 90.67 -27.00 34.10 6.90
0.2576 西宁 77.51 77.35 -15.00 25.90 7.80 0.4939 兰州 85.14 84.31 -13.00 30.50 10.60 0.7175 呼和浩特 90.09 88.94 -22.00 29.90 11.60 0.2962 昆明 81.15 80.80 1.00 25.80 12.10 2.7982 银川 89.57 88.35 -18.00 30.60 13.20 0.4507 太原 93.29 91.92 -15.00 31.20 14.70 0.5248 贵阳 89.75 88.79 -3.00 30.00 14.70 2.3189 哈尔滨 100.15 98.51 -29.00 30.30 15.30 0.1746 西安 97.87 95.92 -8.00 35.20 15.30
1.2569 长春 99.40 97.79 -26.00 30.50 16.50 0.2421 石家庄 101.69 99.56 -11.00 35.10 18.10 0.7701 沈阳 10
2.08 100.07 -22.00 31.40 18.10 0.3386 济南 102.02 99.85 -10.00 34.80 18.70 0.8748 北京 102.04 99.86 -12.00 3
3.20 19.00 0.6093 重庆 99.12 97.32 2.00 36.50 19.20 3.5957 郑州 101.28 99.17 -7.00 35.60 20.20 1.2654 长沙 101.99 99.94 -3.00 35.80 20.20 2.4081 成都 96.32 9
4.77 1.00 31.60 20.20 3.2920 南宁 101.14 99.60
5.00 34.20 20.40 4.1063 天津 102.66 100.48 -11.00 33.40 20.50 0.7849 福州101.26 99.64 -4.00 35.20 21.10 2.0209 南昌 101.88 99.91 -3.00 35.60 21.10 2.2000 广州 101.95 100.45 5.00 33.50 21.10 3.8325 合肥 102.23 100.09 -7.00 35.00 21.20 1.5818 南京 102.52 100.40 -
6.00 35.00 21.30 1.6520 武汉 102.33 100.17 -5.00 35.20 21.30 1.9053 海口 101.60 100.24 10.00 34.50 21.30 6.5731 杭州 102.09 100.05 -4.00 35.70 21.60 2.1029 上海 102.51 100.53 -4.00 34.00 21.70
2.0483
1.4.2 大气露点与压力露点的换算
在实际工作中,常常会碰到压力露点与常压露点的换算,压力露点与常压露点之间的对应关系与“压缩比”(注)有关,一般用图或表来表示。

在“压力露点”相同情况下,“压缩比”越大,所对应的常压露点越低。

例如:0.7Mpa(g)的压缩空气压力露点为2℃时,相当于常压露点为-21.5℃。

当压力提高到
1.0Mpa(g)时,同样压力露点为2℃时,对应的常压露点降到-25℃。

1.4.3 露点温度的测量
压缩空气露点温度用露点仪测量,测量压缩空气露点的仪器常用的有以下两种:
1)镜面露点仪,其原理是采用制冷方式冷却被测气体至一定温度,其中的水蒸气就可结露在镜面上,采用光学等原理测量出结露时的温度。

该方法从原理上讲只要有足够的制冷措施,就能测量任意露点温度。

但是这种方法的问题在于:a) 对被测气体要求很高,任何杂质和污染都会导致测量误差,b) 由于采用制冷方式,工作原理相对复杂,而且每测量一次需要一定的时间。

因此通常此类露点仪不用在在线检测和现场测试,而常在实验室内等使用。

2)电容/电阻露点仪。

这类露点仪具有体积小、携带方便、测量范围大的优点,其传感器通常是氧化铝传感器,最低可测到-100℃的露点温度(如本公司的MD-10PP型露点仪的测量范围是0~-80℃),这类露点仪的缺点是一般只能测常压露点温度,露点传感器会产生负偏移,因此需要每年送计量部门鉴定。

露点仪制造商比较有名气的有:英国的MISHELL公司、SHAW公司、芬兰Vaisala公司等。

1.5 压缩空气的质量标准现代产业使用压缩空气时都有一整套设备、设施,我们把由生产、处理和储存压缩空气的设备所组成的系统称为气源系统。

典型的气源系统由下列几部分组成:空气压缩机、后部冷却器、缓冲罐、过滤器(包括油水分离器、预过滤器、除油过滤器、除臭过滤器、灭菌过滤器等等)、干燥机(冷冻式或吸附式)、稳压储气罐、自动排水排污器及输气管道、管路阀件、仪表等。

上述设备根据工艺流程的不同需要,组成完整的气源系统。

空压机排出的压缩空气是不干净的,除了含有水(包括水蒸气、凝结水)和悬浮物外,还有油(包括油雾、油蒸气)。

这些污染物对提高生产效率、降低运行成本、提高产品质量是不利的,因此就需要进行干燥净化处理。

为了统一标准,国际标准组织(ISO)所属压缩机、气动机械及工具委员会(TC118)在1986年提出了关于压缩空气干燥净化设备和压缩空气品质的国际标准,其中压缩空气质量等级标准ISO8573.1把压缩空气中的污染物分为固体杂质、水和油三种(我国等同采用了ISO8573即国家标准GB/T13277-91《一般用压缩空气质量等级》),具体如表1-3。

表1-3 ISO8573.1-1 质量等级固体颗粒最大直径(μm)水压力露点°C 0.7MPa g 油(包括蒸气)mg/m3 1 0.1 -70 0.01 2 1 -40 0.1 3 5 -20 1.0 4 15 +3 5 5 40 +7 25 6 - +10 -除了上述标准外其他标准名称如下:——ISO7183 压缩空气干燥器规范与试验——ISO8573-1 一般用压缩空气第一部分:污染物和质量等级——ISO8573-2 一般用压缩空气第二部分:悬浮油粒的测试方法——ISO8573-3 一般用压缩空气第三部分:湿度测量——ISO8573-4 一般用压缩空气第四部分:固体粒子的测量——ISO8573-5 一般用压缩空气第五部分:油蒸汽的测量——ISO8573-6 一般用压缩空气第六部分:气体污染物的测量——
ISO8573-7 一般用压缩空气第七部分:微生物的测量 ISO标准组织已着手对ISO8573.1进行修改,其主要变化表现在对固体颗粒的要求上。

新标准对固体颗粒的数量进行了规定,这一变化是结合了纤维过滤器的实际性能,而且比较容易检测。

具体内容见ISO8573.1-2001。

表1-4 ISO8573.1 : 2001 QUALITYCLASS SOLID PARTICLESmaximum number of particles per m3 WATER Pressure Dewpoint °C (ppm. vol.)at 7 bar g OIL(Including vapour)mg/m3 0.1-0.5 micron 0.5-1.0 micron 1.0-5.0 micron 1 100
1 0 -70 (0.3) 0.01
2 100,000 1,000 10 -40 (16) 0.1
3 -10,000 500 -20 (128) 1.0
4 - - 1,000 +3 (940)
5 5 - - 20,000 +7 (1240) -
6 - - - +10 (1500) –
2.1.1 前言
在压缩空气的用途越来越广泛的情况下,对压缩空气的品质要求也越来越高。

为此ISO(国际标准组织)也制定了关于压缩空气质量的标准——ISO8573,并在2001年进行了修订(具体内容见ISO8573-2001简介)。

压缩空气中的污染物比较广泛,有固体颗粒、水分、油,也有微生物和有害气体。

为了使压缩空气的品质达到不同的要求,人们开发了多种专用设备,通常被分为干燥设备和净化设备两大类。

我们用干燥设备去除压缩空气中的水分,用过滤净化设备去除压缩空气中的其他污染物。

2.1.2 压缩空气的干燥、净化原理简述
在本行业,压缩空气的干燥通常指去除空气中水分的过程,而压缩空气的净化常指去除压缩空气中除水以外的其他污染物。

压缩空气干燥的工作原理虽不尽相同,但是均以分离出压缩空气中的气体水为目的。

常用的干燥原理分为吸附和冷冻两种。

吸附干燥采用气相或液相分子吸附在固体(即吸附剂)表面的方法来分离出压缩空气中的水分,而冷冻干燥通过制冷循环冷却压缩空气以分离出气体水。

相应地压缩空气干燥设备也分为吸附式干燥器和冷冻式干燥机两种基本类型。

压缩空气净化的工作原理虽然随其净化机理的不同而不同,但基本以过滤的形式去除压缩空气中存在的游离状态的灰尘、微粒、以及气溶胶状态的烟和雾。

对于气态状的污染物,如有害气体,常用化学过滤的方式净化。

压缩空气过滤器按过滤机理的不同可分为:
——表面(surface)过滤器:如滤芯为过滤纸或过滤布的过滤器;因为滤材的空隙直径较大,此类过滤器过滤效率不稳定,可以再生。

典型的有布袋除尘器。

——深层(depth)过滤器:如纤维过滤器,过滤器效率高,不可再生。

如domnick hunter公司的OIL-XPLUS的压缩空气过滤器。

压缩空气中常用的过滤器按过滤材质的不同可分为:
——纤维(fibre)过滤器
——微孔(pore)过滤器:如膜过滤器,此类过滤器通常为绝对过滤器,常用在过滤器微生物上。

——粒子过滤器:如活性炭过滤器,其滤芯由活性炭颗粒组成。

2.1.3 干燥净化设备的分类
由于压缩空气中不可避免地含有固体、液体、气体等杂质,而且各有其特性,无法用单纯的某一种设备就能达到目的,因此压缩空气干燥净化就成为一个系统,一个完整的压缩空气干燥净化系统包括:1)气液分离器;2)过滤器;3)干燥设备等设施。

(1) 气水分离器
气液分离器的作用是对压缩空气进行预处理,把压缩空气中的凝结液尽可能100%地分离。

气液分离器常安装在压缩空气系统的前部。

根据气液分离的机理,常有旋风分离器、百叶窗式分离器、涡旋式分离器等几种。

(2) 过滤器
过滤器在压缩空气干燥净化系统中具有关键作用。

采用不同的过滤器可去除压缩空气中的油(包括液体、气体)、固体杂质、微生物、有害气体等污染物。

在压缩空气干燥净化系统中,过滤器到处存在。

在工业生产中,压缩空气系统使用的过滤器常按其用途分为:除油过滤器、除尘过滤器、除菌过滤器及专用过滤器等几类。

除油过滤器是应用最广泛的过滤器,其主要作用是去除压缩空气中的油雾(胶体)。

如英国domnick hunter公司的OIL-X系列过滤器。

这一类过滤器也称凝聚式过滤器(Coalescing filter),按其过滤精度(能有效拦截的最大颗粒直径)可分为:
1)初/粗过滤器:过滤精度小于等于25μm;
2)精过滤器:过滤精度小于等于1μm;残余油含量为1.0PPm;
3)高精过滤器:过滤精度小于等于0.1μm,残余油含量为0.1ppm;
4)超级过滤器:过滤精度小于等于 0.01μm,与活性炭过滤器串联使用残油含量≤0.03ppm。

需要指出的是此类过滤器的性能指标中,残余油份指液体油,并不包括气体油。

除尘过滤器,严格的说,除尘过滤器与除油过滤器是同一类型,其区别在于除尘过滤器常用在吸附干燥器的出口处(具体参见有关资料)。

除菌过滤器,是一种卫生级过滤器,主要去除压缩空气中的微生物,需要指出的是除菌过滤器前必须先经过除油过滤器处理。

专用过滤器,最典型的专用过滤器是活性炭过滤器,可把压缩空气中的某些有害气体和异味过滤掉,属于化学过滤器。

(3) 干燥设备
干燥设备是去除水分的设备,常用的有以下几种:
1)吸附干燥设备
2)冷冻干燥设备
3)冷冻和吸附组合的干燥设备
4)其他干燥设备,如膜干燥、化学吸收干燥等。

前三种我们将在以后的章节中讨论。

膜干燥设备的特点是消耗电能,由于膜原料的限制,目前无法制造出较大处理量的干燥器(最大的也就是1m3/min左右),另膜干燥器的气损较大,一般会在15%以上。

2.1.4 压缩空气干燥净化工艺选择原则
压缩空气干燥净化工艺因供气气源、用户使用特点、干燥装置的形式、净化方法及其设备配置方式的不同而有较大的差异,其中干燥装置、净化单体的选用和设置、输送管道的设计,将直接影响到干燥净化效果和压缩空气的供气质量。

因此,压缩空气干燥净化工艺应根据所使用的气源参数——压力、温度、湿度及杂质的组成、含量等,需处理的空气量以及用户对压缩空气的要求——允许的阻力损失、露点、过滤精度、残余油分等,经技术经济综合比较后进行确定,选用适宜的干燥净化工艺及其设备,以达到技术可靠,经济合理的目的。

2.1.4.1 压缩空气干燥工艺
如2.1.3节所述,压缩空气干燥工艺分为两大类:吸附干燥和冷冻干燥。

空气的吸附干燥属固气两相传质过程,其过程由吸附和再生两个阶段组成,而其中吸附剂的再生是实现空气干燥的一个很重要的方面,干燥设备所选用的吸附剂及其再生工艺方法及效果,直接影响所处理空气的露点、装置运行的单位能耗和供气持续性,所以结合所采用的压缩空气供给系统,选用合理的干燥工艺,再生方法及其运行参数,是确定干燥装置的首要条件。

压缩空气吸附干燥设备分为变温吸附和变压吸附两类。

它们的特点如下:
变温吸附装置对空气的处理量及压力等参数适应范围宽,运行周期长,操作简单。

因变温吸附装置再生是利用加热方式实现,所以设备材质、干燥塔密封及阀门应具有相应耐温能力和温度变化的要求,再生后空气一般放空。

变压吸附装置采用短周期运行方式,与变温吸附装置相比,具有干燥剂用量少,吸附单体尺寸小,设备紧凑、简单、占地面积小的特点。

由于压力周期性变化,设备材质、吸附剂性能应满足强度的要求。

关于吸附干燥装置的详细内容见“吸附式压缩空气干燥器”。

空气的冷冻干燥是利用被压缩的湿空气受冷媒(低温水或制冷剂)间接冷却,其中水汽冷凝并经气液分离器除去析出的冷凝水以达到空气干燥的目的。

为实现空气过程的连续性及经济性,一般制冷剂蒸发温度限制在0℃以上,防止系统因冷凝水结冰引起堵塞而引起中止运行,因此采用冷冻干燥工艺的压缩空气之干燥深度不宜太深,其压力下的露点下限通常控制在+2℃以上。

冷冻干燥工艺对待处理空气的含湿量无限制,对处理高含湿量、大流量的压缩空气其优越性较为显著。

在待处理空气含湿量高,且对处理后空气的含湿量要求严格的场合,常采用冷冻干燥与吸附干燥组合的干燥系统,前者为后者的前级处理,这样相应减轻吸附干燥的负荷及容量,并确保所需要的干燥深度,具有较好的效果。

在这一类设备中,本公司制造的RSC型组合式低露点压缩空气干燥机唯一通过省级鉴定的设备。

2.1.4.2 压缩空气干燥工艺的选择原则
选择压缩空气的干燥工艺,往往需要和顾客的实际情况结合,以下只是建议,供参考:
(1)对空气压力露点要求大于等于 2℃的系统,通常采用冷冻干燥工艺,反之,则采用吸附干燥工艺;(2)对空气处理量大,且含湿量高的系统,结合用户要求,进行能耗、设备一次费用等技术经济比较后确定是采用冷冻干燥工艺,还是采用吸附干燥工艺或冷冻、吸附干燥组合工艺。

(3)对无热再生及有热再生吸附干燥,选择时应考虑空气系统供需平衡情况、气源压力、干燥前后的含湿量等参数及用户的要求。

(4)无热再生吸附干燥工艺运行压力不宜低于0.5MPa,当压力过低时会导致再生气量增大,从而增加电耗和运行费用,不经济。

当干燥空气露点低于-60℃时,宜采用冷冻干燥与吸附干燥有机组合的工艺,以减少能量消耗且运行管理方便。

(5)当采用无热再生吸附干燥工艺时,待处理压缩空气进入吸附塔前应是无油和液体水的,因此,须在进入吸附干燥装置前采取有效的除油措施。

2.1.4.3 压缩空气净化工艺及选择
压缩空气含有多种杂质,而主要杂质是固体尘粒及油雾,呈气溶胶状态,杂质的含量和形式随选用的压缩机润滑方式及干燥工艺的不同而不尽相同,压缩空气净化就是根据用户要求去除这些杂质。

对过滤精度要求高的净化系统,应根据具体要求设置多级过滤器,过滤精度逐级提高,以便在满足用户所需要的过滤效率和精度的同时保持并延长精过滤器使用周期和寿命。

为避免过滤元件本身产生的尘埃、内外渗漏而引起系统的二次污染,应选择合适材质和结构的过滤器,并按供气系统及用户的要求合理选用参数,如过滤精度、阻损、工作压力、工作温度、过滤效率等,不恰当地选用过滤精度过高的过滤器,不仅增加投入费用,而且运行时增加系统气流阻力,影响过滤器运行周期和使用寿命。

对于压缩空气要求洁净无菌,防止微粒及易产生气味的微生物进入工艺系统,必须设置可靠的干燥净化设备,为严格清除可能发生的气味及毒性,须增加活性炭吸附净化过滤器,以满足工艺要求,且过滤器滤芯所选用的材质本身应具有抑制细菌繁殖的特性,避免过滤元件在使用过程中成为系统的污染源。

2.1.5 干燥净化设备的布置
2.1.5.1 布置原则。

相关文档
最新文档