湖南省长沙市雅礼中学复数高考重点题型及易错点提醒百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题
1.复数2
1i
=+( ) A .1i --
B .1i -+
C .1i -
D .1i +
2.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有
1z =,则a b +=( )
A .-1
B .0
C .1
D .2 3.若20212zi i =+,则z =( )
A .12i -+
B .12i --
C .12i -
D .12i +
4.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97
-
B .7
C .
97
D .7-
5.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( ) A .6
B .6
C .5
D .5
6.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )
A 2
B .2
C .2
D .8
7.若(1)2z i i -=,则在复平面内z 对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8.在复平面内,复数z 对应的点是()1,1-,则1
z
z =+( ) A .1i -+
B .1i +
C .1i --
D .1i -
9.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) A 2B .2
C .10
D 10
10.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +
B .68i -
C .68i --
D .68i -+
11.3
( )
A .i -
B .i
C .i
D .i -
12.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1
B .1
C .i -
D .i
13.已知i 是虚数单位,设复数22i
a bi i
-+=+,其中,a b ∈R ,则+a b 的值为( ) A .75
B .75-
C .
15
D .15
-
14.若复数11i
z i
,i 是虚数单位,则z =( ) A .0 B .
12
C .1
D .215.题目文件丢失!
二、多选题
16.已知复数12z =-,则下列结论正确的有( )
A .1z z ⋅=
B .2z z =
C .31z =-
D .2020122
z =-
+ 17.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足
1
R z
∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈ D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 18.下面关于复数的四个命题中,结论正确的是( )
A .若复数z R ∈,则z R ∈
B .若复数z 满足2z ∈R ,则z R ∈
C .若复数z 满足
1
R z
∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =
19.若复数z 满足()1z i i +=,则( )
A .1z i =-+
B .z 的实部为1
C .1z i =+
D .22z i =
20.已知i 为虚数单位,复数322i
z i
+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为
75
i C .3z =
D .z 在复平面内对应的点在第一象限
21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w z
=,则下列结论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .
z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
23.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
24.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数(
)(
)
2
2
34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有2
0z
25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )
A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)1
22
-
C .实数1
2
a =-
是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2
26.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )
A .2
0z
B .2z z =
C .31z =
D .1z =
27.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )
A .3||5
z = B .12i
5
z +=-
C .复数z 的实部为1-
D .复数z 对应复平面上的点在第二象限
28.若复数2
1i
z =
+,其中i 为虚数单位,则下列结论正确的是( )
A .z 的虚部为1-
B .||z =
C .2z 为纯虚数
D .z 的共轭复数为1i --
29.复数21i
z i
+=-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为
3122
i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限
30.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=
B .当1z ,2z
C ∈时,若22
12
0z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =
的充要条件是12=z z
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.C 【分析】
根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】
根据复数的除法运算法则可得结果. 【详解】
21i =+2(1)(1)(1)i i i -=+-2(1)
12
i i -=-.
故选:C
2.C 【分析】
根据复数的几何意义得. 【详解】
∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .
解析:C
【分析】
根据复数的几何意义得,a b . 【详解】
∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .
3.C 【分析】
根据复数单位的幂的周期性和复数除法的运算法则进行求解即可. 【详解】
由已知可得,所以. 故选:C
解析:C 【分析】
根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可. 【详解】 由已知可得202150541222(2)21
121
i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C
4.B 【分析】
先求出,再解不等式组即得解. 【详解】 依题意,,
因为复数为纯虚数, 故,解得. 故选:B 【点睛】
易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.
解析:B 【分析】
先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩
即得解.
【详解】
依题意,()()()()337332179
3737375858
m i i m i m m z i i i i +++-+=
==+--+, 因为复数z 为纯虚数,
故3210
790m m -=⎧⎨+≠⎩
,解得7m =.
故选:B 【点睛】
易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.
5.C 【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】 , , 所以,, 故选:C.
解析:C 【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】
2z i =-,
(12)(2)(12)43z i i i i ∴⋅+=-+=+,
所以,5z =, 故选:C.
6.B 【分析】
根据复数的几何意义,求两个复数,再计算复数的模. 【详解】
由图象可知,,则, 故. 故选:B.
解析:B 【分析】
根据复数的几何意义,求两个复数,再计算复数的模. 【详解】
由图象可知1z i =,2
2z i =-,则1222z z i -=-+,
故12|22|z z i -=-+== 故选:B .
7.B 【分析】
先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,
故对应的点位于复平面内第二象限. 故选:B. 【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计
解析:B 【分析】
先求解出复数z ,然后根据复数的几何意义判断. 【详解】
因为(1)2z i i -=,所以()212112
i i i z i i +=
==-+-, 故z 对应的点位于复平面内第二象限. 故选:B. 【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.
8.A 【分析】
由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A
解析:A 【分析】
由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】
由题意得1i z =-+,则1i 1i i 111i 1i i i 1
z z -----+==⋅==-++-. 故选:A
9.D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.
解析:D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,
所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.
10.D 【分析】
设,根据复数对应的向量与共线,得到,再结合求解. 【详解】 设,
则复数对应的向量, 因为向量与共线, 所以, 又, 所以, 解得或,
因为复数对应的点在第三象限, 所以, 所以,,
解析:D 【分析】
设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到
43a b =,再结合10z =求解.
【详解】
设(,)z a bi a R b R =+∈∈,
则复数z 对应的向量(),OZ a b =, 因为向量OZ 与(3,4)a =共线, 所以43a b =, 又10z =, 所以22100+=a b , 解得68a b =-⎧⎨
=-⎩或6
8a b =⎧⎨=⎩
, 因为复数z 对应的点在第三象限,
所以68a b =-⎧⎨=-⎩

所以68z i =--,68z i =-+, 故选:D
11.B 【分析】
首先,再利用复数的除法运算,计算结果. 【详解】 复数. 故选:B
解析:B 【分析】
首先3i i =-,再利用复数的除法运算,计算结果. 【详解】
3133i i
i +====. 故选:B
12.B 【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,
则的虚部是1. 故选:.
解析:B
【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】
由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5
i i i i
z i i i i ++--=
===-++-, ∴2z i =+,
则z 的虚部是1. 故选:B .
13.D 【分析】
先化简,求出的值即得解. 【详解】 , 所以. 故选:D
解析:D 【分析】 先化简345
i
a bi -+=,求出,a
b 的值即得解. 【详解】
22(2)342(2)(2)5
i i i
a bi i i i ---+===++-,
所以341,,555
a b a b ==-∴+=-. 故选:D
14.C 【分析】
由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .
解析:C 【分析】
由复数除法求出z ,再由模计算. 【详解】
由已知21(1)21(1)(1)2
i i i z i i i i ---====-++-, 所以1z i =-=.
故选:C .
15.无
二、多选题
16.ACD
【分析】
分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为,所以A 正确;
因为,,所以,所以B 错误;
因为,所以C 正确;
因为,所以,所以D 正确
解析:ACD
【分析】
分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭
=⎝⋅,所以A 正确;
因为2
21
12222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;
因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭
,所以C 正确;
因为6331z z z =⋅=,所以()20206336443
1112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,
故选:ACD.
【点睛】
本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.
17.AB
【分析】
利用特值法依次判断选项即可得到答案.
【详解】
对选项A ,若复数满足,设,其中,则,则选项A 正确;
对选项B ,若复数满足,设,其中,且,
则,则选项B 正确;
对选项C ,若复数满足,设
解析:AB
【分析】
利用特值法依次判断选项即可得到答案.
【详解】
对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足
1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a
=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,
但z i R =∉,则选项C 错误;
对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;
故答案选:AB
【点睛】
本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.
18.AC
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数,则,因为,所以,因此,即A 正确;
B 选项,设复数,则,
因为,所,若,则;故B 错;
C 选项,设
解析:AC
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,
因此z a R =∈,即A 正确;
B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,
因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;
C 选项,设复数(,)z a bi a b R =+∈,则
22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z
∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,
则()()()()12z z a bi c di ac bd ad bc i =++=-++,
因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩
能满足0ad bc +=,但12z z ≠,故D 错误.
故选:AC.
【点睛】
本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.
19.BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由,得,
所以z 的实部为1,,,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由()1z i i +=,得2(1)2(1)11(1)(1)2
i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题
20.AD
【分析】
先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.
【详解】
,故,故A 正确.
的虚部为,故B 错,,故C 错,
在复平面内对应的点为,故D 正确.
故选:AD.
【点睛】
本题考
解析:AD
【分析】
先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.
【详解】
()()32232474725555
i i i i i z i ++++====+-,故4755i z =-,故A 正确.
z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭
,故D 正确. 故选:AD.
【点睛】
本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.
21.ABC
【分析】
对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.
【详解】
对选项由题得
.
所以复数对应的点为,在第二象限,所以选项正确
解析:ABC
【分析】
对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项
,C 复数w 的实部为12-
,判断得解;对选项D ,w 判断得解.
【详解】
对选项,A 由题得1,z =-
221=
422w -+∴===-+.
所以复数w 对应的点为1(2-
,在第二象限,所以选项A 正确;
对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-
,所以选项C 正确;
对选项D ,w 所以选项D 错误. 故选:ABC
【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.
22.BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数,
所以其虚部为,即A 错误;
,故B 正确;
解析:BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数1z i =+,
所以其虚部为1,即A 错误;
z ==B 正确;
复数z 的共轭复数1z i =-,故C 正确;
复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.
故选:BCD.
【点睛】
本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.
23.BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;
当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;
因为当两个复数相等时,模一定相等,所以A 项正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
24.AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240
m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 25.ACD
【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
∴选项A :为纯虚数,有可得,故正确
选项B
解析:ACD
【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20120
a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨
+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12
a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确
故选:ACD
【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围
26.BCD
【分析】
利用复数的运算法则直接求解.
解:复数(其中为虚数单位),
,故错误;
,故正确;
,故正确;
.故正确.
故选:.
【点睛】
本题考查命题真假的判断,考查复数的运算法则
解析:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数12z =-(其中i 为虚数单位),
2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;
31113()()12244
z =--+=+=,故C 正确;
||1z ==.故D 正确. 故选:BCD .
【点睛】
本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.
27.BD
【分析】
因为复数满足,利用复数的除法运算化简为,再逐项验证判断.
【详解】
因为复数满足,
所以
所以,故A 错误;
,故B 正确;
复数的实部为 ,故C 错误;
复数对应复平面上的点在第二象限
【分析】
因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-
+,再逐项验证判断. 【详解】
因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55
i i i z i i i i +===-+--+
所以z ==,故A 错误; 1255
z i =-
-,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭
在第二象限,故D 正确. 故选:BD
【点睛】
本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.
28.ABC
【分析】
首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.
【详解】
因为,
对于A :的虚部为,正确;
对于B :模长,正确;
对于C :因为,故为纯虚数,
解析:ABC
【分析】
首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.
【详解】 因为()()()2122211i 1i 12
i i z i i --====-++-, 对于A :z 的虚部为1-,正确;
对于B :模长z =
对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;
对于D :z 的共轭复数为1i +,错误.
故选:ABC .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.
29.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||2
z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
30.AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.
【详解】
解:由复数乘法的运算律知,A 正确;
取,;,满足,但且不
解析:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取
11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .
【详解】
解:由复数乘法的运算律知,A 正确;
取11z =,;2z i =,满足2212
0z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确; 由12z z =能推出12=z z ,但12||||z z =推不出12z z =,
因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC
【点睛】
本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.。

相关文档
最新文档