超宽带(UWB)定位(微课)解析 共28页

合集下载

UWB超宽带室内定位方案介绍

UWB超宽带室内定位方案介绍
佩带方式:工牌、腕带、安全帽
刷新频率:0~10Hz 防雨:可防雨(充电口加塞)
精度:典型精度≤30cm
设设备备稳稳定定性性强强
防水
防尘
防雷
耐低 温
防爆
耐高 温
IP67,Ingress Protection,支持最高等级的防尘(6级, 灰尘禁锢:尘埃无法进入物体整个直径不能超过外壳的空 隙)。
IP67,Ingress Protection,支持次高级的防水功能(7级,防 短时浸泡:常温常压下,当外壳暂时浸泡在1M深的水里将 不会造成有害影响)。
基站进行测距定位。
7
UWB定位原理(TOA)
4个已知坐标的基站为一组,实现三 维定位; 标签进入定位区域后,按照分配的 时间和顺序,依次与基站进行测距; 距离信息通过有线/无线网络上传到 服务器,实现位置实时跟踪。
Time of fly
Time of fly
Time of fly
Time of fly
基站:4个,A2是主基站,A1,A3,A4 是从基站,发送时钟同步帧。 标签:1个,发送Blink帧。 CLE运行在PC上。
10
较大系统的基站布局(TDOA)
11
应用场景基站布置
空旷场所80米布一个基站,如果 有阻隔,需要重新布至少三个基 站。
12
UWB定位系统框图
有线数据网络 无线定位网络
定位服务器
UWB定位原理(TDOA)
TDOA,Time Difference of Arrival,通过测量被测标签(B)与已知位置基站 (P1,P2,P3)间的报文传输时间差,计算出距离差;计算出被测标签的位置。需要已知 位置基站间时钟同步。
P1
P1 P2

UWB超宽带定位原理及系统架构介绍

UWB超宽带定位原理及系统架构介绍

UWB超宽带定位原理及系统架构介绍一、UWB超宽带定位原理该技术采用TDOA(到达时间差原理),利用UWB超宽带定位技术测得定位标签相对于两个不同定位基站之间无线电信号传播的时间差,从而得出定位标签相对于四组定位基站的距离差。

使用TDOA技术不需要定位标签与定位基站之间进行往复通信,只需要定位标签只发射或只接收UWB信号,故能做到更高的定位动态和定位容量。

恒高科技四维定位系统产品即使用UWB-TDOA技术实现了高精度、高动态、高容量、低功耗的定位系统。

二、UWB超宽带定位系统架构恒高科技UWB-TDOA定位系统产品由感知层、传输层、服务层、网络层、应用层组成。

系统架构示意图感知层由定位基站、通信基站、通信定位基站共3类定位基站和定位标签组成,通过定位基站与定位标签的UWB超宽带定位信道实现对定位标签的定位,通过通信基站与定位标签的Zigbee通信信道实现定位基站对定位标签的参数配置、定位标签的状态回传以及定位标签上下行的数据。

定位基站通过Zigbee通信信道与通信基站、通信定位基站实现参数配置、状态回传、上下行数据。

传输层分为无线传输网和有线传输网,无线传输网通过WIFI信道为定位基站提供数据传输链路,有线传输网通过有线以太网方式为定位基站提供数据传输链路,并且有线传输网还为无线传输网提供数据传输链路。

服务层由UWB超宽带定位引擎软件、UWB超宽带定位系统管理软件、对内和对外接口软件组成,这些软件部署在系统服务层服务器。

UWB超宽带定位引擎软件实现定位数据的解算,得到定位标签的坐标;UWB 超宽带定位系统管理软件实现定位网、通信网、无线传输网的管理及维护功能,并作为应用层到感知层的数据交换桥梁。

网络层分为互联网和局域网,局域网由用户方部署。

应用层包括系统应用软件和应用层对外接口软件,系统应用软件实现定位显示、轨迹回放等基础功能及应用定位数据的电子围栏、巡检、过程管理、考勤分析等拓展功能;应用层对外接口软件提供接口以便集成商或其他用户使用本系统的数据。

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。

许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。

为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。

1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。

1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。

此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。

图1给出了带宽计算示意图。

可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。

为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。

美国NTIA等通信团体对此大约提交了800多份意见书。

2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。

根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。

根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。

为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。

uwb超宽带无线通信技术(高精度定位)

uwb超宽带无线通信技术(高精度定位)

UWB(定位技术)超宽带无线通信技术一、UWB调制技术超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。

它源于20世纪60年代兴起的脉冲通信技术。

传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。

现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。

下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。

图1 连续波调幅信号而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。

需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进而实现信息传输。

下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。

图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。

图3 IR-UWB信号频谱在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。

主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。

·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。

UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。

UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。

而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。

UWB简介及其定位方法

UWB简介及其定位方法

UWB简介及其定位方法1前言本文阐述有关UWB的简介及其定位的方案,定位方法介绍了TOA、AOA/DOA、TDOA、RSSI这几种定位方法。

2概述随着现在无线技术的发展,无线室内定位技术也得到了飞速的发展,现在常用的室内无线定位技术就有很多种,包括了基于WiFi的定位、蓝牙定位、小基站定位、LED可见光定位、超宽带定位、RFID、惯性导航、地磁定位、伪卫星等多种室内定位技术。

其中的超宽带定位技术是一种特别适合于应用在室内的定位技术,超宽带定位技术具有定位精度高(1~15cm)、抗干扰能力强、分辨率高、低功耗等优点。

表1 各种无线定位技术的对比超宽带(UWB)技术在军用和民用场景都有很多应用,并且具有光明的前景。

UWB技术的应用场景大致可以分为三个方面,分别是通信、雷达和定位,UWB技术科应用于智能家庭、无线网络、战术组网电台、探地雷达、车辆避撞雷达以及军用民用需要精确定位的系统中。

目前,市场是已经出现了基于UWB达到室内定位装置。

例如:英国的Ubisense公司推出了将TDOA和AOA相结合的室内定位系统,测距范围达到50-100m,精度可达15cm。

美国的Zebra公司推出了Dart UWB系统,该系统建立在Sapphire DART核心功能之上,能够快速、准确的进行定位,精度达到30cm,测距范围达到100m。

根据是否需要测量距离,无线定位方法分成测距定位和非测距定位两类。

从测距方法来看,以RSSI为主,也有使用TOA、TDOA、AOA/DOA以及多种测距手段联合的系统。

3UWB技术3.1UWB国内研究现状我国对于UWB技术的研究相对较。

2001年,第一次将超宽带技作为无线通信的共性技术与创新技术的研究内容列入国家终点研究课题,才开始对UWB技术进行研究。

在国家科研项目的支持和鼓励下,我国的不少高校在UWB技术上取得了积极的进展,对UWB天线的设计、UWB信号的发送、UWB定位算法以及多种定位方式融合进行了研究。

UWB定位系统全面方案介绍

UWB定位系统全面方案介绍

UWB定位系统全面方案介绍UWB(Ultra-Wideband,超宽带)定位系统是一种基于超宽带技术的室内定位系统,可以实现高精度、高可靠性的定位。

其原理是通过发送和接收超短脉冲信号,利用时间差测量方法计算目标位置。

1.硬件设备:UWB定位系统的硬件设备包括发射器、接收器和天线。

发射器用于发射超短脉冲信号,接收器用于接收反射回来的信号,天线用于增强信号的传输和接收。

这些设备需要具备高频率、高带宽和低噪声的特点,以确保定位系统的高精度和高可靠性。

2.信号处理:UWB定位系统的信号处理是整个系统的核心部分。

它包括信号的调制、解调、滤波、放大和时钟同步等处理过程。

信号的调制和解调可以实现信号的传输和接收,滤波和放大可以提高信号的质量和强度,时钟同步可以确保各个设备之间的时间同步,从而减小定位误差。

3.定位算法:UWB定位系统的定位算法是利用时间差测量方法计算目标位置的关键。

该算法根据接收到的信号的到达时间差,通过多边定位算法来计算目标位置。

常用的算法包括最小二乘法、卡尔曼滤波和粒子滤波等。

这些算法可以根据实际应用场景的需要进行选择和优化,以实现高精度的定位。

4.数据融合:UWB定位系统通常会与其他定位技术进行数据融合,以提高定位的准确性和可靠性。

常见的融合技术包括惯性导航系统、地磁定位、WiFi定位和视觉定位等。

数据融合可以通过多传感器信息的互补性,消除各个定位技术的局限性,进一步提高定位的性能。

5.应用场景:UWB定位系统可以广泛应用于室内定位、人员跟踪、智能家居、无人机导航等领域。

在室内定位方面,UWB定位系统可以实现室内导航、物体跟踪、室内定位服务等功能。

在人员跟踪方面,UWB定位系统可以用于安防监控、医院人员定位、活动场所人员管理等。

在智能家居方面,UWB定位系统可以实现室内定位、空调自动调节、智能灯光控制等功能。

在无人机导航方面,UWB定位系统可以实现无人机的精确定位和导航。

综上所述,UWB定位系统的全面方案包括硬件设备、信号处理、定位算法、数据融合和应用场景等多个方面。

解析uwb无线定位系统的原理及主要技术特点

解析uwb无线定位系统的原理及主要技术特点

解析uwb无线定位系统的原理及主要技术特点
 UWB的定义
 超宽带(Ultra Wide-Band,UWB)是一种新型的无线通信技术,根据美国联邦通信委员会的规范,UWB的工作频带为3.1~10.6GHz,系统-10dB带宽与系统中心频率之比大于20%或系统带宽至少为500MHz。

UWB信号的发生可通过发射时间极短(如2ns)的窄脉冲(如二次高斯脉冲)通过微分或
混频等上变频方式调制到UWB工作频段实现。

 UWB定位
 UWB是如何进行定位的,那幺就需要使用一个东西叫做TOF(Time Of Flight)翻译过来也就是光飞行的时间。

 UWB测距原理
 首先定义一下再定位中需要哪些东西,大家都知道GPS需要三个卫星才能对移动设备完成定位,UWB定位中也是一样,我们需要固定三个UWB板卡,我们称这三个固定的UWB板卡为Anchor,然后称需要被定位的处于移动状态的UWB板卡为Tag。

UWB定位技术浅析

UWB定位技术浅析

UWB定位技术浅析一、概念超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。

传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。

现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。

下图是一个使用调幅方式传递语音信号的连续波信号产生示意图。

图1 连续波调幅信号而IR-UWB信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。

需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进而实现信息传输。

下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。

图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。

图3 信号频谱对比图在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。

主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。

通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。

UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。

UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s的数据传输速率。

而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。

成像:UWB系统的带宽很宽,目前UWB穿墙雷达是很广泛的应用,具体做法是利用窄脉冲传过墙壁,获得墙对面的回波,可以得到成像,成像误差很低。

UWB定位原理介绍

UWB定位原理介绍

UWB定位原理介绍深圳市天工测控技术有限公司2016-8-10前言超宽带技术是一种全新的、与传统通信技术有极大差异的通信新技术。

它不需要使用传统通信体制中的载波,而是通过发送 和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而 具有GHz量级的带宽。

超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。

因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。

2002年4月,美国联邦通信委员会(FCC)发布了民用UWB设备使用频谱和功率的初步规定,规定中将相对带宽大于0.2或在传输的任何时刻带宽大于500MHz的通信系统称为UWB系统。

FCC对UWB系统所使用的频谱范围规定为3.1-10.6GHz,发射机的有效各向同性发射功率不得高于-41.3dBm/MHz。

超宽带无线电中的信息载体为脉冲无线电(IR,Impulse Radio)。

脉冲无线电是指采用冲激脉冲(超短脉冲)作为信息载体的无线电技术。

这种技术的特点是,通过对非常窄(往往小于1ns)的脉冲信号进行调制,以获得非常宽的带宽来传输数据。

UWB技术特点UWB 截获率/侦测率低抗干扰性能强发射功率小 消耗电能小传输速率高带宽极宽UWB测距技术原理1说到UWB 定位原理必须先从UWB 的测距原理说起双向飞行时间法(TW-TOF ,two way-time of flight )每个模块从启动开始即会生成一条独立的时间戳。

模块A 的发射机在其时间戳上的Ta1发射请求性质的脉冲信号,模块B 接收机在其时间戳上的Tb1接收到该信号。

对信号加以一定的处理手段后,模块B 在Tb2时刻发射一个响应性质的信号,被模块A 在自己的时间戳Ta 时刻接收。

由此可以计算出脉冲信号再两个模块之间的飞行时间,从而确定飞行距离。

距离S=光速C ×[ (Ta2-Ta1) -(Tb2-Tb1)]A 模块B 模块Ta1Tb1Ta2Tb2再来接着更详细的把测距原理说清楚TOF测距方法属于双向测距技术,它主要利用信号再两个异步收发机(Transceiver)之间往返的飞行时间来测量节点间的距离。

超宽带技术—UWB分解

超宽带技术—UWB分解

UWB技术特点
(8) 工程简单造价便宜
在工程实现上,UWB比其它无线技术要简单得多,可全 数字化实现。它只需要以一种数学方式产生脉冲,并对脉 冲产生调制,而这些电路都可以被集成到一个芯片上,设 备的成本将很低。
UWB 蓝牙 802.11a HomeRF的区别
UWB 速率(bps) <=1G 距离(m) <10 功率(毫瓦) <=1 应用范围 探距离
多媒体
蓝牙 <1M
10 1~100 家庭或 办公室
802.11a 54M 10~100 1>= 电脑和 Internet网关
HomeRF 1~2M
50 <=1 电脑、电话 及移动设备
UWB系统方案
一、MB-OFDM方案
二、DS-UWB方案
MB-OFDM方案
• 将频谱划分为多个宽度为528 MHz的子频带 – 3频带方案:3168 – 4752 MHz – 7频带方案: 3168 – 4752 MHz 和 6072 – 8184 MHz – 后续方案还可利用更高频率的子频带
进行 调时/调位多址技术"的论文, 开辟了将IR(脉冲无 线电)作 为无线通信载体的新途径 • 随着微电子器件的高速发展, UWB技术开始应用于民用 领 域,并在国际上掀起了研究和 应用的热潮,并被认为 是下一 代无线通信的革命性技术
UWB技术特点
(1) 抗干扰性能强
UWB采用跳时扩频信号,系统具有 较大的处理增益, 在发射时将微弱的无线电脉冲信号分散在宽阔的频带中 ,输出功率甚至低于普通设备产生的噪声。接收时将信 号能量还原出来,在解扩过程中产生扩频增益。因此, 与IEEE802.11a、IEEE802.11b和蓝牙相比,在同等 码速条件下,UWB具有更强的抗干扰性。

(完整版)超宽带(UWB)技术

(完整版)超宽带(UWB)技术
由于超宽带无线电发射的是持续时间极短的单周期脉冲且占空 比极低,多径信号在时间上是可分离的。因此适合室内等复杂环 境下的高速传输。大量的实验表明,对常规无线电信号多径衰落 深达10~ 30 dB 的多径环境, 对超宽带无线电信号的衰落最多不
微波通信
到5 dB。 6、定位精确
超宽带无线电具有极强的穿透能力,可在室内和地下进行精确 定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之 内; 与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相 对位置, 其定位精度可达厘米级。 7、抗干扰性能强(电磁兼容性),误码率低
获的可能性低、系统复杂度低、厘米级的定位精度等优点。 1、简单系统结构
UWB发射器直接用脉冲小型微带天线。由于UWB 不需要对载 波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器 及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。 2、高速数据传输
理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想够窄的
微波通信
围内变化,从而利用载波的状态变化来传输信息。相反的,超宽 带以基带传输。 UWB通信系统模型见下图。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽 频率为UWB 所使用的频率范围。
微波通信
二、UWB的技术特点 UWB具有对信道衰落不敏感、发射信号功率谱密度低、被截
由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发 射连续载波时的大量能耗。这一特色还使UWB 可通过缩小脉冲 宽度,在提高带宽的同时而不增加功耗,这打破了过去传输技术中功 耗和带宽成正比的定律。民用的UWB 设备功率一般是传统移动 电话所需功率的1/ 100 左右,是蓝牙设备所需功率的1/ 20 左右。 军用的UWB 电台耗电也很低。因此,UWB 设备在电池寿命和电

UWB超宽带定位原理与应用

UWB超宽带定位原理与应用

2019年09月,苹果新产品发布会,iPhone11全部搭载UWB超宽带芯片的消息让UWB再次走进公众视野,那么,UWB到底是一种什么样的技术,又能给我们的生活带来什么变化呢?UWB最初是作为一种通信技术出现的,目的用于短距离、宽带无线通信,与WIFI、蓝牙、Zigbee等等处于同等地位。

与WIFI、蓝牙等传统的窄带通信不同,UWB的超带宽可以让它发射极窄、极尖的脉冲,如此,两个靠的很近的脉冲就可以分辨出来。

这就意味着距离分辨力可以做到很高,赋予了UWB测距的先天优势。

UWB的脉冲宽度可以做到1ns以内,光、无线电在这个时间走过的距离是30厘米,通过对脉冲的进一步细分,比如分成3份这个难度并不高,就可以轻松获得10厘米的距离分辨力。

由于光速极其稳定不受任何外界影响,UWB测距天生就是稳定的。

在物理上,带宽与脉冲宽度是成反比的,窄带通信无法产生窄脉冲。

因此,WiFi、蓝牙等各种窄带通信技术只能通过测量信号强度、到达角度等办法,变通进行测距。

会受到电源电压、环境、天线工艺、测距距离等影响,因此测距精度无法做得很高且很不稳定。

UWB测距,就是在通信过程中测量数据包到达前沿的时间来实现的,而测距是定位的基础,由于UWB超宽带测距的高精度及稳定性,UWB定位在定位领域的应用逐渐成为主流。

UWB定位第一步:测距测距采用双向飞行时间法TW-TOF,two way-time of flight简单说,就是测量两点之间来回的无线电飞行时间,此即双向飞行时间,双向飞行时间x光速,就是发射与接收之间的双向飞行距离,此距离除2,就是单向距离。

UWB定位第二步:定位测出物体(标签)与几个已知位置的基准点(基站)的距离(TOA)或者距离差(TDOA)之后,就可以算出标签的位置。

UWB应用场景随着大数据、IT、AI技术的发展,以无人机、无人车、机器人为代表的自动化装备的智能化水平得到突飞猛进的发展,物联网技术的发展,更是实现了万物互联。

uwb定位工作原理

uwb定位工作原理

uwb定位工作原理
UWB定位是一种基于超宽带技术的定位方式,其工作原理是利用超宽带信号在空间中传播的特性,通过计算信号的时差或相位差,确定目标物体的位置。

UWB定位技术的关键在于发射和接收端的超宽带天线,其特殊的频率谱能够提供高精度的时空定位信息。

同时,UWB 定位也可以利用多径效应和多路径干扰来提高定位精度。

与传统的GPS定位相比,UWB定位具有定位精度高、抗干扰能力强、可靠性高等优点,因此在室内定位、物联网、智能家居等领域得到广泛应用。

- 1 -。

uwb定位原理

uwb定位原理

uwb定位原理Ultra-wideband (UWB)定位原理。

UWB定位技术是一种基于超宽带信号的定位技术,它具有高精度、高可靠性和抗干扰能力强的特点,被广泛应用于室内定位、物联网、智能交通等领域。

UWB定位原理是通过发送一系列非常短脉冲的超宽带信号,利用信号的传输时间和信号的传播特性来实现目标的定位。

本文将介绍UWB定位原理的基本概念、技术特点和应用前景。

一、UWB定位原理的基本概念。

UWB定位原理是基于超宽带信号的传输和接收来实现目标的定位。

超宽带信号是一种频率非常宽、脉冲宽度非常窄的信号,其带宽通常超过500MHz。

UWB 信号的特点是能够穿透障碍物,具有较好的抗多径干扰能力,适用于复杂环境下的定位应用。

二、UWB定位原理的技术特点。

1. 高精度,UWB定位技术具有亚米级甚至厘米级的高精度,适用于对定位精度要求较高的场景,如室内导航、室内定位等。

2. 高可靠性,UWB定位技术能够在复杂环境下实现高可靠的定位,如室内环境中的多路径效应、信号衰减等问题对UWB定位的影响较小。

3. 抗干扰能力强,UWB信号的频率带宽非常宽,能够有效抵御窄带干扰和多径干扰,保证定位系统的稳定性和可靠性。

三、UWB定位原理的应用前景。

1. 室内定位,UWB定位技术在室内定位领域具有广阔的应用前景,可以实现对室内环境中移动目标的高精度定位和跟踪,为室内导航、室内定位等应用提供支持。

2. 智能交通,UWB定位技术可以应用于智能交通系统中,实现车辆和行人的精确定位和跟踪,提高交通管理的效率和安全性。

3. 物联网,UWB定位技术可以应用于物联网领域,实现对物品、设备等的精确定位和跟踪,为物联网应用提供更加精准的定位服务。

四、总结。

UWB定位原理是一种基于超宽带信号的定位技术,具有高精度、高可靠性和抗干扰能力强的特点,适用于室内定位、智能交通、物联网等领域。

随着技术的不断发展和应用场景的不断拓展,UWB定位技术将会得到更广泛的应用和推广。

uwb定位的原理

uwb定位的原理

uwb定位的原理
UWB定位的原理
UWB定位技术是利用超宽带(Ultra Wide Band)技术进行位置定位的一种方法。

该技术利用超短脉冲信号,通过测量信号的到达时间差和信号强度等信息,实现对目标位置的定位。

UWB定位的原理是基于距离测量。

它通过发送一个超短脉冲信号,该信号的带宽非常大,能够覆盖很多频段。

这种信号在传输过程中会遇到各种障碍物,如墙壁、家具等,信号会被不断衰减和散射。

当信号到达接收器时,会产生一系列的回波信号,这些信号的时间和强度等信息可以用来计算出信号的传播时间和距离。

为了实现精确的位置定位,需要同时使用多个接收器来接收信号。

通过测量不同接收器接收到信号的时间和强度等信息,可以计算出目标物体和接收器之间的距离。

通过使用三个或以上的接收器,可以计算出目标物体的具体位置。

UWB定位技术具有高精度、高可靠性和高抗干扰性等特点。

它可以在室内和室外环境中进行定位,适用于各种应用场景,如室内导航、物流管理、智能家居等。

总的来说,UWB定位技术是一种基于超宽带技术的位置定位方法,它通过测量信号的到达时间差和信号强度等信息,实现对目标位置的定位。

该技术具有高精度、高可靠性和高抗干扰性等特点,适用
于各种应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<=1G
<54M
<1M
1-2M
功率(mW) 距离(m) 应用范围
<=1
1-100
>=1
<=1
10
10
10
50
探测距离 多媒体
电脑和 Internet网关
家庭办公
电脑电话及移 动设备
UWB的简介
UWB可以做什么?
UWB的简介
(1)UWB雷达(探地地雷、反恐穿墙雷达)
UWB的简介
(2)UWB生命探测雷达
标签发出一个UWB 脉冲 信号, 并被传感器接收。 UWB 信号是一个7.2 G Hz 的脉冲序列。
UWB定位技术概述
UWB定位技术概述
从传感器
主传感器
时间同步线
a1
a2
t1
t2
传感器计算出标签位置 通过两种方式:
- 信号到达时间差
(TDOA)
- 到达的角度(AOA) ,
包括方位角跟俯仰角。
标签
实际应用中,更多的传感器能保证定位精度的可靠性与有效性; 这是一个 鲁棒的解决方案。
UWB定位技术概述
UWB定位技术概述
UWB定位技术概述
Thank you !
谢谢!
28
FOCUS
医疗保健
实时追踪病人,监护者, 护理者 - 过程分析与改进 - 人力资源管理 -病人安全保证/状态监控
定位系统如何工作?
UWB定位技术概述
从传感器
时间同步线
标签
主传感器
传统的2.4 GHz RF 信道, 指示标签发出脉冲信号, 提供标签与传感器之间 的双向通路。注意: 2.4 G信道是私有的,并且 不会与标准的wifi起冲突。
UWB的简介
(3)军事通信
战术单通兵信作网战络示意图
UWB的简介
民用方面(1)地质勘探及生命探测
UWB的简介
(2)汽车防冲撞
UWB的简介
(3)家庭设备及便携设备之间的无线通信
三星C27A750 无线显 示器
UWB的简介
(4)精确定位
UWB定位系统视频演示
工业 / 自动化 实时追踪资产及库存
UWB的简介
2019年4月,美国联邦通信委员会(FCC)发布 了民用UWB设备使用频谱和功率的初步规定。 规定中将相对带宽大于0.2或在传输的任何时 刻带宽大于500MHz的通信系统称为UWB系 统。
FCC 对 UWB 系 统 所 使 用 的 频 谱 范 围 规 定 为 3.1-10.6GHz,发射机的有效各向同性发射功 率不得高于-41.3dBm/MHz。
UWB的简介
截获率/侦测率低
抗干扰性能强
发射功率小
干扰问题
超宽带系统应用中存在一个 与现有其他无线通信系统的 共存问题。U由W于B 超宽带系统 使用很宽的频谱,因此与很 多其他的无线通信系统频谱 重叠。
传输速率高
消耗电能小
带宽极宽
UWB的简介
UWB
IEEE802.11a
蓝牙
HomeRF
速率(bps)
UWB的简介
Emitted Signal Power
-41 dBm/MHz来自GPS PCSBluetooth, 802.11b Cordless Phones Microwave Ovens
802.11a
1.6 1.9 2.4
“Part 15 Limit”
UWB Spectrum
3.1
5
10.6
Frequency (GHz)
-改进流程 - 提高搜索效率 -减少资源浪费
娱乐/体育 演出或者训练
- 细化演出分析 - 回放比赛实况 - 视频集成
物流 追踪条形码及叉车 -减少保险环节的核查 - 仓库管理更加灵活
军事 人员与设备的追踪 - 城市作战训练 - 仓库管理 - 高级研发
运输 运输工具追踪 -提供交通工具到停车位的实 时定位 -水平精度 -行程与调度 -可与GPS相结合
22
UWB定位技术概述
TDOA 和 AOA 都会被使用到,以加强三维定位效果的健壮性。
AOA 矢量即来自各个传感器的绿线 TDOA 曲线则以蓝色表示 交叉位置即定位出的位置 (红色圆点)
标签位置能被任意两个信息计算 出来,比如TDOA和一个AOA; 或者两个AOA。
因此,标签最少只需两个传感器便可进行定位。
超宽带(UWB)定位
超宽带(UWB)定位
1 UWB技术简介 2 UWB定位系统视频演示 3 UWB定位技术概述
什么是UWB?
UWB的简介
超宽带(Ultra Wideband, UWB)技术的历 史可以追溯到上个世纪50年代,早期的超 宽带系统利用占用频带极宽的超短基带脉冲 进行通信,主要应用于军用的雷达,以及低 截获率/低侦测率的通信系统。
相关文档
最新文档