上海杨思中学七年级上册数学期末试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海杨思中学七年级上册数学期末试卷及答案-百度文库
一、选择题
1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列
的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是
( )
A .
B .
C .
D . 2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BO
E ∠=,则
FOD ∠=( )
A .35°
B .45°
C .55°
D .125°
3.如图,将线段AB 延长至点C ,使12
BC AB =
,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )
A .4
B .6
C .8
D .12
4.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做
完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间
( )
A .30分钟
B .35分钟
C .42011分钟
D .36011
分钟 5.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩
,则下列结论中:①当10a =时,方程组的解是155
x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )
A .1个
B .2个
C .3个
D .4个
6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字
对调,得到一个新的两位数,则原两位数与新两位数之差为( )
A .9a 9b -
B .9b 9a -
C .9a
D .9a - 7.如果方程组223x y x y +=⎧⎨
-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-4
8.一个几何体的表面展开图如图所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .三棱柱 9.已知∠A =60°,则∠A 的补角是( )
A .30°
B .60°
C .120°
D .180° 10.下列各组数中,互为相反数的是( )
A .2与12
B .2(1)-与1
C .2与-2
D .-1与21-
11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作
了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )
A .45人
B .120人
C .135人
D .165人 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
13.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部
分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )
A .a =3
2b B .a =2b C .a =52b D .a =3b
14.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字
形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )
A .1685
B .1795
C .2265
D .2125 15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方
形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道
ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )
A .A
B 上
B .B
C 上 C .C
D 上 D .AD 上
二、填空题
16.已知x =3是方程
(1)21343x m x -++=的解,则m 的值为_____. 17.若212
-m y x 与5x 3y 2n 是同类项,则m +n =_____. 18.﹣30×(1223-+45
)=_____. 19.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含
90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.
20.已知23,9
n m n
a a
-==,则m a=___________.
21.如图,在长方形ABCD中,10,13.,,,
AB BC E F G H
==分别是线段,,,
AB BC CD AD上的定点,现分别以,
BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且
,
BE DG
=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为
123
,,
s s s.若2
1
3
7
S
S
=,
则
3
S=___
22.计算:()222a-=____;()
23
23
x x
⋅-=_____.
23.若方程
11
2
22
m
x x
-
-=
++
有增根,则m的值为____.
24.若关于x的方程2x3a4
+=的解为最大负整数,则a的值为______.
25.对于有理数a,b,规定一种运算:a⊗b =a2-ab .如1⊗2=12-1⨯2 =-1,则计算-
5⊗[3⊗(-2)]=___.
26.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.
27.请先阅读,再计算:
因为:
11
1
122
=-
⨯
,
111
2323
=-
⨯
,
111
3434
=-
⨯
,…,
111
910910
=-
⨯
,
所以:
1111
122334910
++++
⨯⨯⨯⨯
1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010=-+-+-++-=-= 则1111100101101102102103
20192020++++=⨯⨯⨯⨯_________. 28.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人
数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.
29.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心
角是____度.
30.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千
米,用科学记数法表示为_____千米.
三、压轴题
31.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少
度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全
图(3),并求出∠EOF 的度数.
32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;
(2)若前 k 个格子中所填数之和为 2019,求 k 的值;
(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算
|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,
求所有的|m-n|的和.
33.已知线段30AB cm =
(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?
(2)如图1,几秒后,点P Q 、两点相距10cm ?
(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.
34.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
35.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2
=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②
MN AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
36.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.
(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,
①当x=__________秒时,PQ=1cm;
②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得
4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?
37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.
【详解】
解:A 、5+3×6+1×6×6=59(颗),故本选项错误;
B 、1+3×6+2×6×6=91(颗),故本选项正确;
C 、2+3×6+1×6×6=56(颗),故本选项错误;
D 、1+2×6+3×6×6=121(颗),故本选项错误;
故选:B .
【点睛】
本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
2.C
解析:C
【解析】
【分析】
根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.
【详解】
解:根据题意可得:BOE AOF ∠=∠,
903555FOD AOD AOF ∴∠=∠-∠=-=.
故答案为:C.
【点睛】
本题考查的是对顶角和互余的知识,解题关键在于等量代换.
3.C
解析:C
【解析】
【分析】
根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.
【详解】
解:根据题意可得:
设BC x =,
则可列出:()223x x +⨯=
解得:4x =, 12
BC AB =
, 28AB x ∴==.
故答案为:C.
【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.
4.D
解析:D
【解析】
【分析】
由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.
【详解】
分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.
设小强做数学作业花了x 分钟, 由题意得
6x -0.5x =180,
解之得
x =
36011
. 故选D. 【点睛】
本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
5.D
解析:D
【解析】
【分析】
①把a=10代入方程组求出解,即可做出判断;
②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;
④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断
【详解】
①把a=10代入方程组得
352025x y x y -=⎧⎨-=⎩
解得155x y =⎧⎨=⎩
,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x
代入方程组得3+52+25x x a x x a =⎧⎨=-⎩
解得:a=20,本选项正确
③若x=y,则有-225x a x a =⎧⎨
-=-⎩
,可得a=a-5,
矛盾,故不存在一个实数a 使得x=y,本选项正确 ④方程组解得25-15x a y a =⎧⎨=-⎩
由题意得:x-3a=5
把25-15x a y a =⎧⎨=-⎩
代入得 25-a-3a=5
解得a=5本选项正确
则正确的选项有四个
故选D
【点睛】
此题考查二元一次方程组的解,掌握运算法则是解题关键
6.C
解析:C
【解析】
【分析】
分别表示出愿两位数和新两位数,进而得出答案.
【详解】
解:由题意可得,原数为:()10a b b ++;
新数为:10b a b ++,
故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.
故选C .
【点睛】
本题考查列代数式,正确理解题意得出代数式是解题关键.
7.B
解析:B
【解析】
【分析】
把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】
把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,
把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,
故选B.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.
8.A
解析:A
【解析】
试题分析:根据四棱锥的侧面展开图得出答案.
试题解析:如图所示:这个几何体是四棱锥.
故选A.
考点:几何体的展开图.
9.C
解析:C
【解析】
【分析】
两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.
【详解】
设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.
故选:C .
【点睛】
本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.
解析:C
【解析】
【分析】
根据相反数的定义进行判断即可.
【详解】
A. 2的相反数是-2,所以2与12
不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;
C. 2与-2互为相反数,符合题意;
D. 211=--,所以-1与21-不是相反数,不符合题意;
故选:C .
【点睛】
本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.
11.D
解析:D
【解析】
试题解析:由题意可得:
视力不良所占的比例为:40%+15%=55%,
视力不良的学生数:300×55%=165(人).
故选D.
12.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB 平分∠COD ,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C .
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
13.B
【解析】
【分析】
从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a +b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解.
【详解】
由图形可知,
S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,
S 1=(a+b )2-S 2=2ab-b 2,
∵S 2=2S 1,
∴a 2+2b 2=2(2ab ﹣b 2),
∴a 2﹣4ab +4b 2=0,
即(a ﹣2b )2=0,
∴a =2b ,
故选B .
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
14.B
解析:B
【解析】
【分析】
寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.
【详解】
解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,
A 选项51685,357a a ==,可以作为中间数;
B 选项51795,359a a ==,不能作为中间数;
C 选项52265,453a a ==,可以作为中间数;
D 选项52125,425a a ==,可以作为中间数.
故选:B
【点睛】
本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.
15.D
解析:D
【解析】
根据题意列一元一次方程,然后四个循环为一次即可求得结论.
【详解】
解:设乙走x秒第一次追上甲.
根据题意,得
5x-x=4
解得x=1.
∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;
设乙再走y秒第二次追上甲.
根据题意,得5y-y=8,解得y=2.
∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;
同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;
乙在第5次追上甲时的位置又回到AB上;
∴2020÷4=505
∴乙在第2020次追上甲时的位置是AD上.
故选:D.
【点睛】
本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.
二、填空题
16.﹣.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.
【详解】
解:把x=3代入方程得1+1+=,
解得:m=﹣.
故答案为:﹣.
【点睛】
本题考查一元一次方程的解,解题的
解析:﹣8
3
.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.【详解】
解:把x=3代入方程得1+1+mx(31)
4
=
2
3
,
解得:m=﹣8
3
.
故答案为:﹣8
3
.
【点睛】
本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.
17.4
【解析】
【分析】
根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
解:根据题意得:2n=2,m=3,
解得:n=1,m=3,
则
解析:4
【解析】
【分析】
根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
解:根据题意得:2n=2,m=3,
解得:n=1,m=3,
则m+n=4.
故答案是:4.
【点睛】
本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.
18.﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(+)
=﹣30×+(﹣30)×()+(﹣30)× =﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛
解析:﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.【详解】
解:﹣30×(12
23
-+
4
5
)
=﹣30×1
2
+(﹣30)×(
2
3
-)+(﹣30)×
4
5
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 19.20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
解析:20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
∴∠3=90°−∠2.
∵a∥b,∠2=2∠1,
∴∠3=∠1+∠CAB,
∴∠1+30°=90°−2∠1,
∴∠1=20°.
故答案为:20.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.
20.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
【分析】
设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.
【详解】
解:如图,设CG=a,则DG=GI=BE=10−a,
解析:
121
4
【解析】
【分析】
设CG=a,然后用a分别表示出AE、PI和AH,根据2
1
3
7
S
S
=,列方程可得a的值,根据正方形的面积公式可计算S3的值.
【详解】
解:如图,设CG=a,则DG=GI=BE=10−a,
∵AB=10,BC=13,
∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,
AH=13−DH=13−(10−a)=a+3,
∵2
1
3
7
S
S
=,即23
(3)7
a
a a
=
+
,
∴4a2−9a=0,
解得:a1=0(舍),a2=
9
4
,
则S3=(10−2a)2=(10−
9
2
)2=
121
4
,
故答案为
121
4
.
【点睛】
本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -
【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
()2
22a -=44a ()2323x x ⋅-=56x -
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键
23.2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4
解析:2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4+4
解得:m=2
故答案为:2
【点睛】
此题考查分式方程的增根,掌握运算法则是解题关键
24.2 【解析】 【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为,
把代入方程得:,
解得:,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能
解析:2
【解析】
【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为1-,
把x 1=-代入方程2x 3a 4+=得:23a 4-+=,
解得:a 2=,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 25.100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
26.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若
解析:26,5,4 5
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
27.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020-+-+-++-=
96
10100242525
== 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 28.8+x =(30+8+x ).
【解析】
【分析】
设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.
【详解】
解:设还要录取女生人,根据题意得:
解析:8+x =
13(30+8+x ). 【解析】
【分析】
设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根
据女生人数占数学活动小组总人数的
13
列方程. 【详解】 解:设还要录取女生x 人,根据题意得:
18(308)3
x x +=++. 故答案为:18(308)3
x x +=++. 【点睛】
此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.
29.72
【解析】
【分析】
用360度乘以C 等级的百分比即可得.
【详解】
观察可知C 等级所占的百分比为20%,
所以C 等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
解析:72
【解析】
【分析】
用360度乘以C 等级的百分比即可得.
【详解】
观察可知C 等级所占的百分比为20%,
所以C 等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 30.18×105
【解析】
【分析】
科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原
解析:18×105
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:118000=1.18×105,
故答案为1.18×105.
三、压轴题
31.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,
∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
32.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.
33.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .
【解析】
【分析】
(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.
【详解】
解:(1)设经过ts 后,点P Q 、相遇.
依题意,有2330t t +=,
答:经过6秒钟后,点P Q 、相遇;
(2)设经过xs ,P Q 、两点相距10cm ,由题意得
231030x x ++=或231030x x +-=,
解得:4x =或8x =.
答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;
(3)点P Q 、只能在直线AB 上相遇,
则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030
s +=, 设点Q 的速度为/ycm s ,则有4302y =-,
解得:7y =;
或10306y =-,
解得 2.4y =,
答:点Q 的速度为7/cm s 或2.4/cm s .
【点睛】
本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.
34.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;
(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;
②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.
【详解】
解:(1)∵数轴上点A 表示的数为6,
∴OA =6,
则OB =AB ﹣OA =4,
点B 在原点左边,
∴数轴上点B 所表示的数为﹣4;
点P 运动t 秒的长度为5t ,
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P 所表示的数为:6﹣5t ,
故答案为﹣4,6﹣5t ;
(2)①点P 运动t 秒时追上点Q ,
根据题意得5t =10+3t ,。