商都县高中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商都县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若当R x ∈时,函数|
|)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.
2. P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
3. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )
A .
B .
C .
D .
4. 已知向量,,其中.则“”是“”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件 5. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )
A .0<
B .0
C .0
D .0
6. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
7. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .13
8. 复数满足2+2z 1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i
9
. 已知向量=(﹣1,3),=(x ,2),且,则x=( )
A .
B .
C .
D .
10.已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )
A .¬p
B .p ∧q
C .p ∧¬q
D .¬p ∨q
11.执行如图的程序框图,则输出S 的值为( )
A .2016
B .2
C .
D .﹣1
12.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
二、填空题
13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
14.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .
15.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
16.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
17.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 18.在等差数列}{n a 中,20161-=a 28
8
=S ,则2016S 的值等于 . . 三、解答题
19.已知函数.
(Ⅰ)求曲线
在点
(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.
20.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).
(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;
(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.
21.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分
A B C D E,其频率分布直方图如下图所示.
别记为,,,,
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.
22.(本小题满分10分) 已知函数()2f x x a x =++-.
(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.
23.已知函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;
(1)求ω,φ;
(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )的图象,若y=g (x )图象的一个
对称点为(
,0),求θ的最小值.
(3)对任意的x ∈[
,
]时,方程f (x )=m 有两个不等根,求m 的取值范围.
24.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;
(2)若CE=1,AB=2,求DE的长.
商都县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】由||
)
(x a
x
f=始终满足1
)
(≥
x
f可知1
>
a.由函数
3|
| log
x x
y a
=是奇函数,排除B;当)1,0(
∈
x时,
|
|
log<
x
a ,此时0
|
|
log
3
<
=
x
x
y a,排除A;当+∞
→
x时,0
→
y,排除D,因此选C.
2.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
3.【答案】D
【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;
B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;
C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;
D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义
域上是减函数,D正确.
【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.
4.【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若,则或
所以“”是“”成立的充分而不必要条件。
故答案为:A
5.【答案】D
【解析】解:∵A1B∥D1C,
∴CP与A1B成角可化为CP与D1C成角.
∵△AD1C是正三角形可知当P与A重合时成角为,
∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,
∴0<θ≤.
故选:D.
6.【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的
斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 7. 【答案】D 【解析】
考
点:等差数列. 8. 【答案】
【解析】解析:选D.法一:由2+2z 1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-21-i =-2(1+i )2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩⎪⎨⎪⎧2+2a =a -b
2b =a +b
, ∴a =b =-1,故z =-1-i. 9. 【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣. 故选:C .
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
10.【答案】C
【解析】解:∵命题p :∀x ∈R ,32x+1
>0,∴命题p 为真,
由log 2x <1,解得:0<x <2,∴0<x <2是log 2x <1的充分必要条件,
∴命题q 为假, 故选:C .
【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.
11.【答案】B
【解析】解:模拟执行程序框图,可得 s=2,k=0
满足条件k <2016,s=﹣1,k=1 满足条件k <2016,s=,k=2 满足条件k <2016,s=2.k=3 满足条件k <2016,s=﹣1,k=4 满足条件k <2016,s=,k=5 …
观察规律可知,s 的取值以3为周期,由2015=3*671+2,有 满足条件k <2016,s=2,k=2016
不满足条件k <2016,退出循环,输出s 的值为2. 故选:B .
【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s ,k 的值,观察规律得到s 的取值以3为周期是解题的关键,属于基本知识的考查.
12.【答案】D 【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,
∴sin θcos θ<0,cos θ>0,
∴sin θ<0, ∴θ是第四象限角. 故选:D .
【点评】本题考查了象限角的三角函数符号,属于基础题.
二、填空题
13.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g
3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.
14.【答案】(﹣4,).
【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.
∴抛物线的焦点为F(﹣2,0),准线为x=2.
设抛物线上点P(m,n)到焦点F的距离等于6,
根据抛物线的定义,得点P到F的距离等于P到准线的距离,
即|PF|=﹣m+2=6,解得m=﹣4,
∴n2=8m=32,可得n=±4,
因此,点P的坐标为(﹣4,).
故答案为:(﹣4,).
【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.
15.【答案】180
【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r
可知r=2,所以系数为C102×4=180,
故答案为:180.
【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.
16.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC中,根据正弦定理得:BC==海里,
则这时船与灯塔的距离为海里.
故答案为.
17.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,
13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,
21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程
序结束.
18.【答案】2016-
三、解答题
19.【答案】
【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义 【试题解析】(Ⅰ)函数定义域为
,
又
,
所求切线方程为
,即
(Ⅱ)函数在
上恰有两个不同的零点,
等价于在上恰有两个不同的实根 等价于在上恰有两个不同的实根,
令
则
当时,,
在
递减;
当时,
,在
递增.
故
,又
.
,
,
即
20.【答案】
【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,
=log2(1﹣)+2x;
∵y=1﹣在(1,+∞)上是增函数,
故y=log2(1﹣)在(1,+∞)上是增函数;
又∵y=2x在(1,+∞)上是增函数;
∴h(x)在x∈(1,+∞)上单调递增;
同理可证,h(x)在(﹣∞,﹣1)上单调递增;
而h(1.1)=﹣log221+2.2<0,
h(2)=﹣log23+4>0;
故h(x)在(1,+∞)上有且仅有一个零点,
同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,
故函数h(x)有两个零点;
(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为
1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;
故a=;
结合函数a=的图象可得,
<a<0;
即﹣1<a<0.
【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.
21.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能
力、识图能力、获取数据信息的能力.
22.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.
【解析】
试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上
恒成立,即10a -≤≤.
试题解析:
(1)当4a =-时,()6f x ≥,即2
426
x x x ≤⎧
⎨-+-≥⎩或24
426
x x x <<⎧
⎨
-+-≥⎩或4
426
x x x ≥⎧
⎨
-+-≥⎩,
解得0x ≤或6x ≥,不等式的解集为(]
[),06,-∞+∞;
考
点:不等式选讲. 23.【答案】
【解析】解:(1)根据函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<
)的部分图象,可得
•
=
,
求得ω=2.
再根据五点法作图可得2•
+φ=
,求得φ=﹣
,∴f (x )=2sin (2x ﹣
).
(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )=2sin=2sin (2x+2θ﹣)的图
象,
∵y=g (x )图象的一个对称点为(,0),∴2•
+2θ﹣
=k π,k ∈Z ,∴θ=
﹣
,
故θ的最小正值为.
(3)对任意的x ∈[
,
]时,2x ﹣
∈[
,],sin (2x ﹣
)∈,即f (x )∈,
∵方程f (x )=m 有两个不等根,结合函数f (x ),x ∈[,
]时的图象可得,1≤m <2.
24.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,
∴CD=DA.
(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,
由勾股定理得CA2=CB2-AB2,
又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,
即CB2-CB-2=0,解得CB=2,
∴CA2=1×2=2,∴CA= 2.
由(1)知DE=1
2CA=
2 2,
所以DE的长为2
2.。