人教版八年级数学上册 轴对称填空选择单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册 轴对称填空选择单元测试卷附答案
一、八年级数学全等三角形填空题(难)
1.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D ,下列四个结论:
①EF =BE +CF ;
②∠BOC =90°+12
∠A ; ③点O 到△ABC 各边的距离相等;
④设OD =m ,AE +AF =n ,则AEF S mn ∆=.
其中正确的结论是____.(填序号)
【答案】①②③
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义可得△BEO 和△CFO 是等腰三角形可得①EF =BE +CF 正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m ,AE+AF=n,则△AEF 的面积=
12mn ,④错误. 【详解】
在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴∠OBC=12∠ABC ,∠OCB=12
∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12
∠A , ∴∠BOC=180°-(∠OBC+∠OCB )=90°,故②∠BOC =90°+
12∠A 正确; 在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴∠OBC=∠EOB ,∠OCB=∠OCF ,
∵EF ∥BC ,
∴∠OBC=∠EOB ,∠OCB=∠FOC ,
∠EOB=∠OBE,∠FOC=∠OCF ,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF , 即①EF =BE +CF 正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于点N ,连接AO , ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,
∴ON=OD=OM=m ,即③点O 到△ABC 各边的距离相等正确;
∴S △AEF=S △AOE+ S △AOF=
12AE·OM+12AF·OD=12OD·(AE+AF )=12
mn ,故④错误; 故选①②③
【点睛】
此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.
2.如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =
254
,PD =6.如果点M 是OP 的中点,则DM 的长是_____.
【答案】5.
【解析】
【分析】
由角平分线的性质得出∠AOP=∠BOP ,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274CE CP PE =-=
,由平行线的性质得出∠OPC=∠AOP ,得出∠OPC=∠BOP ,证出254
CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE +=,再由直角三角形斜边上的中线性质即可得出答案.
【详解】
∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,
∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°,
∴222257446CE CP PE ⎛⎫
⎪⎭-⎝=-==, ∵CP ∥OA ,
∴∠OPC =∠AOP ,
∴∠OPC =∠BOP ,
∴254
CO CP ==, ∴72544
8OE CE CO =+=+=, ∴22228610OP OE PE =+=+=,
在Rt △OPD 中,点M 是OP 的中点,
∴12
5DM OP =
=; 故答案为:5.
【点睛】 本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP 是解题的关键.
3.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.
【答案】
252
【解析】
【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.
【详解】
∵90ABC ∠=︒,AB=BC,
∴∠A=45︒,
∵D 为AC 边上中点,
∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,
∵DE DF ⊥,
∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,
∴∠ADE=∠BDF,
∴△ADE ≌△BDF,
∴BF==AE=3,
∵CF=2,
∴AB=BC=BF+CF=5,
∴ABC ∆的面积为
212BC ⋅=252, 故答案为:
252
. 【点睛】
此题考查等腰直角三角形的性质,三角形全等的判定及性质.
4.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.
【答案】2
【解析】
【分析】
根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案
【详解】
如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,
在Rt △OBA 和Rt △PAC 中,
OBA PAC AOB CPA BA AC ∠
∠⎧⎪∠∠⎨⎪⎩
===,
Rt △OBA ≌Rt △PAC (AAS ),
∴AP=OB=b ,PC=OA=a .
由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),
由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (
2a b +,2a b +), ∴OD=22
a b +() ∴22
a b +()=2, ∴a+b=2.
故答案为2.
【点睛】
本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.
5.如图,ABC ∆中,090,,102ACB AC BC AB ∠===,点G 为AC 中点,连接BG ,CE BG ⊥于F ,交AB 于E ,连接GE ,点H 为AB 中点,连接FH ,以下结论:①ACE ABG ∠=∠;②5CF =
;③AGE CGB ∠=∠;④FH 平分BFE ∠。
其中
正确的结论的序号为___________。
【答案】③④
【解析】
【分析】
作AP ⊥AC 交CE 的延长线于P ,连接CH .构造全等三角形,证明△CAP ≌△BCG (ASA ),△EAG ≌△EAP (SAS ),即可分步判断①②③,利用四点共圆可以证明④正确.
【详解】
解:如图,作AP ⊥AC 交CE 的延长线于P ,连接CH .
∵CE ⊥BG ,
∴∠CFB=∠ACB=90°,
∵∠ACE+∠BCE=90°,∠CBG+∠BCE=90°,
∴∠ACE=∠CBG ,
∵BG 是△ABC 的中线,AB >BC ,
∴∠ABG≠∠CBG ,
∴∠ACE≠∠ABG ,故①错误,
∵∠ACP=∠CBG ,AC=BC ,∠CAP=∠BCG=90°,
∴△CAP ≌△BCG (ASA ),
∴CG=PA=AG ,∠BGC=∠P ,
∵AG=AP ,∠EAG=∠EAP=45°,AE=AE ,
∴△EAG ≌△EAP (SAS ),
∴∠AGE=∠P ,
∴∠AGE=∠CGB ,故③正确, ∵90,,102ACB AC BC AB ∠===,
∴△ABC 是等腰直角三角形,
∴AC=BC=10,
∴AG=CG=5, ∴2251055BG =+=, ∵••12•12
CG CB CF = , ∴25CF =
∵CA=CB ,∠ACB=90°,AH=HB ,
∴∠BCH=∠ACH=45°,
∵∠CFB=∠CHB=90°,
∴C ,F ,H ,B 四点共圆,
∴∠HFB=∠BCH=45°,
∴∠EFH=∠HFB=45°,
∴FH 平分∠BFE ,故④正确,
综上所述,正确的只有③④.
故答案为:③④
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,考查了直角三角形中勾股定理的运用,熟悉各项性质是解题的关键.
6.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①△DEF是等腰直角三角形;
②AE=CF;
③△BDE≌△ADF;
④BE+CF=EF;
⑤S四边形AEDF=
1
4
AD2,
其中正确结论是_____(填序号)
【答案】①②③
【解析】
【分析】
先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF=S△ADC=
1
2
AD2,从而判定⑤的正误.
【详解】
解:∵Rt△ABC中,AB=AC,点D为BC中点,
∴∠C=∠BAD=45°,AD=BD=CD,
∵∠MDN=90°,
∴∠ADE+∠ADF=∠ADF+∠CDF=90°,
∴∠ADE=∠CDF.
在△AED与△CFD中,
EAD C
AD CD
ADE CDF
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△AED≌△CFD(ASA),
∴AE=CF,ED=FD.故①②正确;
又∵△ABD≌△ACD,
∴△BDE≌△ADF.故③正确;
∵△AED≌△CFD,
∴AE=CF,ED=FD,
∴BE+CF=BE+AE=AB=2BD,∵EF=2ED,BD>ED,
∴BE+CF>EF.故④错误;
∵△AED≌△CFD,△BDE≌△ADF,
∴S四边形AEDF=S△ADC=1
2
AD2.故⑤错误.
综上所述,正确结论是①②③.
故答案是:①②③.
【点睛】
考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.
7.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB.若AB=9,AC=5,则AM的长为
______.
【答案】7
【解析】
【分析】
过点E作EN⊥AC的延长线于点N,连接BE、EC,利用角平分线的性质、垂直平分线的性质得到EM=EN,EB=EC,证明Rt△BME≌Rt△CNE(HL),得到BM=CN,证明
Rt△AME≌Rt△ANE(HL),得到AM=AN,由AM=AB-BM=AB-CN=AB-(AN-AC)=AB-
AN+AC=AB-AM+AC,即AM=9-AM+5,即可解答.
【详解】
解:如图,过点E作EN⊥AC的延长线于点N,连接BE、EC,
∵BD=DC ,DE ⊥BC
∵BE=EC .
∵AE 平分∠BAC ,EM ⊥AB ,EN ⊥AC ,
∴EM=EN ,∠EMB=∠ENC=90°.
在Rt △BME 和Rt △CNE 中,
BE EC EM EN =⎧⎨=⎩
, ∴Rt △BME ≌Rt △CNE (HL )
∴BM=CN ,
在RtAME 和Rt △ANE 中,
AE AE EM EN =⎧⎨=⎩
, ∴Rt △AME ≌Rt △ANE (HL )
∴AM=AN ,
∴AM=AB-BM=AB-CN=AB-(AN-AC )=AB-AN+AC=AB-AM+AC ,
即AM=9-AM+5
2AM=9+5
2AM=14
AM=7.
故答案为:7.
【点睛】
考查了全等三角形的性质与判定,解决本题的关键是证明Rt △BME ≌Rt △CNE (HL ),得到BM=CN ,证明Rt △AME ≌Rt △ANE (HL ),得到AM=AN .
8.如图,在△ABD 中,∠BAD=80°,C 为BD 延长线上一点,∠BAC=130°,△ABD 的角平分线BE 与AC 交于点E ,连接DE ,则∠DEB=_____.
【答案】40°
【解析】
【分析】
做辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH ,设
∠DEG=y ,∠GEB=x ,根据三角形内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB ,列方程为2y+x=80-x,y+x=40,可得结论:∠DEB =40°.
【详解】
如图,
过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,
∵BE平分∠ABD
∴EH=EF
∵∠BAC=130°,∠BAD=80°
∴∠FAE=∠CAD=50°
∴EF=EG
∴EG=EH
∴ED平分∠CDG
∴∠HED=∠DEG
设∠DEG=y,∠GEB=x,
∵∠EFA=∠EGA=90°
∴∠GEA=∠FEA=40°
∵∠EFB=∠EHB=90°,∠EBH=∠EBF
∴∠FEB=∠HEB
∴2y+x=80-x,
2y+2x=80
y+x=40
即∠DEB=40°.
故答案为:40°.
【点睛】
本题考查三角形内角和定理和角平分线的性质,正确作辅助线是解题的关键.
9.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.
【答案】3
【解析】
【分析】
在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.
【详解】
解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.
∵ON’=ON,∠N’OM=∠NOM,OM=OM,
∴△N’OM≌△NOM,
∴MN’=MN,
∴M A+MN=MA+MN’,
∵A点固定,
∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,
∴MA+MN’的最小值为AD,
∵∠OAB=∠AOB=15°,OB=6,
∴∠ABD=30°,AB=6,
∴AD=0.5×6=3,
∴MA+MN的最小值为3,
故答案为3.
【点睛】
理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.
10.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.
【答案】4
【解析】
试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
二、八年级数学全等三角形选择题(难)
11.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN 上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()
A.70°B.65°C.60°D.85°
【答案】A
【解析】
【分析】
利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.
【详解】
如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.
∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).
如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.
由题意可知:OD =OD ',OE =OE ',OF =OF ',∴OD '=OE '=OF ',∴图2中的点O 是三角形三个内角的平分线的交点.
∵∠AOB =125°,∴∠OAB +∠OBA =180°-125°=55°,
∴∠CAB +∠CBA =2×55°=110°,∴∠ACB =180°-110°=70°.
故选A .
【点睛】
本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD =OE =OF .
12.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=
时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )
A .5个
B .4个
C .3 个
D .2个
【答案】B
【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =
2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+45210+,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=102BC =52AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
13.如图所示,在Rt ABC ∆中,E 为斜边AB 的中点,ED AB ⊥,且
:1:7CAD BAD ∠∠=,则BAC ∠=( )
A .70
B .45
C .60
D .48
【答案】D
【解析】 根据线段的垂直平分线,可知∠B=∠BAD ,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x ,则∠BAD=7x ,则x+7x+7x=90°,解得x=6°,因此可
知∠BAC=∠CDA+∠BAD=6°
+42°=48°. 故选:D.
点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.
14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N , ∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE , ∴CD=AN=EN=12
AE ,
∵AN=BD , ∴
BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF ,
由勾股定理得:AF=AH ,
∴
2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
15.如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为( )
A .2
B .3
C .4
D .5
【答案】C
【解析】
【分析】 可延长DE 至F ,使EF=BC ,利用SAS 可证明△ABC ≌△AEF ,连AC ,AD ,AF ,再利用
SSS 证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.
【详解】
延长DE
至F,使EF=BC,连AC,AD,AF,
在△ABC与△AEF中,
=90
AB AE
ABC AEF
BC EF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABC≌△AEF(SAS),
∴AC=AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
∴CD=EF+DE=DF,
在△ACD与△AFD中,
AC AF
CD DF
AD AD
⎧
⎪
⎨
⎪
⎩
=
=
=
,
∴△ACD≌△AFD(SSS),
∴五边形ABCDE的面积是:S=2S△ADF=2×
1
2
•DF•AE=2×
1
2
×2×2=4.
故选C.
【点睛】
本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.
16.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:
①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;
③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
结论(1)正确.因为图中全等的三角形有3对;
结论(2)错误.由全等三角形的性质可以判断;
结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.
结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】
结论(1)正确,理由如下:
图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.
由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD与△COE中,
∴△AOD≌△COE(ASA),
同理可证:△COD≌△BOE.
结论(2)错误.理由如下:
∵△AOD≌△COE,
∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面积等于四边形CDOE的面积的2倍.
结论(3)正确,理由如下:
∵△AOD≌△COE,
∴CE=AD,
∴CD+CE=CD+AD=AC=OA,
∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;
结论(4)正确,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,
即OP•OC=OE2.
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
综上所述,正确的结论有3个,
故选C.
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
=,D、E是斜边BC上两点,且∠DAE=45°,将17.如图,在Rt△ABC中,AB AC
△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:
+=
①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )
A.②④B.①④C.②③D.①③
【答案】D
【解析】
解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;
②无法证明,故②错误;
③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;
④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.
故选D.
18.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()
A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A
【答案】B
【解析】
在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边
AB=DE.
故选:B.
19.下列四组条件中,能够判定△ABC和△DEF全等的是()
A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠D
C.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D
【答案】D
【解析】
根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:
A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;
B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;
C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;
不符合“SAS”定理,不对应,不能判断全等;
D、AC=DF,BC=DE,∠C=∠D,可利用“SAS”判断全等;
故选:D.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
20.如图,与都是等边三角形,,下列结论中,正确的个数是
( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB
∴
∴,①正确;
∵
∴∠ADO=∠AB O
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB ∴∠BDA -∠ADC≠∠CEA -∠AEB
∴
,③错误 ∵
∴∠DAC+∠BCA=180° ∵∠DAB=60°, ∴∠BCA=180°-∠DAB -∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴
④正确 故由①②④三个正确, 故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).
A .PA P
B =
B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
【答案】D
【解析】
【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.
【详解】
解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥
∴PA PB =,选项A 正确;
在△AOP 和△BOP 中,
PO PO PA PB =⎧⎨=⎩
, ∴AOP BOP ≅
∠=∠,OA=OB,选项B,C正确;
∴APO BPO
由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,选项D错误.故选:D.
【点睛】
本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.
22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;
③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由
∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;
④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;
⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是
∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;
【详解】
①∵△ABC和△CDE为等边三角形
∴AC=BC,CD=CE,∠BCA=∠DCB=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴AD=BE,故①正确;
由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°
∴△CQB≌△CPA(ASA),
∴AP=BQ,故②正确;
∵△CQB≌△CPA,
∴PC=PQ,且∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,故③正确,
∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,
∴PD≠CD,
∴DE≠DP,故④DE=DP错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,故⑤正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.
23.下列命题中的假命题是()
A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等
B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等
C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等
D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等
【答案】D
【解析】
【分析】
根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.
【详解】
解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;
B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;
C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;
D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,
故答案为D.
【点睛】
本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.
24.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D,过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G,则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH,其中正确的是()
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出
∠CAP,再根据角平分线的定义∠ABP=1
2
∠ABC,然后利用三角形的内角和定理整理即可
得解;
②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;
③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;
④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.
【详解】
解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴∠ABP=1
2
∠ABC,
∠CAP=1
2(90°+∠ABC)=45°+1
2
∠ABC,
在△ABP中,∠APB=180°-∠BAP-∠ABP,
=180°-(45°+1
2
∠ABC+90°-∠ABC)-1
2
∠ABC,
=180°-45°- 1
2
∠ABC-90°+∠ABC-1
2
∠ABC,
=45°,故本小题正确;
②∵PF ⊥AD ,∠APB=45°(已证),
∴∠APB=∠FPB=45°,
∵∵PB 为∠ABC 的角平分线,
∴∠ABP=∠FBP ,
在△ABP 和△FBP 中,
APB FPB PB PB
ABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABP ≌△FBP (ASA ),
∴AB=BF ,AP=PF ;故②正确;
③∵∠ACB=90°,PF ⊥AD ,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP ,
∵PF ⊥AD ,
∴∠APH=∠FPD=90°,
在△AHP 与△FDP 中,
90AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△AHP ≌△FDP (AAS ),
∴DF=AH ,
∵BD=DF+BF ,
∴BD=AH+AB ,
∴BD-AH=AB ,故③小题正确;
④∵PF ⊥AD ,∠ACB=90°,
∴AG ⊥DH ,
∵AP=PF ,PF ⊥AD ,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG ,
∵∠PAF=45°,AG ⊥DH ,
∴△ADG 与△FGH 都是等腰直角三角形,
∴DG=AG ,GH=GF ,
∴DG=GH+AF ,
∵AF >AP ,
∴DG=AP+GH 不成立,故本小题错误,
综上所述①②③正确.
故选:C.
【点睛】
本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,
等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.
25.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
45
APE CPF
AP PC
EAP C
∠∠
⎧
⎪
⎨
⎪∠∠︒
⎩
=
=
==
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=
1
2
S△ABC.故④正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
26.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )
A.①③B.①②④C.①③④D.①②③④
【答案】C
【解析】
【分析】
由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=
∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.
【详解】
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,且∠ACD=15°,
∵∠BCD=30°,
∵∠BAC=∠BDC=90°,
∴点A,点C,点B,点D四点共圆,
∴∠ADC=∠ABC=45°,故①符合题意,
∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,
∵DF为∠BDA的平分线,
∴∠ADF=∠BDF,
∵∠AFD=∠BDF+∠DBF>∠ADF,
∴AD≠AF,故②不合题意,
如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,
∵DH=AD,∠HDF=∠ADF,DF=DF,
∴△ADF≌△HDF(SAS)
∴∠DHF=∠DAF=30°,AF=HF,
∵∠DHF=∠HBF+∠HFB=30°,
∴∠HBF=∠BFH=15°,
∴BH=HF,
∴BH=AF,
∴BD=BH+DH=AF+AD,故③符合题意,
∵∠ADC=45°,∠DAB=30°=∠BCD,
∴∠BED=∠ADC+∠DAB=75°,
∵GD=DE,∠BDG=∠BDE=90°,BD=BD,
∴△BDG≌△BDE(SAS)
∴∠BGD=∠BED=75°,
∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,
∴∠GBC=∠BGC=75°,
∴BC=BG,
∴BC=BG=2DE+EC,
∴BC﹣EC=2DE,故④符合题意,
故选:C.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,
27.具备下列条件的两个三角形,可以证明它们全等的是( ).
A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等
C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等
【答案】B
【解析】
【分析】
根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【详解】
解:A、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;
B、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△ABC≌△A′B′C′),故此选项正确.
.
C、两边和其中一边的对角对应相等,无法利用ASS得出它们全等,故此选项错误;
D、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.
故选:B.
【点睛】
本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
28.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG =BG ,DG ⊥AB ,
∴AH =BH ,
∴∠HAB =∠HBA =22.5°,
∴∠EHB =45°,且AE ⊥BC ,
∴∠EHB =∠EBH =45°,
∴HE =BE ,
故选项B 不符合题意,
故选:A .
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
29.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )
A .0个
B .1个
C .2个
D .3个
【答案】C
【解析】
【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正
确;由12APB EPF ∠=
∠,180EPF O ∠+∠=︒,得到1902
APB O ∠=︒-∠,可判断(3)错误;即可得到答案.
【详解】
解:过点P 作PG ⊥AB ,如图:。